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ALMOST HERMITIAN MANIFOLDS WITH CONSTANT 
HOLOMORPHIC SECTIONAL CURVATURE 

ALFRED GRAY, Maryland, and L. VANHECKE, Leuven 

(Received November 10, 1976) 

1. INTRODUCTION 

A particularly interesting and simple class of Kahler manifolds is formed by those 
with constant holomorphic sectional curvature. These manifolds are natural analogues 
of Riemannian manifolds of constant sectional curvature. 

There is a local classification of Kahler manifolds with constant holomorphic 
sectional curvature ([10], [13]): A Kahler manifold of constant holomorphic sectional 
curvature \i is locally isometric to a complex projective space CPn(fi), a complex 
hyperbolic space CDn(n), or to a complex Euclidean space Cn. 

Of course, the definition of holomorphic sectional curvature (namely H(X) = 
= II-YIÎ -RJTJXXJX) makes sense for any almost Hermitian manifold. The purpose 
of this paper is to consider almost Hermitian manifolds of constant holomorphic 
sectional curvature which are not necessarily Kahlerian. The study of such manifolds 
is much more complicated and interesting than in the Kahler case. For example, one 
has the six sphere S6(fi) to contend with. We pose two questions for a given class L of 
almost Hermitian manifolds: 

(A) Does the theorem of Schur hold for L? More precisely, suppose MeL with 
dim M ^ 4 and assume M has constant holomorphic sectional curvature fi(m) 
at each point m e M. Must fi be a constant function? 

(B) Classify (either locally or globally) all M e L which have constant holomorphic 
sectional curvature. 

As mentioned above, the solution of (A) and (B) for the class K of Kahler manifolds 
is well-known. (See [10], [13], [24].) Moreover, for the class NK, (A) and (B) have 
recently been solved ([7], [22]). See also [19]. The only non-Kahler nearly Kahler 
manifolds of constant holomorphic sectional curvature are locally isometric to a six 
sphere S6(/z). 

Perhaps the next most interesting class to consider is the class H of Hermitian 
manifolds. It is easy to see that there are many additional spaces of constant holo
morphic sectional curvature in H, such as all of the simply connected spaces of 
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constant sectional curvature. (Let M be a simply connected Riemannian manifold 
with constant sectional curvature A # 0. Let <p be a conformal diffeomorphism 
between M and a piece of Euclidean space. Then <p induces an almost complex 
structure on M. It is easily checked that M is Hermitian but not Kahlerian. Since M 
has constant sectional curvature a fortiori it has constant holomorphic sectional 
curvature.) 

The interesting thing about the class H is that the answer to (A) is no. We prove 
in §5 

Theorem. Let ds2 be the usual metric on Cn and f: Cn -* C any nonlinear holo
morphic function. Then the metric (1 + Re/(z))"2 ds2 on Cn does not satisfy (A). 
Thus (Cn, (1 + (Re/(Z))"2)ds2) is a Hermitian manifold with pointwise constant 
holomorphic sectional curvature which is not globally constant. 

Because the answer to (A) is no, it is hopeless to attempt a classification in the 
class H. Instead we turn to other types of almost Hermitian manifolds. In § 3 and § 4 
we consider a certain class QK2 which contains both NK and K as subclasses. The 
manifolds in QK2 satisfy a certain natural curvature condition. The class QK2 is 
interesting because it contains many homogeneous almost Hermitian manifolds, 
namely all 3-symmetric spaces (see [6]). 

The answer to (A) for the class QK2 is yes. Furthermore we are almost, but not 
quite, able to solve (B). More precisely, we show that manifolds inQ/C2 with nonzero 
constant holomorphic sectional curvature \i consist of manifolds locally isometric 
to CPn(\i), CDn(fi), or S6(fi). The case when the holomorphic sectional curvature 
vanishes remains in doubt. There are certainly flat almost Hermitian manifolds 
other than the usual Kahler structure on Cn. (See for example [20], [21].) However, 
whether or not there exist manifolds in QK2 other than Cn with zero holomorphic 
sectional curvature remains an intriguing question. 

