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časopis pro pěstování matematiky, roč. 103 (1978), Praha 

UNIQUENESS OF THE OPERATOR ATTAINING C(Hn9 r, n) 

ZDENEK DOSTAL, Ostrava 

(Received May 24, 1976) 

Introduction. Let r be a fixed real number, 0 < r < 1, n a fixed natural number. 
Let ^Hn) denote the algebra of all linear operators on an n-dimensional Hilbert 
space Hn and let the operator norm and the spectral radius of A e L(Hn) be denoted 
by \A\ and \A\a9 respectively. 

In connection with the critical exponent, V. PTAK has introduced in [ l] the quantity 

C(Hn9 r, m) = sup {\Am\ : A e L(#n), \A\. ̂  r, \A\ S 1} 

and found a certain operator A e ̂ Hn) such that 

(1) C(Hn9 r, n) - | ^ | , \A\.£r, \A\ § 1 . 

The point of this note is to show that the operator A is unique in the following 
sense: if B€^Hn) is any operator which satisfies (1) then there exists a unitary 
operator U e ̂ Hn) and a complex unit B such that 

eA -= U*BU. 

2. Notation and preliminaries. Let Mn denote the algebra of all n x n complex 
valued matrices. 

The adjoint and the spectrum of an operator A will be denoted by A* and 0"(-4), 
respectively. 

An operator Ae^Hn) is said to be extremal if |A | ^ 1, \A\9 S T and \An\ == 
- C(Hn9 r, n). 

For a given set W « {wi9..., w„) of vectors wt e Hn9 denote by G(W) the Gramm 
matrix of W. If z eHn and A e^Hn)9 we shall abbreviate G(z9 Az9..., An~1z) by 
G(A9 z). 

We shall denote, for 1 S i £ n9 by Et the polynomial 

Efav..., xtt) -« ]T ^ I 1 * ? • • • xnn > 
eMQA) 

e i + . . . + ert=-i 
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Let Ql9..., Qn be given complex numbers. For i = 1, 2,.. . , n, put at = (—1)" ' 
£„_ l+±(Q19 ..., ^n) so that the roots of the equation 

x" "* a i + a 2 * + .•-. + a^1*"1 

are exactly Qlf..., Qn. Consider the recursive relation 

(2) xl+n ^atxt + ... + otnxi+n„1 . 

For each i, 1 g i ^ n, we denote by w ^ , . . . , Qn) the solution (wi0, wa, wi2,...) 
of this relation with the initial conditions 

W|k(ci- •••> Qn) = ^f.fc+i > 0 ^ k = n - 1 . 

The result of V. KNICHAL ([1], Lemma 7) reads: 

2.1. For each i == 1, 2,.. . , n and each fc ̂  n, 

w l fc(f2i,. •., Qn) = £iQik(Qi> • • •> £«) > 

where £f = (-l)w~£ and 

Qik(Qi, • • •> Qn) = Z £»*(*!> • • •> **) <??, • •- <?»n > 

ei + . . . + e „ = * - t + l 

where a// Cy^, . . . , ew) ^ 0. 
The point of the lemma is that, for k ^ n and i fixed, all coefficients of wik are of 

the same sign. 
Following [1], we denote by P(Q19 ..., Qn) the linear space consisting of all solutions 

of the recursive relation (2); it is spanned by the vectors WX(Q19 ..., Qn),..., WJ(Q19 ... 
...,Qn). 

Now suppose that all \Qt\ < r. It is proved in [1] that, in this case, P(QU ..., Q„) 
is a subspace of the Hilbert space I2 of all sequences (a0, al9 a2,.-..) of the complex 

oo 

numbers such that ]T |a-P < °°-
i-0 

Let S denote the shift operator on I2 which sends (a0, al9 al9...) to (al9 al9 a3,...). 
Its restriction on P(Q19 ..., Qn) is denoted by S | P(Q19 ..., Qn). 

