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Časopis pro pěstování matematiky, roč. 102 (1977), Praha 

ON AN INTEGRAL OPERATOR IN THE SPACE OF FUNCTIONS 
WITH BOUNDED VARIATION, II 

STEFAN SCHWABIK, Praha 

(Received March 29, 1976) 

In this note the considerations from [3] concerning the Fredholm-Stieltjes integral 
equations in the space BV„[0, 1] of all n-vector functions of bounded variation on the 
interval [0, 1] are continued. 

Let us denote by Rn the n-dimensional real space of all column n-vectors. By a star 
the transpose of a vector or a matrix will be denoted. For x = (xl9 ..., xn)* e Rn 

we define the norm ||x|| = max \x(\. The set of all n x ^-matrices let be denoted 
i = l , . . . , M n 

by L(Rn). For an n x n-matrix.4 = (a^), i9j = 1, ..., n we set ||-4|| = max £ |a0-|. 
i = l , . . . , n j= 1 

The relation for ||.A|| defines the usual operator norm which corresponds to the norm 
in Rn given above. 

We denote by BV„[0, 1] = BVn the set of all column n-vector functions x(f) = 
= (x^r),..., xn(t))*9 te[09 1] for which 

||X||.BKn
 = ||X(0)|| + v a r 0 X < 00 

where var0 x means the usual variation of the function x on the interval [0, 1], 
By || * ||BK„ a norm in BVn is given and the linear space BVn equipped with this norm is 
a Banach space. If <peBVn then the one-sided limits lim <p(x) = <p(t+)9 te [0, 1) 

and lim <p(x) = <p(t—), t e (0, 1] exist. Further, let NBVn be the subspace of all 
t ->t -

elements <p e BVn for which <p(t + ) = <p(t) if t e (0, 1) and p(0) = 0. NBVn is a closed 
subspace in BVn and, consequently, NBVM is also a Banach space if it is equipped 
with the norm of J5V„, i.e. ||<r*||]VBF„ = varJ <p. 

Let us set 

(i) <*,̂ > = \lx*(t)d<p(t) = f Vxjfy&vti) 
Jo *=-Jo 

for x e BVn9 <pe NBVn where the integration is taken in the Perron-Stieltjes sense. 
The integrals occurring in this definition exist (see [4]). 

The relation < v > evidently defines a bilinear form on BVn x NjBVn. 
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1. Lemma. If <p e NBVn and <x, <p} = Ofor every x e BVn then <p = O.Ifxe BVn 

and <x, <p} = Of0r every <peNBVn then x == 0. 

Proof. Assume that <p 4= 0. Then there exists an index i = 1,..., n such that 
either a) there is an a e (0, 1) such that q>i(<x — ) 4= (pf(a) or b) (pi(t-) = <p£t) for all 
t e (0,1) and 

1) <Pi(0+) * 0 = ^(0) 
or 

2 ) ^ ( 0 + ) = 0, ^ l j + ^ l - ) 
or 

3) p, is continuous on [0, 1] and there exist 0 ^ /? < y g 1 such that (?;(/?) = 
= V.(y). 

For the cases a), bl), b2) let us define Xj(t) = 0, j 4= i, t e [0, 1], x^r) = 0, t e [0, 1], 
t 4= a, r * 0, t 4= 1 and xf(a) = 1, X;(0) = 1, x,(l) = 1 respectively. Then we have 

<*, <P> = Xitydcplt) = x,(a) [<Pi(a+) - tp^a-)] = (pf(a) - <pfa-) =¥ 0 

by Proposition 2,1 from [3] in the case a) and similarly <x, <p} 4= 0 in the cases bl) 
and b2). In the case b3) let us set xf(r) = 1 for t e [p, y], xt(t) = 0 for t e [0, 1] \ 
\[/?, y]. By the same Proposition 2,1 from [3] it can be easily shown that in this 

case we have also <x, <p} + 0. Hence the first assertion of our lemma is proved. 
For proving the second part let us assume that x e BVn, x =j= 0. Then for some i = 

= 1,..., n either there exists an a e(0,1] such that x (̂a) 4= 0 or xt(t) = 0 for every 
te(0, 1] and xf(0) 4= 0. In the first case we set <pt(t) = 0 for re [0, a), cp^t) = 1 
for re [a, 1] and <Pj(t) = 0 for all re [0, 1] and j = 1, ..., n, j 4= i. Evidently 
<p e NBVn and by Proposition 2,1 from [3] we get <x, <p} = J0 *»(0 d(^(r) = xf(a) 4= 
4= 0. In the second case we set (pit) = 1, t e (0, 1], (p((0) = 0 and Proposition 2,1 
[3] implies also in this case <x, <p) = x,(0) 4= 0. 