2. CLASSES OF ALMOST HERMITIAN MANIFOLDS 

We consider C00 almost Hermitian manifolds and use the notation of [1], [2], 
and [6]. In this paper we shall be concerned with five classes of almost Hermitian 
manifolds: K, NK, AK, QK, H. For reference, the defining conditions for these classes 
are as follows: 

K:VX(J)Y = 0, 

NK:VX(J)X = 0 , 

AK : dF = 0, 

QK :VX(J)Y+VJX(J)JY=(J, 

H : VX(J) Y - yJX(J) JY - 0 , X, Ye X(M). 
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(The condition defining H is equivalent to the vanishing of the Nijenhuis tensor.) 
Curvature identities are a key to understanding the geometry of these classes of 

almost Hermitiafl manifolds. In fact for each of the classes given above there exists 
a curvature identity (see [8]). However in this paper we shall be concerned with the 
following curvature identities: -

(1) RWXYZ — RWXJYJZ * 

(2) RWXYZ — RJWJXYZ + RJWXJYZ + RJWXYJZ > 

(3) RWXYZ = = RJWJXJYJZ • 

For a given class L of almost Hermitian manifolds let Lt be the subclass of manifolds 
whose curvature operator satisfies identity (i). 

Certain equalities occur among the various classes. We summarize the known 
results. 

Theoгem 2.1. We have 

(2.1) K. = K2 = i<з = K, 

(2.2) K = NKlt 

(2.3) NK2 = NK3 = NK, 

(2.4) K = ЛKІЗ 

(2.5) ^ 2 = ^ 3 . 

Proof. (2.1) is well-known, and (2.2), (2.3), (2.4) are proved in [4]. For (2.3), (2.4) 
see also [9], [15]. In [8] (2.5) is proved. 

In [8] inclusions between the various classes are treated more fully. Moreover, 
in view of theorem (2.1) it suffices to consider the following classes: K, NK, AK2, AK3, 
AK, QKU QK2, QK3, QK, Hu H2 - H3, H. 

3. SCHUR'S THEOREM FOR THE CLASS QK2 

We say why QK2 is a reasonable class in which to consider problems (A) and (B). 
In the first place we have K cz NK aQK2. Thus our results generalize all the known 
solutions to (A) and (B). Furthermore, although QKt c QK2 and AK2 c QK2 our 
techniques do not yield better results for these two classes. Our techniques appear 
to be too weak to solve (A) and (B) for QK3. 

It will be convenient to define a tensor X by X(WXYZ) = RWXYZ - RWXJYJZ- We 
begin by generalizing a well known formula for Klhler manifolds of constant holo-
morphic sectional curvature. 
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Lemma 3.1. Let M be any almost Hermitian manifold which satisfies curvature 
identity (2), and assume that M has pointwise constant holomorphic sectional 
curvature pi. Then 

(3.1) RWXYZ = £ {<pV, y> <z, z> - <pV, z> <z, y> + <JW, y> <JK, z> -

4 

- <JW, z> <Jz, y> + 2<JFV, X> iJY, z>} + 
+ - {IX(WXYZ) - A(wzxy) - A(PTYZX)} . 

Proof. Using (2) it is easy to check that X satisfies the following identities: 

(3.2) X(WXYZ) = -X(WXJYJZ) = X(WJXYJZ) = X(JWJXJYJZ) . 

Now by assumption 

(3.3) RXJXXJX = »\\XV f o r XeX(M). 

Let K, ye X(M) be such that at a ppint m e M we have ||Z|| = || Y\\ = 1, (X, y> « 
= <JK, y> -= 0. We substitute aX + bY for X in (3.3). Equating coefficients and 
using (2) we find 

(3.4) RXYXY = » + -X(XYXY). 
4 4 

More generally put U = aX + &XK + cY, where a2 + b2 + c2 = 1. From (3.2), 
(3.4) and (2) we find 

(3.5) Rxvxv = J {|*||2 IMI2 - <*> U)2 + 3< JZ, U>2} + \ X(XUXU) . 
4 4 

In fact (3.4) also holds for X, U e X(M) of arbitrary norm. We linearize (3.5) and use 
the first Bianchi identity; after some calculation we obtain (3.1). 