The solution (a0, al9 al9...) of (2) with the initial conditions a0 = 1, at = Qh ... 
..., aH~t = Q"'1 is the eigenvector corresponding to Qt. On the other hand, 

(sr - a^s-1 - ... - «01 pfo„ •••;0.) = o 

so that the minimal polynomial of S\P(Q19 ...9 Q„) is a divisor of (x — Q%)... 

... (x - <?„). We have thus 

(3) <KS\P(Ql9...9Qm))={Ql9...9Qm}. 
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3. Shifts. V. Pt&k has discovered extremal properties of restrictions of the shift S. 
He has proved: 

3.1. Theorem. (Pt&k). Let Q19 ...,Q„ be complex numbers, \Q(\ S rfor i = 1,..., n; 
AeL(Hn), \A\ £ 1 and (A - Ql) (A~Q2)...(A- Qn) = 0. 

Then 

(4) \Aa\Z\sr\PiQl,...9Qm)\ 

([1], Theorem 6). 
Moreover, 

(5) C(Hn9r9n)=\S»\P(r9...,r)\ 

(ibid, Theorem 8). 
The proof of (5) consists in showing that 

(6) \S»\P(ei,...,Qn)\£\S°\P(r,...,r)\. 

An inspection of the proof of (5) suggests a supplement to the inequality (6). 

3.2. Let Ql9 ...,Q„ be complex numbers, \Qt\ <! r for i = 1,..., n. Then the rela­
tion 

\S"\P(ei,...,Qn)\ = \sr\P(r,...,r)\ 

holds if and only if QX = ... = Qn and \Q±\ = r. 
We shall follow [ l] in the proof. 
Let Q(, wt and E% be those of Section 2. With the aid of the recurrent relations 

(2), it is easy to verify directly that 

Qin = EnT.i+1 and QUn+1 = Ex.En. 

Now suppose all |^f| ^ r and let there be i such that Qt # Q( or \Q(\ < r. It follows 
immediately that 

(7) |Gi.«+i(£i> ••.>&»)! < 6i,»+i(^.-.^) 

and 

(8) \QiJfiu • ••> Qn)\ < QUr9..., r) , i = 2,.. . , n . 

All coefficients of the forms Qik being nonnegative, we have 

(9) \Qik(Qi> ...> 0»)| £ Qik(r>..., r) f f = 1,..., n . 

We intend to show that 

| S - | P ( e i , . . . , ^ ) | < | S w | P ( r , . . . , r ) | . 
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To prove this, we associate with each x e P(Qi9..., Qn), x 4- 0, a vector y e P(r,..., r) 
such that 

|S«*||x|--<|S-j.|M--. 
n 

Put y = £ |* . - i | (-1)"" ' w^r,..., r). It follows that, for 0 <. k <, n - 1, we have 

\xk\ = \y}. If fe £ it, then 

(10) |**| = | i * i - i Mdu •••• C-)| -* I |*i-i | |Ca((?i, - , ff.)| = 

= i |*i-i| Qtt(r,.... r) = i , v . - i ( - - r ' .M'. ••- r) = ^ • 
i=-l 1=1 

If x0 # 0, then we can apply the inequality (7) together with (9) to get |x„+A| < yn+i, 
otherwise by (8) |xn| < yn. We have thus |x*| = \yk\ for k = 0 .1 , . . . , n — 1; |xfc|^*yk 

for k = n, \xn\ < yn or |xn+1 | < yn+1 and this implies the desired inequality. 
On the other hand, if Q = eur, t real, then by (6) and (4) 

|S» I P(Q,..., Q)\ < |S» I P(r,..., r)\ = |(V'S)» \ P(r,..., r)| < |S» | P(Q, ...,Q)\, 

which completes the proof. 
We shall need a little more information about S | H(Q, ..., Q). Let \Q\ < 1, and 

abbreviate S | P(g, ..., Q) by SQ, W„(Q,...,Q) by w. Clearly |w| = |Scw| = ... 
... = (S^vv). All the vectors w, SQw,..., SQ

l~2w being linearly independent eigen­
vectors of S*SQ 4= J corresponding to the eigenvalue 1, we have 

(11) rank(J-S*S e ) = l . 

