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Časopis pro pěstování matematiky, rol. 105 (1980), Praha 

RANGES OF a-HOMOGENEOUS OPERATORS AND THEIR 
PERTURBATIONS 

PAVEL DRÁBEK, Plzeň 

(Received October 18, 1977) 

1. Introduction. Let us consider the equation 

Jx - fiSx+ + vSx~ + Gx = / 

where fi and v are reál parameters. The properties of the maps J, S, G, x H+ x+, 
xi-*x" will be specified in Section 2. This páper continues the investigation in [6] 
and offers a generalization of the results contained in [5], [3] and [4]. We also com-
plete some results from [7], Appendix V. In the proofs of the assertions contained 
in this páper we use the theory of Leray-Schauder degree. The properties of the 
degree ušed here are taken from [7]. 

Section 2 is a summary of the main results contained in the páper [6]. In Section 3 
we give some applications of the second part of this páper to the boundary value 
problems for diflFerential equations, particularly for the nonlinear Sturm-Liouville 
equation of the second order and for a certain type of partial differential equations. 
Section 4 is devoted to the study of the nonlinear Sturm-Liouville equation of the 
second order with constant coefficients. We discuss the existence of weak solutions 
of the homogeneous boundary value problém in dependence on the parameters \i 
and v. In the čase of nonexistence of the weak solution we give some sufficient con-
ditions on the right hand side of the equation in order that the boundary value 
problém may háve at least one weak solution. The methods of the proofs are based 
on the properties of the Leray-Schauder degree and on the methods of classical 
analysis. 

2. Ranges of positive a-homogeneous nonlinear operators-Summary. Let X, Y 
and Z be Banach spaces with zero elements Ox, 0Y9 Oz and with norms |x | x , ||j>||i> 
| |z|z, respectively. A subset C of Z is called a cone if it is closed, convex, invariant 
under multiplication by nonnegative reál numbers, and if C r\ (— C) * {Og}. We 
suppose that a given fixed cone Cin Zhas the following properties: 
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(Z 1) If z € Z then there exists a uniquely determined couple z+ , z~ e C such that 
z = z+ — z~ and zf — z+ eC, z~ — z~ eC for each z\,z~ eC, z = 
= z+ <- zjj\ For each f ^ 0 it is 

(*z)+ = tz+ and (fz)~ = tz~ , ( - z ) + = z~ . 

(Z2) The mapping z -^ z+ is continuous. 
(Z 3) X c Z and the identity mapping .Y -> Z is continuous. 

Let a > 0 be fixed and let J be a mapping defined on .ST with values in the space Y, 
and suppose that the following assumptions are fulfilled: 

(J 1) J is positively a-homogeneous. 
(J 2) J is one-to-one, J is continuous in Ox and J"1 is continuous. 
(J 3) J is odd. 
Let S be an operator defined on Z, acting into Y and satisfying 

(S 1) S is positively a-homogeneous. 
(S 2) S is continuous. 
(S 3) The mappings x -> Sx+, x -* Sx~ are completely continuous operators from .Y 

into F. 
Suppose that G : X ~+ Yis a completely continuous operator. Denote ̂ ^(J, S, G) = 
= {/e F; 3x0 e X: Jx0 - /*Sx+ + VSXQ + Gx0 = / } and 

A-i = {[/*> v]eR2; 3x0 =t= Ox : Jx0 - jtiSx+ + vSx~ = Or}, 
**o = r H. \ A-if 

*i - {L>, v] e A0; d[F; KF(1), 0F] * 0}, 

where F : y -» y - ^ ( J ^ y ) * + vS(jr V)~> yeF, 
*2 - (l>> v] € A0; %,v1(J, S, O) * F}, 
A3 = {|>, v]eR2; %,V](J, S, O) = F}. 