Define a tensor P by 

(3.6) P(VWXYZ) = © { - 3 VV(X)(WXYZ) + S VV(X)(WXYZ)} , 
VWX XYZ 

for V, JV, X,Y,Ze X(M). Here ® denotes the cyclic sum. We shall compute the 
expression P(JWWXWX) + P(JWWJXWJX) in two different ways. 

Lemma 3.2. For MeQK2 and W9Xe X(M) we have , 

(3.7) P(JWWXWX) + P(JWWJXWJX) - 0 . 

Proof. Using standard formulas, the covariant derivative of X is found to be 

(3.8) VV(X)(WXYZ) = VV(R)WXYZ — VF(-R)rjr/rjz ~ -^rxvK(.or/z ~" ̂ ivx/rvKC/)-* • 

173 



From the second Bianchi identity and (3.8) we obtain 

(3.9) Syv(X)(WXYZ) « - 6 {RWXvv(j)Yjz + RWXJYV^Z} -
F1FX VWX 

Substituting (3.9) into (3.6), we find 

(3.10) 

P(VWXYZ) = ® {(3 - &){RWx7r{j)Tjz + RWXJYWZ) - © V^-R^x/raJ = 
vra xrz xrz 

= S {2.RfKjrvK(j)yjz "" F̂PZVK(j)jrjy "*" RWYV^J^JX + 
vwx 

+ 2RWXJYvv{j)z ~" RWZJXWJW "" RWYJZ^^X ~ © ^V(R)WXJYJZ} • 
xyz 

Let F == JfV, 7 =- PVand Z = Z in (3.10). Using the fact that M is quasi-Kahlerian 
we get 

(3.11) P(JWWXWX) -= - 2{RWXJVw(J)WJX + RJWXVw{J)WJX} + 

+ i{RWJW^x(J)XJW ~~ RwXJWJVwWX "~ ^WrJITVWr(J)WrJx} + 

+ J ?̂p;nfrvw-(.ox ~~ 2RJWXJW?w{J)W + 

+ ^W(R)XJWJXJW + ^W\R)XWJXJW ' 

In (3.11) we replace X by JX and add the resulting equation to (3.11). Again using 
the fact that M e QK and (3), it follows that 

(3.12) P(JWWXWX) + P(JWWJXWJX) - 3{RWXWVw{J)x - RWXJWJVw{J)X -

~~ RwJXJWVwWX "~" RjWXJWVwVW ' 

Now (3.7) is immediate from (3.12) and (2). • 

Lemma 3.3. Suppose M e QK2 and that M has pointwise constant holomorphic 
sectional curvature fi. Then we have 

(3.13) P(JWWXWX) + P(JWWJXWJX) = 

= 2(j»V/x){!|rV||2 | * | j 2 + <FV,.K>2 + <jw,xy2} + 

+ 4||w\\2 {<w9 jxy Xfi - <w9 xy jxfi -

- 6fi{{ w9 xy <yw(j) w9 xy + (w9 jxy <yw(j) w9 jxy}. 

Proof. We write (3.1) in the form 

(3.14) 4RWXYZ - M(WXYZ) + S X(WXYZ) « 
XYZ 

- n{<w, y> <x, z> - <w, z> <x, y> + <JW, y> <JX, z> -
- (JW, zy <JX, y> + 2(jw,xy <JY, Z>} . 
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We take the covariant derivative of (3.14) and use the second Bianchi identity. The 
result is 

(3.15) P(VWXYZ) = S {(Vn)«W, Y> <X, Z> - <W, Z> <X, Y> + 
vwx 

+ <JW, Y> <JX, Z> - <JW, Z> <JX, Y> + 

+ 2<JW,X> <JY, Z» + /t[<Vv(J) W, Y> <JX, Z> + 

+ <JW, Y> <VK(J)X, Z> - <VV(J) W, Z> <JX, Y> -

- <JW, Z> <VV(J) X, Y> + 2<V„(J) W, X> <JY, Z> + 

+ 2<JW,X><VV(J)Y,Z>]}. 
In (3.15) we let V = JW, Y = Wand Z = X to obtain 

(3.16) P(JWWXWX) = (JW^){||W|2 \X\2 - <W,X>2 + 3<JW,X>2} -

- 4(Xfi) \\W\\2 <JW,X> + 4(Wfi) <JW,X> <W,X>-

- 9n<W, JX> <VW(J) W, JX> + 

+ 3n<MJ) W,X> <W,X> + 3/.<Vx(J)X, W> \\W\\2 . 