We intend to show that |SJJz| attains its maximum on the unit sphere for a unique 
vector. To prove it, assume U,VBP(Q, ...,Q) linearly independent, |w| = |t>| = 1, 
\Sn

Qu\ = \Sn
Qv\ = \Sn

Q\, i.e. \Sn
Q\2 = \S*nSn

Q\ = (S^Snu, u) = (S^v, v). It follows that 
both u and v are eigenvectors of SQ

nSn corresponding to the eigenvalue |SJJ|2 and, 
consequently, \Sn\2 \z\2 = (SQ

nSnz, z) = |SJz|2 for each z e Span(w, v). Since 
dim Ker (J — SQSQ) = n — 1 and SQ is regular there exists a nonzero w, w e 
€ S"(Span (u, v)) n Ker (J - SQSQ). Setting z = (S^w)-1 SQ

nw we have 

(12) (J-S*S e)SJz = 0, \Snz\ = \Sn
Q\~C(Hn,r,n). 

Hence we can write 

(is) |s»zp - |s»+»z|» = ((/ - s*se) s;z, S"ez) = 0 . 

n 

Now return to the proof of 3.2 and set y = ]£ zi«1(— if"1. wt(r,..., r). We have 
r«i 

again |zf| = \y(\ for i = 0 , 1 , . . . , « - 1 and |zf| ^ ^(for i = n, n + 1, — Applying 
(12) we get even |z<| =-= y* for i £ n. Since by (13) |S£z| = |Sj+1z|, we have z„ = 0. 

239 



At the same time 

N - y. - Z |* i - i | QJLr,...,r) -Xj-»i-i|JB.-i+i(r, ..-,r) > 0, •'" 

which is impossible, We have proved the following result: 

3.3. Let \Q\ < 1, U,VEP(Q, ..., Q), \U\ = \v\ = 1 and |S"ii| = \Snv\ = C(i/„, r, n). 
Then u = e V 

4. Spectrum of extremal operators. Now it is easy to describe the spectrum of 
extremal operators. 

4.1.•IfAe^Hm) is extremal, then a(A) = {Q}, \Q\ = r. 

Proof. Suppose Qi9 ..., Qn are the roots of the characteristic polynomical of an 
extremal operator A e ^Hn). If they were not all equal or some |#,| < r, then, since 
(A-Qi)...(A-Qn) = 0,by3A&3.2 

|i4"| £ \ST | P(Qi,..., Qn)\ < \Sn | P(r, ..., r)\ = C(Hn, r, n) . 

We shall need two easy consequences of 4.1. 

4.2. If Ae^Hn) is extremal, zsHn, \z\ = 1 and \Anz\ -= An, then the vectors zy 

Az,..., Atl~1z are linearly independent. 
Really, otherwise we could define an extremal operator B which has 0 in its spec­

trum by setting Bx -= Ax for x from the linear span of the vectors z, Az,..., An~1z 
and By = 0 on the orthogonal complement. 

It follows that no extremal operator can be a root of the polynomial of a degree 
less than the dimension of the space. Together with 4.1, this yields 

4.3. J/ Ae^Hn) is extremal then its minimal polynomial is (x — Q)H, where 

5. We give a brief account of Ptak's method of linearization that we need here 
([l]> PP- 250-253). In the sequel, let z eHn be a fixed unit vector, Q = eur a, fixed 
real number and let Tbe the companion matrix of (x — of, that is 

г= 

" 0 1 0 . . . 0 
0 0 1 . .. 0 

0 0 0 . .. 1 
_oc, <x2 a3 . .. а, 

where a, are defined by 

(x — of mm x" — a^x"""1 — ... - OLÍ . 
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If A e L(Hn) satisfies (A - Q)H .= 0, then it is easy to verify directly that for each 
zeHn 

(14) G(Af Az) = TG(Af z) T* . 

We denote by s/ the class of all operators A e L(Hn) such that \A\ S 1 and (A >- Q)U = 
a* 0, by & the class of all symmetric matrices ZeMn satisfying TZT* g Z and 
2 n = !• The mapping 

g2:s/^A \+G(Afz)eSZ 
is epimorphic. 