Then the sets At, i = — 1,0,1,2, 3 are symmetric subsets of R2 and the following 
assertions are valid: 

(i) A0 is open in R2 and moreover, if [a, /?] e R2, |a| + jj?| < c2(pi, v)js, \ji, v] e A0, 
then [/i + a, v + 0] e A0 where 

CI(M» V) == inf II Jx - fxSx+ + vSx~||r > 0 
ll*llx=-

and 
s =- max{ sup ||Sx+||F sup |Sx~||r} < +oo. 

I l* l lx«i IWIx88-

(ii) For \ji, v] e A0 the set #fr,vj(S, S, 0) is Closed in F. 
(iii) A% c A3. 
(iv) Aj is an open subset of R2. 
(v) Aj is a union of some components of A0. 
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(vi) Let T be a component of A0 containing a point [X, A] for some real number X. 
Then T c At. 

(vii) Let [JU, v] e Ax and suppose that 

l|Gx||F , x 

hm sup Y l T < W v) . 

Then %,v ]( / , S, G) = Y. 
(viii) For a given [ju, v] e A2 there exists c3(/f, v) > 0 such that if 

hm supYliT ^ <W*>v) 

then %,V](J, S, G) * F. 
(ix) A2 is an open set in R2. 

For the proofs of these assertions see [6]. 

3. Applications to differential equations. In this section we study the question of the 
existence of weak solutions of the boundary value problem for the nonlinear Sturm-
Liouville equation of the second order and for partial differential equations of 
a certain type. 

Let LP(Q), Ck(Q) denote the usual function spaces on a bounded domain Q in the 
real Euclidean N-space R* (the boundary dQ is sufficiently smooth if N > 1) with 
norms defined as usual, where p e <1, oo) is a real number and k is a nonnegative 
integer. Let WktP(Q) and W0

,P(Q), respectively, denote the Sobolev spaces (see e.g. 
[8], [9]) with the norms 

l|/|k*^) = Z ([\Vf(x)\>dx)li' 
MS* \ J II / 

and 

|/|r.M«,- Z ([\BPfixWdx)1", 

respectively. It is possible to prove that the norms ||,||jr*.i>(0) and || * llro-'HQ) a r e 

equivalent on the space W0k,P(Q). 
Let V be a subspace of the Sobolev space WltP(0, n) which fulfils one and only 

one from the following conditions: 

(i) ./-.JP--X0.1.); 

(ii) V={ue W1-^, Jt); u(0) = 0} or 

V - {u e W*''(0, IT); u(%) = 0}; 

(iii) K= Wt''(0,n). 
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In the case (i) the norm ||. ||K is supposed to be equal to ||. ||WI.J>(O,*)- in the cases (ii) 
and (iii) the norm ||. \\v is equal to ||. ||j*v.*<o,io-

Let us suppose in the sequel p ^ 2. Put X = Z = V9 Y = X* and C = {u e X; 
u(t) *£ 0 for all t e <0, TC>}. Let a9 b9 c be real functions defined on <0,7c>. Suppose 
that a(t) > 0 for all t e <0, TC> and a e C*(<0, TC», b(t) ̂  0, c(t) > 0 for all t e 
e <0,7c> and b9ce C(<0, rc>). The real numbers A09 Al9 B09 Bt are supposed to 
satisfy the inequalities 

A0 ^ 0, Ax £ 0, B0 ^ 0, Bx ^ 0 . 

In the cases (i) and (ii), we assume moreover b(t) + 0 for all t e <0, TC> or A0 + Ax > 
> 0. Let Xx c(t) — b(t) > 0 for all t e <0, rc>, where Xx > 0 is the least eigenvalue 
of the-problem 

Ju - XSu = 0Y 

(the operators J and S will be defined by the relation (3.1) and (3.2) below). The fact 
Xx > 0 is proved in [7], Appendix V. In the case (i) suppose that 

or 

Denote 

B0 = Bx = 0 and A0 + Ax > 0 

(XXB0 - A0 = 0 , XxBt - Ax ^ 0 

JAÍBQ - -40 + ^i#i ~ -4i > 0 . 