In (3.16) we replace X by JX and add the resulting equation to (3.16). The result is 
(3.13). 

We can now prove the main result of this section. 

Theorem 3.4. Suppose MeQK2 with d i m M ^ 4 , and that M has pointwise 
constant holomorphic sectional curvature /(. Then ft is a constant function. 

Proof. Since dimM ^ 4 for each meM and WeX(M) there exists XeX(M) 
such that W9 JW9 X9 JX are mutually orthogonal at m. From lemmas 3.2 and 3.3 
we find (Wn) \\W\\2 \\X\\2 = 0. Hence the result follows. 

4. THE CLASSIFICATION 

Now that we have proved the technical lemmas of § 3, we can effect a classification. 
In particular we have the following theorem, the proof of which is surprisingly 
simple. 

Theorem 4.1. Let M eQK2 have pointwise constant holomorphic sectional curva
ture fi 4- 0. Then M is nearly Kdhlerian. 

Proof. If dim M = 2, then M is automatically Kahlerian. Thus we may assume 
dim M ^ 4. Then \i is constant, and so from lemmas 3.2 and 3.3 we have 

(4.i) n{<MJ) w> x> W x> + <MJ) w, Jxy (wy jxy} - o. 
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In (4.1) we replace X by W + Vw(J) W. Note that W, JW, VW(J) Wand J VH{J) W 
are mutually perpendicular. Therefore (4.1) becomes 

(4.2) " 4vw(j)wl*\\wl> = o. 

Hence we obtain the theorem. 
In [7] nearly Kahler manifolds of constant holomorphic sectional curvature are 

classified. Therefore combining [7] and theorem 4.1 we have the following classi
fication for QK2. 

Theorem 4.2. Let M e QK2 have pointwise constant holomorphic sectional curva
ture \i 4= 0. Assume dim M ^ 4. Then M is locally isometric to one of the following 
spaces: 

(1) A complex hyperbolic space CDn(/i); 
(2) A complex projective space CPn(p); 
(3) The sphere S6(n). 

Furthermore from theorem 4.2 and [7] we have a global classification theorem. 

Theorem 4.3. Let M eQK2 have pointwise constant holomorphic sectional curva
ture fi 4= 0. If dim M ^ 4 and M is complete, then M is isometric to one of the fol
lowing spaces: 

(1) CDn(n)jr where T is a discrete group; 
(2) CPty); 
(3) Sty> 

The hypothesis in theorem 4.1 that /i =}= 0 is very curious indeed. This hypothesis 
is not needed for the classification of nearly Kahler manifolds of constant holo
morphic sectional curvature. There are two unsolved questions here: 

1. Do there exist flat quasi-K&hler manifolds which are not Kahlerian? 
2. Do there exist nonflat quasi-Kahler manifolds with zero holomorphic sectional 

curvature? 

Note that (1) is false for the classes AK and NK, and (2) is false for the class NK. 

Corollary 4.4. Let M be a 3-symmetric space with positive definite metric, and 
suppose M has constant holomorphic sectional curvature fi =(= 0. Then M is iso
metric to one of the spaces listed in theorem 4.3. 

5. HERMITIAN MANIFOLDS WITH POINTWISE CONSTANT HOLOMORPHIC 
SECTIONAL CURVATURE 

If M and M° are conformally equivalent almost Hermitian manifolds, then either 
both M and M° are Hermitian, or neither is. This is obvious because the integrability 
condition for an almost complex structure does not depend on a metric. 
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Theorem 5.1. Let M be a contractible even dimensional Riemannian manifold 
of constant sectional curvature K. Then M e H and has constant holomorphic 
sectional curvature \i = K. If dim M ^ 4 and K =# 0, then M $ QK (in fact M is 
not semi-Kahlerian, see [2]). 

Proof. Everything is obvious, except perhaps for th.e last statement. This is proved 
in [2]. 