The crucial point is that there is a linear isomorphism between the cone 3" of all 
symmetric matrices Z e Mnf TZT* ̂  Z, and the cone 9 of all symmetric positive 
semidefinite matrices. It is defined by 

p:f3Z[->Z- TZT*e&. 

Let us define a linear functional 

f:M^Z\+q(TnZT*tt)9 

where q(Z) denotes the (1,1) entry of Z, and let Si = p(&). If A e s/9 we may write 

fp-1(P9I(A)) = f(gz(A))-\A-z\2, 

so that max \Anz\2 foi Aes/ equals the maximum of fp~l on the set 2L. The last set 
being compact and convex, the maximum of fp~* will be attained at an extreme point 
of Si. Since the extreme rays of 9 are generated by matrices of the rank 1, the rank 
of the extreme matrices of St is equal to 1. 
Put £ = {Pe 2, :fp~\P) = C(Hnf r, n)2}. First we show what do the operators 
from s/f which are sent by pgz to the extremal point of &f look like. 

5:1. Let A e L(H„) be extremal. If the rank of the matrix 

G(A9 z) - G(Af Az) 

is equal to 1 and \Anz\ -= C(Hnf r, n)f then there is a complex number Qf \Q\ = r 
and a unitary mapping 

u:Hn->P(Q9...9Q) 
such that 

A = u*Su. 

Proof. Suppose A satisfies the assumptions of the theorem and put D = 
= (I - A*A)112. We have seen already that a{A) =- {Q}9 \Q\ = r. Obviously, 

G(A9 z) - G(A9 Az) = G(Dzf DAzf..., DAn"lz) . 

By 4.2 the vectors z, Azf ..., An~xz form a basis of the space Hn. The rank of 
G(Dz9..., DAn~xz) being equal to 1, the same holds for Df too. 
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We denote by e the only unit eigenvector of D with the eigenvalue different from 
zero and define a linear mapping 

u:Hn3w h*((Dw9e)9 (DAw9 e), ...)e I2 . 

Clearly u maps Hn into P(Q9 ..., Q). Since An -+ 0 and Dw = (Dw9 e)e9 we have 

|«(w)|- « £ |(ZM'w, e)|2 = £ \DA>w\> = £(M'w|2 - |.4i+1
W|2) = |w|2 

f s O » = 0 i -=0 

so that u is an isometry. The spaces Hn and P(Q9 ..., g) having the same dimension ny 

the range of u is P(#,..., Q). Moreover, the shift S satisfies 

uA = Su, 
which completes the proof. 

The next step consists in showing that $ is a singleton. To prove it, assume P, g 
are extreme points of if and let A9 B e $4 be such operators that p #(.A) = P, p #(£) = 
= 6, |,4*z| = |2Tz| = C(Hn9 r, n). 

By 5.1 there are isometries u9v :Hn~* P(Q9 ..., Q)9 

A = t**Sti, B = t;*Si?. 
It immediately follows that 

|S*ttz| = |Swt;z| = |^rtz| = C(Hn9 r, n), 

by 3.3 we get uz = eltvz and clearly z = e~uv*uz. The desired relation 

P = p ^ ) = p 0 ( B ) = Q 

is now an easy consequence of B = t?*M.4tt*t?. 
Now, if A is any extremal operator, then there is zeHn such that |z| = 1 and 

JAî l = C(Hn9 r, n). Clearly p gz(A) e S. Since the only matrix belonging to & is 
of rank 1, the rank of 

pgz(A)~G(A9z)-G(A9Az) 

is equal to 1 and A satisfies the assumptions of 5.1. 
We can summarize our results in the promised theorem. 

5.2. Theorem. Let A € L(Htt)9 \A\ ^ 1,0 < r < 1, \A\0 S r and \An\ = C(Hn9 r, n). 

Then &(A) consists of an only point Q9 \Q\ = r and A is unitary similar to the 
restriction of the shift operator S on the space of all sequences (x09 xl9 xl9...) 
which satisfy 

i -*0 

The problem of uniqueness of extremal operators was raised by V. Ptak. 
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