2. Proposition. The pair of the spaces BVni NBVn forms a dual system (BVn, NBVn) 
with respect to the bilinear form <x, <p} given by the relation (1). 

This proposition is an immediate consequence of Lemma 1 and the definition of 
a dual system, see [1], § 15. 

Let us denote J = [0, 1] x [0, 1] and assume that fC(r, s) : J -• L(Rn) is an 
n x n-matrix valued function defined on the square J such that 

(2) вДK) < 00 

where Vj(K) denotes the two-dimensional (Vitali) variation of K on J (see [3]). 
Further, we assume that 

(3) varj K(0, •) < co . 
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These assumptions assure that for every fixed te [0,1] the variation var£ K(t9 •) is 
finite and, consequently, for any xe BVn the integral 

(4) J1ds[K(f,s)]x(s) = Kx 

exists for every t e [0, 1]. In this way the relation (4) defines a linear operator on the 
space BVn which maps BVn into itself (see [3], Proposition 2,3). 

The function K(t, s) : J -> L(Rn) which determines the operator K by the relation 
(4) is called the kernel of the operator K. In some situations the operator K remains 
unchanged if the kernel K(t, s) : J -> L(Rn) is altered. 

3. Proposition. Let us assume that K(t9 s) J: -> L{Rn) satisfies (2) and (3) and define 
a new kernel K*(t, s) by the relations x) 

(5) K*(t, s) = K(t, s+) - K(t, 0) = lim K(t, a) - K(t, 0) if se (0, 1), 
0-+S + 

K*(r, 0) = 0 , K*(t9 1) = K(t, 1) - K(t9 0). 

Then 

(i) Vj(K*) < oo, varj K*(0, •) < oo, varj K*(-, 0) < oo, 

(ii) Kx = J0 d5[K(r, 5)j x(s) = J0 ds[K*(r, 5)] x(s) for every x e BVn9 

(iii) the integral JJ K*(t, s) dijf(t) exists for every ty e BVn9 s e [0, 1] and 

(6) * .CK*(t,0)d^(t) = 0, 

(7) lim f K*(t, s + S) dilf(t) = f K*(t, s) dijf(t) for any s e (0, 1) . 
<*->o+Jo Jo 

Proof. Let us assume that 0 = a0 < ax < ... < ak = 1 is an arbitrary subdivision 
of the interval [0, 1] and let us create the corresponding net-type subdivision 

Jij = [ai-i> a J x [ay_lf ccj] , i.j = 1,..., k 

of the interval J. Let us set K(t9 s) = K(t, 1) for every te [0, 1], s > 1. For any 
given 5 > 0 we have 

I | K K *i + <5) - K(a„ a0) - Kfc,.-., ax 4- 3) + K ^ . , , a0)|| + 
i = l 

+ I E lK(«i. «j + 5)- K(a„ a7._x + 5) - ^(a^j, ttj + 5) + 
j=2i=l 

+ K(<xi_i,<Xj-l+5)\\£vJ(K). 

J) Let us mention that the limit K(t, j-f) exists for every / 6 [0,1], . G [0, 1) if K(ty s) satisfies 
(2) and (3) since for every t e [0,1] K(tt s) is of bounded variation in the second variable. 
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Passing to the limit 5 -• 0+ we get by the definition (5) of K* the inequality 

+ K*(«J_1,ai-_.)||£t>J(K). 

This holds for every net-type subdivision Jl7 of J and, consequently, by the definition 
of the Vitali variation we obtain 

Vj(K*) <i Vj(K) < oo . 

Further, we have 

var0 K*(0, •) = var0 (K(0, t + ) - K(0, 0)) = 

= varj (K(0, t + ) - K(0, t) + K(0, t) - K(0, 0)) ^ 

S varj (K(0, t + ) - K(0, t)) + varj K(0, t) £ 2 var0 K(0, •) < oo . 

