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Časopis pro pšstování matematiky, roč. 100 (1975), Praha 

PERIODIC SOLUTIONS OF SOME NONLINEAR DIFFERENTIAL 
EQUATIONS OF HIGHER ORDER 

SVATOPLUK FucfK, Praha and JEAN MAWHIN, Louvain-la-Neuve 

(Received February 5, 1974) 

1. Introduction. This paper is devoted to the study of the vector differential 
equation 

(E) - (-lfx™(t) + AlX«
k-»(t) + ... + A2k.t x'(t) + 1 [gradF(x(0)] + 

at 
+ * MO) = KO • 

Under some conditions upon the matrices Au..., A2k-t and under very general 
assumptions upon the functions F and g, the existence of a periodic solution of (E) 
is proved. In the scalar case (see Section 7), it is possible to give simple necessary 
and sufficient conditions for the existence of at least one periodic solution of (E). 

The obtained results extend the ones from [2] and moreover illustrate some of 
the assumptions of [7] in that instead of assuming that some Brouwer's degree is non 
zero, we give explicit conditions upon the function g. Other connections with previous 
papers are discussed in [2, 7]. 

The method of proof is very close to the abstract investigations of nonlinear 
equations with noninvertible linear parts studied in [1] and [4]. As in [7], L2-
estimates and classical inequalities are used to obtain the C*-a priori bounds (see 
Section 5) needed for applying the continuation theorem of coincidence degree 
theory [4] stated in Section 2 for reader's convenience. The main result is stated and 
proved in Section 6. 

2. A continuation theorem. Let X, Z be normed vector spaces, L: dom L c I - > Z 
be a Fredholm mapping of index zero, i.e. a linear mapping with closed range Im L 
having a finite codimension equal to the dimension of the null-space ker L of L. 
It is known that this implies the existence of continuous projectors P : X -* X, 
Q\Z-+Z such that 

ImP = ker L, Im L = ker Q 
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and we shall assume that the inverse K : Im L -• X of the restriction Lof L to dom L n 
n ker P is compact. Let now Q c: X be a bounded open set and N : D -+ Z be 
a continuous mapping such that N(S) is bounded. The following theorem is proved 
in [4] (see also [8], ch. XI, for the special case of periodic solutions of ordinary 
differential equations). 

2.1. Proposition. Let L and N be like above and suppose that the following con
ditions are satisfied. 

(1) For each X e (0, 1), every possible solution of equation 

Lx = XNx 
is such that x$dQ n dom L. 

(2) For each x e ker L n dQ, Nx$ImL (or equivalently QNx =j= 0). 

(3) The Brouwer degree (see e.g. [3]) 

d[% Q n ker L, 0] 4= 0, 

where 91 : Q n ker L -> ker L, a H> JQNa and J : Im g -* ker L is an isomorphism. 
Then, equation 

Lx = Nx 

has af Zeasf 0ne solution x e dom Ln Q. 

3. Linear differential operators. .Rn being the n-dimensional Euclidian space, let us 
denote by |-| and by (•, •) respectively its Euclidian norm and inner product. 

If / ^ 0 is an integer, we shall denote by Cl

T the (Banach) space of mappings 
x : l*1 -> Rn which are continuous and T-periodic together with their first / derivatives 
with the norm 

H , = E[sup|x<;>(0|] 
j = 0 teR 

(x(1) = djxjdtj). 
Let us introduce the projector 

•L : c-p ^ U-T', x •"* l 

It is immediate that 

1 Ґ x ( í )d ( . 

\\Px\\, = ||Px||0 g ||x||0 = llxll, 

for every x e Cl
T and that Im P is the subspace of C\ of constant functions. 

If k ^ 1 is an integer, let Lbe the differential operator defined on 

dom L -= (xeCT ; x(2k) exists and is continuous} 
by 

Lx = -(-~l)*x(2*) + AtXW-» + ... + A2k^xf, 
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where the At (i = 1,..., 2fc — 1) are (n x n) constant symmetric matrices. Moreover 
let us write 

(x^yУ-T-iţ (x(t),y(t))dt 

for x, y e CT, and A = 0 for a negative semi-definite matrix. 

3.1. Lemma. If 

(A) ( - i y A 2 f c _ 2 , ^ o , (j = i , . . . , k - i ) 

holds, then we have 
ker L = Im P . 

Proof. It is easy to see that constant mappings from Rl to Rn belong to kerL. 
Now, if x0 e ker L, we have 

" " ( " " / \ * 0 » *°> ~̂~ \^l-*0 J *0> + ••• + \A2k-lx0> *o> = 0 

and integrating by parts and using assumption (A) we obtain 

o = ' z f - i y O^-Vo", 4J)> = <4fc), x(k)> = o 
1=1 

which implies that x0 is a constant mapping. 
3.2. Lemma. If assumption (A) holds, then 

I m L = {xeCT:Px = 0}. 