Next we modify this technique to show that Schur's theorem fails for the class H. 
It will be necessary to recall some relations between the connections and curvature 

tensors of conformally related metrics <,> and <,>° on the same manifold M. 
There exists a C00 real valued function a such that <, >° = e2(T<, >. We define a vector 
field grad a by <grad a, Z> = Za for Z e X(M). Also define a symmetric tensor \j/a by 

ilia(X, Y) = (VXY) a-XYo + (Xa) (Ya) . 

Well-known calculations yield relations between the connections V, V° and between 
the curvature tensors R, R°. In our notation these are 

V£y = {V*y + (Xa) Y + (Ya) X - <K,T> grad a}0 , 

(5.1) R0
WXYZ = e2°{RWXYZ - ||grad tx||2 ({W, Y} (X, Z> - <W, Z> <K, y> + 

+ ^(W, Y) {X, Z> - ^(W, Z) <K, y> + 

+ i/,ff(x, z) (w, y> - fj(x9 Y) <PV, z » } . 

Now assume that <, > is almost Hermitian with respect to the almost complex 
structure J. Then so is <, >°. The following lemma is a special case of (5.1). 

Lemma 5.2. The holomorphic sectional curvatures KXJX and KXJX are related by 

(5.2) K°XJX = e~2*{KXJX - ||grad a\\2 + ||X|| "2 (^(X, X) + ^(JX, JX))} , 

for X e X(M). 

Corollary 5.3. Suppose M = Cn and <, > is the usual metric. Let a = —log (1 + s) 
and assume \X\ = 1, and that X is parallel. Then 

(5.3) KXJX -= - ||grad s|[2 + (1 + s) (X2s + (JX)2 s) . 

Proof. We have KXJX = 0, e~2a = (1 + s)2, ||gradtr||2 = (1 + s)"2 ||grads||2, 
and -X2o + (Xa)2 = (1 + s)"1 X2s. With these substitutions lemma 5.2 yields 
corollary 5.3. 

Now we can prove the main theorem of this section. , 

Theorem 5.4. Let f:C"-+ C be any holomorphic function, and let <>> be the 
usual metric on C". Then (1 + Re/(z))""2 <,> has pointwise constant holomorphic 
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sectional curvature given by the formula 

(5.4) ^ . X ^ ~ = - | | g r a d R e / ( z ) | | 2 . 

Proof. Since/is holomorphic, Re / is harmonic in each variable. Therefore 

(5.5) (X2 + (JX)2) Re/(z) = 0 

whenever X is a coordinate vector field. Moreover by linearity, (5.5) holds for any 
parallel vector field X on C . Let s -= Re/(z). Then we obtain (5.4) from (5.3) and 
(5.5). 

Although Schur's lemma fails for the class H there does exist a curvature identity. 

Theorem 5.5. Let Mbea Hermitian manifold with constant holomorphic sectional 
curvature /*. Then the curvature operator of M satisfies 

(5.6) Rwxwx + RJWJXJWJX — RWJXWJX ~~ RJWXJWX ~~ 

= 2ii{-<W,X>2 + <JW,xy}. 

Proof. Let X, Ye X(M) be such that at a point m e M we have ||Xf = || Y|| = 1, 
<Z, y> = 0. Let a2 + b2 = 1. Substituting aX + bYfor X in (3.3) we find 

(5.7) &XJYXJY + RjXYJXY + 2&XJXYJY ~~ 2&XJYJXY ^ 0 • 

Similarly 

(5.8) RXYXY + RJXJYJXJY + ZRXJXYJY + 2-̂ xyjrxjy = 0 . 

In [8] the following identity is proved for the class H 

(5.9) RABCD + RjAJBJCJD ~~ RjAJBCD ~~ &JABJCD ~~ &JABCJD "" 

~" &AJBJCD ~~ &AJBCJD ~~ &ABJCJD "~ 0, 

for ,4, B, C, i) 6 X(M). From (5.7), (5.8), (5.9) it follows that 

(5.10) -Rjryxy + RJXJYJXJY =~ RXJYXJY + RJXYJXY • 

Now we use the method of the proof of lemma 3.1 to derive (5.6) from (5.10). 
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