Clearly also var£ K#(% 0) = 0. In this way (i) is proved. 
Since var£ K(t, •) <* oo for every t e [0, 1] (see (2,14 a) in [3]) we obtain from the 

well known properties of functions with bounded variation that K(t, s+) — K(t, s) = 
= 0 holds for every s e (0, 1) except an at most countable set of points in the interval 
(0,1). Hence for the difference W(t,s) = K*(t,s) - K(t, s) we have W(t,s+) -
- W(t, s - ) = 0 for any s e (0, 1) and it can be shown also that W(t, 0 + ) = W(t, 0), 
W(t, 1) = W(t, 1-). By Corollary 2,2 in [3] we obtain 

Cds[W(t, s)] x(s) = Cds[K*(t, s)] x(s) - Cds[K(t, s)] x(s) = 0 
Jo jo jo 

for all t e [0, 1] and for any x e BVn. Hence (ii) is proved. 
Since by (i) we have Vj(K*) < oo and varj K*(% 0) < oo, it is also varj K*(% s) < 

< oo for every s e [0,1] and the integral j j K*(t, s) d)jf(t) exists for every ^eBVn 

(see e.g. [4]). The relation (6) is clear from K*(t, 0) = 0, te [0, 1]. For every 
t e [0,1], s e (0,1) we have ||K*(f, s + 5) - K*(., s)|| ^ ||K*(0, s + (5) - K*(0, s)|| + 
+ varj (K*(% s + <5) - K*(-, s)). Hence lim sup ||K*(f, s + 5) - K*(t, s)|| = 0 
(see Remaik 2,3 in [3]) and consequently *"*0+ 'e[0 '1] 

lim I f (K*(t, s + 5)- K*(t, s)) d*(f)|| _g 
* - 0 + I U o ^ II 

^ lim sup ||K*(r, s + <5) - K*(t, s)\\ var£ ^ = 0. 
d-+o+ tej;o,i] 

This proves (iii) and also the proposition. 
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4. Corollary. Let us assume that K : J -> L(Rn) satisfies (2) and (3). Let us define 

K>= f V ) * M M 0 > <peBVn 

where (K # )* is fhe transposed matrix to K* defined by (5). Then K' is a linear 
operator which maps BVn into NBVn. 

Proof. For an arbitrary subdivision 0 = a 0 < at < ... < afc = 1 of the interval 
[0, 1] we have 

i = l 

k 

( ( K * ) * ( í , « i ) - ( K * ) * ( í , a ł _ 1 ) ) d v ( 0 

_i __ sup | |(K*)* (., «,) - (K*)* (r, «,_.)|| var0 9 _g 
i = l tG[0,l] 

£ varj <p . (tv((K*)*) + varj (K*)* (0, •)) 

since (see (2,12) in [3]) we have 

I ll(K*)^<>-(K#)M<> «<-.)!! = 
i = 1 

= Z ll(K#)* (*. «i) " (K#)* C «(-0 - («*)* (0, «,) + (K*)* (0, a,.,)! + 
i = l 

+ _ . | | (K*)* (0 ,« i ) - (K*)* (0 , «f__)|| __; 
i = 1 

= Z ' . o . 1 ] x t a . 1 J ' 0 * ) * + var0 ((K)*)* __ Pj((K*)*) + var0 (K*)* (0, •) . 
І = l 

This implies var0 J 0 (K # )* (t, s) d^>(f) < oo because (K*)* evidently satisfies (i) from 
Proposition 3. From (iii) of the same proposition and from the definition of NBV„ 
we obtain that for every q> e BVn the integral JJ (K # )* (/, s) d(p(t) as a function of the 
variable s belongs to NBVn. 

From the results of [3], the following result can be easily deduced: 

5. Theorem. If K : J -+ L(Rn) satisfies (2) and (3) then the relation 

(8) Kx = f ds[K(t, s)] x(s) , t e [0, 1] , x e BV„ 
Jo 

defines a completely continuous operator on BVn. 

The relation 

(9) K'<p = f (K*)* (U s) &<p(t) , s e [0, 1] , q> e NBVn 

where K* is given by (5) defines a completely continuous operator on NBVn. 
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Moreover, */<V> is the bilinear form on BVn x NBVn given by (1) then 

(10) . <Kx, <p> = <x, K » 

for every x e BVn and <p e NBVn. 