Proof. Clearly the n linearly independant conditions Px = 0 are necessary 
for x elm Land the sufficiency follows from Lemma 3.1 and the fact that the 
Fredholm alternative holds for linear periodic ordinary differential equations. 
(See e.g. [8].) 

If 
X = {xedomL:Px = 0}, 

then the restriction L of the operator L to It is a one-to-one mapping from X onto 
Im L and we shall denote its inverse by K (K is called the right inverse of L). 

3.3. Lemma. The mapping K :1m L-+ X is compact. (Note that X is considered 
with the norm induced by Cr). 

Proof. It follows by a standard argument (see e.g. [7] or [8]) from Arzela-Ascoli 
theorem. 

278 



4. Necessary conditions. Except mentioning the contrary, we shall suppose from 
now that assumption (A) is satisfied. Suppose that conditions 

(B) F :Rn -> Rl is of class C2; 

(C) g :Rn -+ Rn is continuous 

hold and, for x, y e Rn let us write x •< y when xf < yt for i = 1, ..., n. 

4.1. Lemma. Let peC? and suppose that a -< g(s) -< b for all seRn. Then, 
a necessary condition for the existence of one x e dom L satisfying 

(E) (Lx) (t) + 1 [grad F(x(t))] + g(x(t)) . p(t) 
at 

is that 

a<T'l\ p(t)dt<b -»[ p(t)dt 

Proof. Suppose that x0 e Cr* satisfied equation (E). Then 

P ~ g(*o(*)) - — [grad F(x0(-))] e Im L 
at 

and, according to Lemma 3.2 we have 

T"1 f p(t)dt ^T-'t g(x0(t))dt + T"1 f (d/dt) [grad F(xo(0)] dr = 
Jo Jo Jo 

1 I g(x0(t)) dt. T" 

The assertion follows then immediately from this equality and our assumption. 

5. C1 - a priori estimates. Let p e C j , Pp = 0, be fixed and let g : Rn -> Rn 

satisfying (C) and the following assumption: 

(D) i) sup|g(s)| = M < oo; 
seRn 

ii) There exists a strictly positive number r, a permutation {il9..... in} of 

of {1,..., n} and an integer 0 ^ m ^ n such that 

0i,(*) f̂i > 0 if \xh\ = r (/ = 1,..., m) , 

^i,W^ir < 0 if \xh\ = r (/ = m -f 1, ..., n) . 
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5.1. Lemma. If R0 = n1/2r> then, for each yeCj such that inf \y(i)\ ̂  RQ, one 
has teRi 

T"1 f g(y(t))dt±0. 
Jo 

Proof. It is obvious. 

5.2. Lemma. There yt > R0 such that for each Ae(0, 1> and every possible 
solution x 6 Cjk of 

(Ex) (Lx) (t) + A(d/d() [grad F(x(t))] + X g(x(t)) = X p(t) 

one has 
sup |x(r)| < yx . 
feR 1 

Praof. It is easy to see that 

(1) ^g(x(t))dt = 0. 

From the equality 

<Lx, x> = A[-<(d/dr) [grad F(x)], x> - <g(x), x> + <P, x>] 

we deduce easily, using assumption (A) and simple computations, that 

(2) <x« x«> ^ IT-1 C(g(x(t)) - p(t), (Pcx) (t)) dt ^ 
I Jo 

^ ( M + | H | o ) ( T - ^ | V x ) ( 0 | 2 d t y / 2 

where Pc = I - P, I the identity. If co = 27r/T, it is known (see e.g. [8], ch. XI) that 

T"1 f V ^ W I ' d ^ c o - ^ - 1 [J \(Pcx)f (if dt = co^T'1 f \x'(t)\2dt 
Jo Jo Jo 

and 

(3) T'1 V\(Pcx) (tf dt = co-^T"1 [r|x(k)(0|2 dt. 

Then using (2) and (3) we get 

(T-1 fV>(.)|a dt\'2
= (M + \\p\\o)o>-k 

and hence, by well-known properties of periodic functions, 

( r - 1 [V(0 ! 2 *Y / 2 = (2ny~ka>-\M + \\p\\0) . 
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Since (see e.g. [8], chapter XI), 

sup|(Pcx)(oi = 3-i/27ic0-1 (T-1 fV(ordA1/2
f 

we obtain 

(4) sup|(Pcx)(f)| < Z-^nco-^nf-^M + \\p\\0). 
teR1 

From (l) and Lemma 5.1 it follows that there will exist T e K1 such that 

|X(T)| < R0 

which implies, using (4), 

(5) ||Px||0 = |(Px)(r)| < |X(T)| + ||Pcx||0 < R0 + 3-^no>-\2ny-<(M + \\p\\0). 

