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Časopís pro pěstování matematiky, roč. 101 (1976), Praha 

A REMARK ON THE DIFFERENTIAL EQUATIONS ON THE SPHERE 

ALOIS SVEC, Olomouc 

(Received October 15, 1975) 

1. Let Sn be the unit-sphere in 0tn+1. A function / : Sn -> m is called linear if 
/(m) =*<w, #>> m being the position vector of Sn and a a constant vector. Let g 
be the metric tensor of Sn and (7 the covariant differentiation with respect to it. 
Introduce the following differential operators for functions on Sn: 

(1-1) tf ~>0l'V,Vjf, 

(1.2) <tf = Af+nf, 

(1.3) ^/ = ^ f ) + / ^ / + /2; 
det(a i ;) 

<4 is, of course, the Laplacian, Jt is the so called Weingarten operator. The following 
assertion is known: The only solutions f: S" -» M of £ff = 0 or Jtf = 0 resp. are 
linear. For the proofs, see, p. ex., [ l ] and [2]. U. Simon [2] proves the linearity 
of solutions of a class of more general operators. In what follows, I propose, for 
n = 2, to present another class of operators with the desired property taking in regard 
the boundary conditions as well. Namely, I am going to prove the following theorems. 

Theorem 1. Let D c S2 be a domain, dD its boundary andf :D -+ St a function. If 

(1.4) jSf/ = 0 in D, 

(1.5) Jtf = § on dD, 

f is linear. 

Theorem 2. Let D <= S2 be a domain, 8D its boundary andf: D -» St a function. 
Let F:9t-+3tbea function satisfying, for each t e &, 

(1.6) F(t) > F'(t). (t - F'(t)) or F(t) = 0 resp. 

/ / 
(1.7) Jtf - ¥\2f) in D, 
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(1.8) (Sef)2 - 4F(&f) = 0 on dD , 

f is linear. 
For the omitted details of the proofs, see [3]. 

2. On S2, consider a domain G which may be covered by a system of tangent 
orthonormal frames a -= {m, t>,, r>2, i;3}. We then have 

(2.1) dm = colvt + co2v2 , dvi = CO,D2 + co1^ , dv2 = — co\vx + co2v3 , 

dv3 = co1vl — co2v2 

with the usual integrability conditions. For a function f :G -* 0t introduce the 
covariant derivatives fi,fiJ,P,...,S,Ti,...,Ts with respect to a by means of 
formulae (2.2), (2.4), (2.6) and (2.8): 

(2.2) d /= / ,o> 1 +/ 2 co 2 ; 

(2.3) (d/, - f2co\) A col + (d/2 + Leo2) A co2 = 0 ; 

(2.4) d/, - Leo2 = / , jO)1 + L2co2 , d/2 + fl(o\ = L.co1 + /22co2 ; 

(2.5) {d/,, - 2f12co\} A co1 + {d/,2 + (/,, -L 2 ) co 2 } A a,2 =/2co1 A co2 , 

{d/,2 + (/ll -/22>«B?} A CO1 + {d/22 + 2/,2C02} A CO2 = -/jft,1 A CO2 \ 

(2.6) d / u - 2L2co2 = Pa,1 + Qa)2 , 

d/,2 + ifii ~ hi) <?l = (6 + /2) w1 + (R + /,)a>2 , 

d/22 + 2fl2co\ = Rco1 + So)2 ; 

(2.7) {dP - (3g + 2/2) a,2} A co1 + {dQ + (P - 2R - 2/,) co2} A CU2 = 

= 2/,2co1 A CO2 , 

{dQ + (P-2R- 2/,) co2} A co1 + {di? + (2Q - S + 2f2) co\} A CO2 = 

= 2 ( / 2 2 - / „ ) c o 1 A co2, 

{dfl + (2Q - S + 2/2)co2} A co1 + {dS + (3R + 2/,)co2} A co2 = 

= -2/12C01 A co2 ; 

(2.8) dP - (36 + 2/2) co
2 = Tjco1 + T2co2 ,, 

dQ + (P - 2R - 2/,) co2 = (T2 + 2/,2) co1 + {T3 + 2L,) co2 , 

di? + (2Q - S + 2/2) co2 = (T3 + 2/22) co
1 + (TA + 2L2) co2 , 

dS + (3R + 2/,) co2 - T^co1 + Tsco2 . 
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It is easy to see that, in our notation, 

(2.9) # / - / „ +/22 + 2/, ur/- /n /2 2 - /? a + / ( / n +/22 +/). 