Proof. The complete continuity of K given by (8) is proved in Theorem 3,1 
from [3]. Theorem 3,2 from [3] states that the operator 

KҶ,= ľ ( K * ) * ( í , s ) # ( í ) , фєBV„ 

is completely continuous on BVn. Since NBVn is a closed subspace of BVn the restric
tion of this operator onto NBVn (i.e. the operator K' given by (9)) is also completely 
continuous and maps NBVn into itself (cf. Corollary 4). Hence the second statement 
is also valid. 

By (ii) from Proposition 3 we have Kx = K#x, where K#x = J0 ds[K*(r, s)] x(s), 
xeBVn and K# is given by (5). Hence <Kx, <p> = <K#x, <p> for every xeBVni 

<p e NBVn. Using Lemma 2,2 from [3] we interchange the order of integrations and 
by an easy computation we obtain the equality 

<K#x, <p> = <x, K » 

where K' is given by (9) and x e BVn, <p e NBVn are arbitrary, i.e. (10) holds for all 
xeBVn9 <peNBVn. 

In the subsequent considerations we use the usual notation: for a given linear 
operator A acting on a Banach space X we set 

N(A) = {xeX;Ax = 0} 

(the null space of A) and 

R(A) = {yeX; y =Ax, xeX} 

(the range of A). We define the index ind A of the operator A by the relation 

indA = dimN(A) — codim R(A) 

if the difference on the right hand side of this equality is defined. 

Using this notation we state the following 

6. Theorem. If K : J -» L(JRB) satisfies (2) and (3) then 

(11) ind (I - K) = ind (f - K') = 0 

where I stands for the identity operator in the corresponding Banach space and 
the operators K, K' are given by (8), (9) respectively. 
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Moreover, we have 

(12) dim N(l - K) = dim N(l - K') 

And the Fredholm-Stieltjes integral equation 

(13) x(r) = f ds[K(l, s)] x(s) + f(t) , * e [0, 1] , f e BVn 

has a solution in BVn if and only if 

if, <P>=0 

for all solutions <p e NBV„ of the equation 

(14) <p{s) = f \K*)* (t, s) d<p(t), s e [0, 1] . 

Similarly, the equation 

(15) <p(s) = f (K*)* (t, s) d^(0 + ^r(s), s e [0, 1] , ^ e NBV„ 

has a solution in NBVn if and only if 

<x, tfr> = 0 

for every solution x e BVn of the homogeneous Fredholm-Stieltjes integral equation 

(16) x(t) = f d5[K(t, s)] x(s) , r e [0, 1] . 

Proof. The equality (11) follows immediately from the complete continuity of the 
operators K, K' stated in Theorem 5 (see e.g. [1], Theorem 40,1). 

Since (BVn, NBVn) is a dual system with respect to the bilinear form (1) and (10) 
is satisfied we have 

<x - Kx, <p} = <x, <p} - <Kx, <p} = <x, <p> - <x, K » = <x, <p - K » . 

All the assumptions of Satz 40.2 from [1] are satisfied and, consequently, the result 
follows immediately from this Satz. 

Remark. Theorem 6 is essentially a comprehensive version of the results from [3]. 
In [3], the quotient space BVnjSn was used instead of NBVn. The version of the 
Fredholm theory for the equation (13) and the corresponding conjugate equation (15) 
given in Theorem 6 seems to be more natural than the version given in [3]. 

For the linear operator K: BVn -+ BVn defined by (8) we have ind (/ — K) = 0 
and consequently, if dim N(l - K) = 0, i.e. if N(l - K) = 0 then BV„lR(l - K) = 0 
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and also R(l — K) = BVn. In this situation the Bounded Inverse Theorem applies, 
i.e. the inverse operator (/ — K)"1 exists and is bounded (see [2]). This yields the 
following 

7. Lemma. Let us assume that K : J -> L(Rn) satisfies (2), (3) and that N(l - K) = 
= 0, i.e. the homogeneous integral equation (16) has only the trivial solution 
x = 0 in BVn. Then there exists a constant C ^ 0 such that for every fe BVn the 
inequality 

\\X\\BVH = C\\f \\BVn 

holds for the unique solution x e BVn of the nonhomogeneous equation (13). (Let 
us mention that C = ||(/ - K)"1!-) 

Remark. As was mentioned above, when the assumptions of Lemma 7 are satisfied 
the inverse operator (/ — K)"1 exists. In the sequel we prove that this inverse 
operator has the form / + F where T : BVn -> BVn is a linear integral operator of 
the same type as the operator K given by (8). 

