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Časopis pro pěstování matematiky, roč. 101 (1976), Praha 

A SIMPLE PROOF OF CAUCHY THEOREM 

ILJA CERN*, Praha 

(Received August 26, 1975) 

Our aim is to prove the following assertion: 

Cauthy Theorem. JF/T is a cycle homologic with 0 in a region Q and if a function F 
is holomoprhic in Q9 then J r F = 0. 

Let us first explain the necessary notions and notation: C and R denote respectively 
the sets of all (finite) complex and real numbers. Re z and Im z denote respectively 
the real and the imaginary parts of a number z e C. A continuous mapping <p : 
: <a, ft) -+ C (where <a, p) <= R) for which the supremum l(cp) of numbers 

it 

Z \<P(h) — <K'*-i)|> a — *o < *i < ... < *n = j8 is finite, is called a curve. If 

(p : <<x, j8> -> C is a curve, then we denote <<p> = <p(<a, /?». The curvilinear integral 
J^ F of a continuous function F : <<p> -» C over a curve <p : <oc, j?> -> C is defined 
to be the Stieltjes integral Jf (F o cp) dcp. The index of a point £ e C - <<p> with 
respect to a closed curve <p is denoted by ind^ £ (a closed curve is a curve q> : <a, j8> -* 
-+ C for which q>(a) = <?(/?)). A region is an open connected set Q c C. Any finite 

n 

system F = {q>i9..., <pB} of closed curves satisfying <F> = (J <<pfc> <= O is called 
fcrrl 

a cycle in Q. The index of a point £ 6 C — <F> with respect to a cycle F is then defined 
n 

by the relation indr £ = £ ind^ £, the curvilinear integral of a continuous function 
n 

F : <F> -» C over a cycle F is defined by J r F = J] J9k F; we set similarly /(F) = 

= J] f(<p*). If F is a cycle in Q and indr £ = 0 for every £ e C - Q9 then the cycle F 

is said to be homologic with 0 in Q. A set 

(1) Q = {z; a ^ Re z ^ ft y ^ Im z ^ <5} 

with a < JS, y < 5 is called a rectangle. Oriented sides of a rectangle Q as well as the 
oriented boundary (Q) of a rectangle Q are curves defined as usual (see [ l] , Introduc
tion, § 8); the fact that 
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/ 1 if C € int Q *) 
(2) ind(Q)C= N Q i f r G C - ^ e 

will be needed in the sequel (see [1], Chap. II, (4.7)), as well as the assertion 

(3) if X and A* are oriented sides of rectangles Q and Q* respectively, satisfying 
<A> = <A*>, int Q n int Q* = 0, then jxf = -~ j ^ / f o r any continuous function 
/ : < A > - C . 

(This follows immediately from the definition of the oriented side of a rectangle.) 
I f M , i V c C and # : M x N -> C, then #(% C) means for every C e N the mapping 

of the set M into C assuming at a point z e M the value #(z, C); the mapping <P(z, •) 
of the set N for z e M is defined similarly. 

Proof of the Cauchy Theorem. In what follows Q stands always for a fixed 
region, F is a fixed function holomorphic in Q. For the sake of brevity we shall write 

(4) *(2f0.ZfeI; 
Z ~ C 

the definition domain of the function will be always evident from the context. 
We shall prove the Cauchy Theorem in the above form under the assumption that 

the theorem as well as the Cauchy Formula were already proved for a rectangle 
QaQ: 

(5) If Q <= Q is a rectangle, then j(Q) F = 0 and j(Q) #(•, C) = 2ni F(C) ind(Q) C 
for C e Q - 3£-

(For a proof of the Cauchy Theorem for a rectangle as well as a proof of the identity 
J(0 *(% C) = 2wi F(C) for C € int Q see [1], Chap. II, §§ 4 and 5; the identity 
](Q) *(•» 0 = 27U' F ( b ind(Q) C = 0 f o r C e . Q - Q follows by virtue of the Cauchy 
Theorem applied to the function #(•, C) and the region Q - {C} in which this function 
is holomorphic.) 