From this 

(2.10) ( - ? / ) 2 - 4 ^ / = ( / 1 1 - / 2 2 ) 2 + 4 / f 2 = 0 , 

and we have 

(2.11) di?/ = (P + R + 2/,) CJ1 + (G + S + 2/2) co* , 

d.*/ = {(/22 + / ) P - 2/12Q + (L . + / ) R + / . i f / - 2/2/12} co1 + 

+ {(/« +f)Q~ 2fi2R + Clu + / ) S + /2--7 - 2/i/n} « 2 • 

On G," consider the 1-form 

(2.12) T = {(/.. - /2 2) (Q + f2) + fi2(R - /»)} c 1 + 

+ {(/u - f22) (* + / , ) + La(S - Q)} v2 • 

It may be shown that T does not depend on the choice of the frames a. We have 

(2.13) dT = -2{<P + \\Seff - 2J(f} co1 A a)2 

with $ = ( Q + / 2 ) ( e - S ) + ( R + / 1 ) ( R - P ) ; 

our main tool in proving Theorems 1 and 2 will be the Stokes formula jeD * = JD dr. 
First of all, let us prove that the suppositions of our Theorems imply $ ^ 0 in D. 

Suppose (1.4). Then, see (2.11), 

(2.14) P + R + 2/, = 0, Q + S + 2/2 = 0 , 

and we have 

(2.15) * - 2(Q + / 2 ) 2 + 2(R + / , ) 2 £ 0 . 

Next, let 

(2.16) I / - 0 in D. 

Then (2.112) implies 

(2.17) (/22 +f)(P-R)+<ef.(R+ / . ) - 2/12(Q + f2) = 0 , 

(fn + f)(S - Q) + &f. (Q + f2) - 2fi2(R + L) = 0 . 

Jet m e JD be a fixed point; the frames a may be. always chosen in such a way that 
Lu(m) - 0. If Sff(m) * 0, we have 

#(m) = (-5?/)"1 { ( / n + / ) ( Q - S)2 + (/22 + / ) ( R - P)2} |m. 
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Now, quite generally, 

C/n + / ) - ? / - - Jlf + fU + (fll +f)2 , (fu + / ) - ? / = Mf + /?2 + (fit +f)2 , 

i.e, #(m) ^ 0. In the case Sef(m) = 0, there are two possibilities: a) JSf/ = 0 in 
a neighborhood of m, b) there is a sequence {mj, mj -> m, such that S^f(m^) % o 
for each m.. The preceding results prove #(m) ^ 0 in these cases, too. Finally, 
consider the general supposition of Theorem 2. From (1.7) and (2.11), we get 

(2.18) (f22 +f)P- 2fi2Q + ( / u + / ) R + A i r / - 2/2/12 -

- F(P + R + 2/,) = 0, 

(/22 + / ) 6 - 2f12R + ( /u + / ) S +f2SFf-Vifi2 -

- F ( 6 + S + 2/2) = 0, 

i.e., 

(2.19) (f22 +f-F')(P-R) + (Sef - 2F) (R + / , ) - 2/12(Q + f2) - 0, 

(/n + / - -F')(S - Q) + (Sff-2F')(Q + / 2 ) - 2/12(R + / , ) = 0 . 

Suppose J?/ - 2F'(J£?/) = 0, i.e., Jtf = F(J?/) = K&f)2 + c, c = const. The 
condition (1.6^ implies It2 + c > £*(f - |t), i.e, c > 0. On the other hand, (2.10) 
implies -4c = (Sef)2 - A Jtf £ 0, which is a contradiction. Thus Sef - 2F\Sef) * 
=t= 0 in D. Let m e D b e again a point, and suppose A 2(m) = 0. Then 

<P(m) = (sef- 2F')-1 {(fa + / - F')(fi - s ) 2 + tf« +f-F')(R - P)2} I--

It is easy to verify 

(/n + / - F')(Sef - 2Ff) = F 2 -F'.Sef + Mf + (flt +f- F ) 2 , 

(/22 - / - * ' ) ( * / - 2F) = F 2 -F'.SFf+Jtf + (/22 + / - F) 2 ; 

because of (1.7) and (1.6), 

(fit +f-F')(Sef-2F') > 0, (f22 + / - F ) ( i f / - 2F) > 0, 

and 4>(m) ^ 0 follows. 
By means of (2.10), we get 

(2.20) / , i - / 2 2 = / i 2 - » 0 on 3-> . 

in all cases. Thus T = 0 on 3D, and we get 

(2-21) / u - / 2 2 - / « - 0 ifl D 
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from the Stokes formula for T. From this and (1.4) or (1.7) resp., we obtain 

(2.22) / u - - / , f22 = - / , f12 = 0 in D . 

Now, consider .the vector field 

(2.23) a = -f1vl - f2v2 + /i>3 . 

Then da = 0, i.e., a = const., and / = <u3, a}. QED. 
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