8. Theorem. Let us assume that K : J -> L(Rn) satisfies (2), (3). If the homogeneous 
equation (16) has only the trivial solution x — 0 e BVn then there exists a uniquely 
determined n x n-matrix valued function F : J -> L(Rn) such that 

(17) r(t, s) = K(t, s) - K(t, 0) + f 'dr[K(t, r)] F(r, 5) 

for all t, s e [0, 1], 

(18) varoF(0, ' ) < o o , 

(19) r(t, 0) = 0 for every t e [0, 1] , 

(20) . vj(r) < 00 

and for any feBVn the unique solution xeBVn of (13) is given by the resolvent 
formula 

(21) x(t) = f(t)+j\[r(t,s)]f(s). 

Proof. Let us denote by Yi the l-th column of the n x n-matrix ye L(Rn). Then 
the relation (17) can be written in the form 

(21) r,(f, s) = Kj(t, s) = K,(<, 0) + f dr[K((, r)] T^r, s) , l = l,2,...,n. 

We have evidently 
varUK(.,s)-K(.,0))gt>XK)<oo 
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for every s e [0, 1], Hence for any fixed s e [0, 1] and / = 1, ..., n we have 
varj (Kj(% s) — fCz(«, 0)) < GO. This implies by the assumptions and by Theorem 6 
that for any / = 1, ..., n, s e [0, 1] the relation (21) determines uniquely the n-vector 
rr(t, s) and, consequently, also the n x n-matrix valued function _T(f, s) is uniquely 
determined by (17) for every fixed s e [0, 1]. Moreover, by Lemma 7 we have 

|r,(.,o)||BKllgc||KI(.,o)-K.(.,o)||=o. 

Hence _T(f, 0) = 0 for every te [0, 1]. Let 0 = a0 < at < ... < cck = 1 be an 
arbitrary subdivision of the interval [0, 1]. For r(t, s) : J -> L(Rn) satisfying (17) 
we have 

r ( f , a y ) - r ( r , a y _ 1 ) = 

= K(t, «y) - K(t, «y_.) + ( \ [ K ( . , r)] (r(r, «y) - T(r, «y_.)) 

for f e [0, 1], j = l,2,...,k. Using Lemma 7 and the obvious fact that 
varj (K(«, ay) - K(>, ay_j)) < oo we get 

(22) ||r(0, «y) - T(0, «y_.)| + var0 (T(-, «y) - r(- , «y_.)) 5S 

g C[||K(0, «y) - K(0, «y_.)|| + var0 (K(-, «y) - K(% «y_.))] 

where C ^ 0 is a constat. Hence 

£ ||r(0, «y) - >(0, «y_.)| g C(var0 K(0, •) + Vj(K)) . 
1=1 

Since this inequality holds for any subdivision 0 = a0 < ax < ... < cck = 1 we 
obtain (18). The inequality (20) can be shown as follows. For the subdivision 0 = 
= a0 < ax < ... < cck = 1 we define the net-type subdivision 

Jtj = [ a ^ , a j x [ctj-uctj] 

i,j — 1,..., k of the interval J. For r : J -> L(_R„) defined by (17) we have (i, j = 
= l,...,k) 

MJij) = ™K(^/) + f -drW«i. ') - «(«,-!, r)] ( />, a,) - T(r, a,-^)) 

where mr(Jl7) = r(af, a,) - r(<xh o^j.^ - ^ a ^ ! , a,.) 4- r(at^l9 ttj-i) and similarly 
for rnK(Jij). Usual estimates for the Perron-Stieltjes integral lead to the inequality 
(see [3], [4]) 

hiWI ^ M'«)l + 
+ sup |r(r, «y) - r(r, «y_/)|| varj (K(«„ •) - K ^ , - ) ) 

re[0,l] 

197 



for every i9j = 1, 2,..., k and also to the inequality 

£ iK(L7)ii = *m + 
i , J = l 

+ £ varj (K(af, •) - .%,_., •)) • £ sup ||r(r, a,) - T(r, a,.,)! . 
i = l j = l re[0 , l ] 

Since 
|r(r, a,) - T(r, a,_ J __ 

= l|r(o.«_) - no-«.-.)! + varj(r(-,«,_.)) - r(.,_,_.)) 

for every r e [0, 1], we have by (22) 