Let r be a cycle homologic with 0 in Q and denote 

(6) N = {z; indr z * 0} u <F> . 

Since the set C — N is the union of all components of the set C — <F> with indr = 0, 
it is open. Since indr z -= 0 for sufficiently large |z|, the set N is bounded. Hence N 
is a compact subset of the region Q and there exists a S > 0 so that 

(7) dist (z, N) 2) < 28 => z e Q . . 

x) int M denotes the interior of a set M c C while dM denotes its boundary. 
2) If z e C and 0 4= M c C, then dist (z, M) = inf \z — w|. 

W€*f 
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Let Sf o be the system of all squares of the form 

(8) {z; (m - 1) b £ Re z g m<5, (n - 1) S £ Im z S nd} 

where m, n aje integers. Let Sf be the system of all squares Q& Sf0 satisfying 
gn iV- t -0 . With regard to U Q = c and to (7) we have 

Qe^o 

(9) N C u Q C O . 

Since the set JV is bounded, the system S? is finite. 
Let us divide the system &~ of all oriented sides of all squares Q e Sf into two 

subsystems: The system &~t let consist of all curves' X for which the segment <A> 
is a side of precisely one square from Sf, and let 2T2 = ZT — &v. According to (3) 
obviously 

(10) X | / = Z | / = Z | / f ° r a ny continuous function / : U dQ ~+ Q 
Q€^J(Q) A€.rJA A€^iJA Q6̂  

by virtue of (5) we have 

(11) i t 0 = r - I f *0>0 for every CeUin tQ . 
2ni Q€^ J (Q) QeSf 

Since the function #(•, £) is continuous in U dQ for £ e U int g, (10) and (11) imply 

(12) jpft) « J _ £ f #(-,{) for every CeUintfc. 
2ni xeri J A Q C ^ 

However, the function on the right hand side of the equality (12) is continuous in 
C — U ^ > by the well-known theorems; since the function F is continuous in Q, 

(12) implies that 

(13) * t 0 = - ^ I f * 0 > 0 for every C e U 6 - U a > . 
2m AcTi J A QeP Ae.<Fi 

If A is an oriented side of a square QeS? and if <A> n N 4= 0, then both squares 
from -9*0 whose side is the segment <A> belong to SP and consequently, the curve X 
belongs to &"2* This implies in virtue of (9) that 

(14) U <A> c Q - N 

so that according to the definition of the set N . 

(15) 2 6 U ( 1 ) = » indr z = 0. 
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<£ 

Now it follows from (6), (9) and (14) that 

(i6) ( O C U Q - U a > 
QeS? Xert 

so that (13) yields 

(17) F(t) = ±- £ f*(-,C) for every C e < 0 -
2ni tefi j k 

Let s > 0 be arbitrary but fixed. Let us denote by p the number of elements of the 
set 3Tt and choose a fixed Ae«^Y With regard to (16) the function $ | (<A> x 
x <F>) 3) is uniformly continuous. Hence it follows easily that there exist points 
zl9..., zr e <A> satisfying 

(18) | f4>(- ,C)-Z^(z k ,0 (z k -z k . t ) 

for every £e<F>. Since the function <P(zk9Q(zk - zk„i) (of the variable Q for 
k = 1,..., r differs only by a multiplicative constant from the function l/(£ — zk) 
whose integral over F vanishes in virtue of (15), we have 

(19) f ( i - K * * - ) ( * * - * * - 0 ) - - ° . 
Jr*=i 

It follows immediately from (18) and (19) that the function WX(C) = $x $(',£) con
tinuous in <T> satisfies 

(20) If *is-i(r). 
Ur I J> 

The inequality (20) holds for every X e 2T\. Consequently, 

,2» |NSif> 
| J r | 2% 

according to (17). Since the number e > 0 was arbitrary, we conclude j r F -= 0 
which completes the proof. 

Reference 

[1] S. Saks, A. Zygmund: Analytic functions. Warszawa—Wroclaw 1952. 

Author's address: 118 00 Praha 1, Malostransk6 nam. 25 (Matematicko-fyzikalni fakulta UK.) 

3) The symbol | denotes the partial mapping. 
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