Clearly the inequalities (4) and (5) imply the wanted assertion. 

5.3. Lemma. There exists y2 > 0 such that, for each X e (0, 1> and every pos
sible T-periodic solution x of (EA) one has 

sup |x'(t)| = y2 . 
f e R 1 

Proof. Let us first consider the case where k J_ 2. Then (see e.g. [8], chapter XI), 

sup |x'(f)| = sup |(d/dt)(Pcx)(r)| = 3-^nco-1 (V 1 f V(0|2 dfY'^ 
feR1 reR1 \ J O / 

= 3-1/27rco-3(27r)1-fc(M+ ||p||0). 
Let now fc = 1. Then, 

x"(t) + At x'(t) = l{p(t) - (d/df) [grad F(x(t))] - g(x(t))} 
and hence 

<x", x"> = A«p, x"> - <(d/dt) [grad F(x)], x"> - <a(x), x">} < 

< [||p||o + M + co-*S(M + ||p||0)] ( V 1 | r | x " (0 | 2 dAV2 , 

where 

\*F(t)\ S = sup max ----• . 
I«l^vii,i=i,...,ii l ^ i ^ - l 

Therefore 

sup |x'(*)| = 3-1'2™-1 ( V 1 f V'(0|2 dA1/2
 = 

= 3-1/27ico-1(||p||o + M + C D - ^ M + HPHO)) = y2. 

6. Sufficient condition. If we define N : C? -> C° by 

(Nx) (0 = Kt) - (d/dt) [grad F(x(.))] - «(x(t)) , 
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it follows at once from assumptions (B) and (C) that 1V is continuous and takes 
bounded sets into bounded sets. Moreover, finding T-periodic solutions of equation 
(E) is clearly equivalent to solving the abstract equation 

(6) - Lx = Nx 

in C r n dom L, with L defined in section 3. Clearly, using the results of Section 3, 
Land JV verify the regularity assumptions needed for Proposition 2.L 

6.1. Theorem. Suppose that peC? and Pp = 0 and that assumptions (A) to (D) 
hold. Then equation (E) has at least one T-periodic solution. 

Proof. We shall show that conditions (l) to (3) of Proposition 2.1 are satisfied 
for (6) and 

Q = {x e C r : ||x||, < yt + y2} 

with 7̂  (i = 1, 2) defined in section 5. Condition (1) follows at once from Lemmas 
5.2 and 5.3 and Condition (2) from Lemma 5.1 applied to constant mappings from R1 

into Rn. Moreover here, P = Q and is the projector defined in Section 3 and we can 
take J = — I, which implies that 91 : ker L -» ker L is defined by 91(a) = g(a), 
a 6 ker L. Now using assumption (D) and defining rj : ker L -> ker L, with ker L 
naturally identified with Rn, by 

id*) ~ ah (/ = 1,.--,m), -7i,(<0 = -fl/, (/ = m + 1, ...-/*) 

we have, when |a| i= K0> 

(g(a), rj(a)) > 0 

which implies, by the basic properties of Brouwer degree [3], that 

d[g, Q n ker L, 0] = d[t], Q n ker L, 0] = ± 1 
and achieves the proof. 

6.2. Remark. In the same way than in [5] p. 26 or [6], p. 598, it is possible to 
show that Theorem 6.1 remains true when the inequalities in (D-ii) are not strict. 

7. Necessary and sufficient condition in the scalar case. 

7.1. Theorem. Let al9..., a2k_t be real numbers such that (—l)ja2k-2J :g 0 
(j = 1, ..., k — 1). Let f and g be continuous real functions such that the limits 

a(-oo) = lim g(s), a(+oo) = lim g(s) 
S~* — O0 5-» + 00 

exist and are finite and such that for all s e R1, 

g(-co)<g(s) < g( + co). 
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Let p e Cr. Then the equation 

-(-l)*x<">(.) + a . x ^ - ^ O + ... + «i x'(.) +/(x(.))x'(0 + ff(x(r)) = P(t) 

has at least one T-periodic solution if and only if 

(7) a(-oo)<T-1 f p(t)d*<g(+cx)). 

Proof. Necessity follows at once from Lemma 4.L Now if (7) holds, the function 

s H- g(s) - T'1 p(t)dt 

satisfies assumptions (C) and (D) and the function 

F : s H» J f(u) dw dy 
Jo Jo 

satisfies assumption (B). Thus, by Theorem 6.1, there exists at least one T-periodic 
solution of equation 

-(-!)<• x<2*>(.) + a. x<"-»(.) + ... + «„_ . X'(t) +f(X(t))X'(t) + 

+ g(X(t)) -T-'i p(t)dt = p(t) - T"1 f p(t)dt, 
Jo Jo 

and the proof is complete. 
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