£ K(_\.,)|| g _,(K) + OjC0C[i ||K(0,a,) - K(Q,«,_,)! + 
••.;=i J = I 

+ varj (K(-, a,) - K(-, a,_,))] __ M K ) I1 + c(v a r£ K(°' 0 + VJ(K))1 < °° • 

Since the subdivision 0 -= a0 < ax < ... < afc = 1 of [0, 1] is arbitrary we obtain by 
the definition of the Vitali variation vs the inequality (20).2) 

It remains to show that by the formula (21) the unique solution of the equation 
(13) is given. The integral Jj ds[r(t, s)] f(s) exists for every feBVn and f e [0, 1] 
since (18) and (20) are satisfied (see Proposition 2,3 in [3]). Let us put x(r) from (21) 
into the expression x(t) — JJ ds[K(f, s)] x(s). We obtain 

x(t) - ^ds[K(t, _)] x(s) = f(t) + Cds[r(t, s)] f(5) -
Jo Jo 

- £d,[K(t, r)] (f(r) + J ^ r , s)] f(,)) -

= f(0 + £<W. ') " *(<' -)] «») " J ' W . ')] (J/^1"' ̂  f(s)) • 
Interchanging the order of integrations in the last integral by Lemma 2,2 in [3] and 
using (17) we obtain 

*(') - C<is[K(t, s)]x(s) -_ f(t) + J'd . $r(t, s) - K(t, s) -

- Cdr[K(t, r)_ r(r, s)\ f(s) = f(t) + C ds il\t, s) - K(t, s) + 

+ K(t, 0) - Cd,[K(t, r)] r(r, s)\ f(s) = f(t) , 

2) The fact that only net-type subdivisions of J are taken into account is not essential since 
evidently every subdivision of J can be refined to a net-type one. 
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i.e. x(t) given by (21) is really the unique solution of the equation (13) and the theorem 
is completely proved. 

Let us now consider the case when K : J -> L(Rn) satisfies (2) and (3) but the 
assumption N(/ — K) = {0} is not satisfied. By Theorem 6 we know that 
dim N(/ - K) = codim R(l - K) = dim N(/ - K') = codim R(l - K') = r where 
r > 0 is an integer. In this case R(l — K) #= BVn and the inverse operator (/ — K)"1 

cannot be defined on the whole space BVn. The equation (13) has solutions only for 
f e R(l — K). Our aim is to show that in this situation there exists also an operator r° 
acting on BVn such that if f e R(l — K) then f + .T°f is a solution of the equation 
(13) and, moreover, that the operator F° is an integral operator of the same type as K. 
We prove this fact following a general scheme known from functional analysis. 

In the sequel we assume that x1, x2 , . . . , xr e BVn is a given basis of the r — dimen
sional null space N(/ — K) (linearly independent solutions of the homogeneous 
integral equation (16)) and (p1,..., <pr eNBVn is a given basis of N(/ — K') (linearly 
independent solutions of the equation (14)). It is known (see e.g. [1], Satz 15.1) 
that there exist linearly independent elements tj1 in NBVn and y' in BVn, i -= 1,..., r 
such that 

(x\tily = dij9 i9j = 1,..., r, 

<YJ\<Pl> = 8tj, hj = 1, -.., r 

(8tJ = o if i * j, alf = i). 

Let us define the projections 

Px = £ <x,f7
i>x i, xeBV„, 

i = l 

Qx = 2 <x, <p'> r , xeBVn. 
t = l 

It is easy to show that P, Q are bounded projection operators. Further, evidently 
R(P) = N(l - K) and by Theorem 6 also 

N(Q) = {x 6 X; <x, 9> = 0 for every <peN(l - K')} = R(l - K). 

The projections P, Q generate decompositions of the Banach space BVn into direct 
sums 

(23) BVn = R(P) e N(P) = N(/ - K) e N(P) , 

(24) BVn = R(Q) e N(Q) = R(Q) e H(l - K). 
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Let us now define the linear operator 

(25) * Lx = t <x, ,'> y' = £ y\t) \ ' x*(s) diy<(s) = 
i = l .= 1 J o 

= fds[Zyf(0^)]x(5). 
Jo '=1 

L is evidently a bounded finite-dimensional (and consequently completely continuous) 
operator on BVn and 

N(L) = {x e BVn\ <x, i/f> = 0 for every i = 1,..., r} = N(P) , 

Let us set 

(26) K° = K -f- L 

where K is the operator corresponding to the kernel K : J -> L(K„) via the relation 
(4). K° is evidently a completely continuous operator on BVn and ind (/ — K°) = 0. 
Let us assume that x e N(l — K°). Then 

(/ - K°) x = (/ - K) x - Lx = 0 

and by (24) necessarily (/ — K) x = 0 and Lx = 0 because R(L) c R(Q). Hence 
x e N(/ - K) n N(L) = N(/ - K) n N(P) and, consequently, by (23) we obtain 
x == 0. This yields N(/ - K°) = {0} and dimN(/ - K°) = 0. Using the complete 
continuity of the operator K° we obtain R(l — K°) = BVW and by the Bounded 
Inverse Theorem also the existence of a bounded inverse operator (/ — K°)_1. 

r 

Since x' e JV(/ - K) we have (/ - K) Px = £ <x, *;'> (/ - K) x' = 0 for all x e 5V„ 
and i = 1 

(27) (/ - K)x = (/ - K)(/ - P ) x . 

Since P is a projection we have R(l - P) = N(P) = N(L). Hence L(/ - P) x = 0 
for every x e BV„ and also 

(/ - K)x = (/ - K)(/ - P)x - L(/ - P)x = (/ - K°)(/ - P)x 

for every xeBVB. Multiplying from the left by (/ - K)(/ - K°)_1 and using (27) 
we obtain further 

(28) (/ - K)(/ - K0)"1 (/ - K)x = (/ - K)(/ - K0)"1 (/ - K°)(/ - P) x = 

= ( / - K ) ( / - P ) x = ( / - K)x 
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for every xe BVn. Hence 

(l-K)(l-K°)-lf=f 

for every feR(l - K), i.e. (I - K°)_1 f is a solution of the equation (/ - K) x = f. 
It is easy to see that if we set 

K°(t,s) = K(t,s) + £yi(t)n'*(s) 
i = l 

then for the operator K° given by (26) we have 

K°x= f1ds[K°(t,5)]x(s) 

and Vj(K°) < Vj(K) + £ var£ y< . var£ J/' < oo, var£ K°(0, •) ^ var£ K(0, •) + 
r » = 1 

+ £ l.y'v0)!. varo nl < oo. Hence the kernel K°(t, s) : J -» L(#„) satisfies all as-
i = l 

sumptions of Theorem 8 and, consequently, by this theorem there exists a T°(r, 5) : 
: J -* L(Rn) which satisfies the equation 

(29) r°(t, s) = K\t, s) - K°(t, 0) + f dr[K°(t, r)] r(r, s) , t, s e [0, 1] 

and r°(t, 0) = 0 for every f e[0, 1], var0 F°(0, •) < 00, Vj(r°) < 00. Moreover, 
for every feBVn the unique solution (/ — K°)-1 f of the equation 

x - K°x = f 

is given by the relation 

f(t)+j\[r°(t,s)]f(s), 

i.e. (f - K0)"1 = / + r° where T°x = J1 ds[F°(r, 5)] xfc) for x e BVn. 

Let us now summarize the above results. 

9. Theorem. Let K : J ~> L(K,,) satisfy (2) and (3). Then fhere exists an n x n-
matrix valued function r°(t, s) : J -+ L(Rn) such that var0 T°(0, •) < 00, Vj(r°) < 
< 00, r°(t, 0) = Ofor all t e [0, 1], r°(t, s) satisfies (29) for all t9 s e [0, 1] and the 
relation 

(30) <') = f(0 + fàlГXt, s)] f(s), t є [0, 1] 

defines a solution of the Fredholm-Stieltjes integral equation (13) provided feBVn 

belongs to R(l — K) (i.e. when the equation (13) has a solution for the given fe BVn). 
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Iff e R(l — K) then the general form of solutions of the equation (13) is given by 

* x(t) = f(t) + Cdmt, s)] f(s) + £ a, x%t) 
Jo *=i 

where xl e £V„, i = 1,..., r are all the linearly independent solutions of the homo
geneous Fredholm-Stieltjes integral equation 16) and al5 ..., ar are arbitrary real 
constants. 

Remark. The last part of the theorem follows from the well-known properties of 
linear equations. The theorem includes also the statement of the previous Theorem 8 
and gives in the general situation the desired "solving kernel result". Naturally, for 
the case dim N(l — K) > 0 the construction of the solving kernel F° depends upon 
the knowledge of the structure of the null-spaces of the operators / — K and / — K°. 
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