(3.1) (j«)t))x=£[a(oi«'(or2«'(04o + 

+ Ht) \u(t)\>-2
 M(o D(03 a* + ^oIK0)!"-2 u(°) <°) + ^iK*)!""2«W <") • 

(3.2) (S«, t>)x - Tc(0 |«(f)|*-- «(f) t<0 d* + 

+ Bo|«(0)|'-2 u(0) t<0) + Bi |«W|'-2 «(jt) t<7t) , 

(3.3) {F,v)x = Tf(t)v{t)dt, 

where the symbol (., .)x is used for the duality between X* and X; / e L^O, it). 

3.1. Definition. Let / e L.(0, JT) and let 

(3.4) (Ju, v)x - ^Su+, v)x + v(Su-, v)x = (F, v)x 

hold for each veV. Then u is called the weak solution of the nonlinear Sturm-
Liouville equation of the second order with the right hand side/. 
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3.2. Lemma. The operators J and S satisfy the conditions (J 1)-—(J 3) and 
(S 1) — (S 3), respectively, from Section 2. 

Proof. The continuity of Nfimyckij's operator acting from Lp(0, %) into L/0, n) 
(q -= p](p - I)) and the continuity of the imbedding from Wl,p(0, it) into C(<0, rc» 
imply that the operator J is continuous. The conditions (J 1) and (J 3) can be 
verified. There exists c > 0 such that 

(3.5) (Ju - Jv, u - v)x £ c\\u - v\\x 

holds for each u, v G X (because the inequality 

(\x\>->x-\y\*->y)(x-y) = c\x-y\<> 

holds for any real numbers x and y with a suitable constant c > 0). From the theorem 
of Minty-Browder (see e.g. [1]) we conclude the surjectivity of/. The inequality (3.5) 
implies the injectivity of J and the continuity of J""1. The condition (J 2) is verified. 
The operator S is a strongly continuous mapping of X into Y because the imbedding 
from WltP(0, n) into C(<0,n}) is strongly continuous. Thus the conditions on the 
operator S can be verified. 

Let us present some regularity properties of the weak solution. 

3.3. Theorem. Let u be a weak solution of the boundary value problem (3.4) 
withfe Lt(0, n). Then u e C*(<0, TC». Moreover, iffe C(<0, n}) then a(t) \u'(t)\*~2 . 
.u'Qe&KOtny). 

Proof. Using (3.1), (3.2), (3.3), (3.4) and integration by parts we obtain 

(3.6) rM(t)v'(t)dt = 0, 

where 

M(t) - a(t) |«'(t)|"-2 «'(') -

- j ' m i«wi'-2 «fo - n <*) i«+(t)i'-a «+w + 
+ v C(T) |u"(T)|"-2 u"(T) - / (T)} dT . 

The function M(t) is an element of L^O, n) (q = pj(p — 1)) and the identity (3.6) 
holds for each v e 0(0, n) (where 0(0, it) is the set of all infinitely differentiable 
functions with compact supports in (0, jt)). It is 

(3.7) r^^dl-O 
Jo of 

for each v e 0(0, it), where dM/df denotes the derivative of M(t) in the sense of 
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distributions. The expression (3.7) implies M(t) = c almost everywhere in <0, rc>, 
where c is a constant. Let us denote 

F(t, z) = a(t) |z|>~2 z -

- f W ) Ml''2 «W ~ M <t) |U+(T)|-2 U+(T) + 

4- v C(T) | I T ( T ) | ' - 2 M~(T) - / (T)} dT - c , t e <0,rc> , z e R1 . 

By the same argument as in the proof of Lemma 3.2 there exists a constant ct > 0 
such that 

(F(f, zx) - F(t, z2)) (zt - z2) £ c-Jz,. - z2|* 

for each t e <0, TC>, zt, z2 e R1. This inequality implies for each t e <0, n} the existence 
of z(t) which is determined uniquely and 

(3.8) F(t,z(0) = O. 

Moreover, the function z(t) is continuous on <0,7t>. However, from (3.8) we obtain 
z(t) = u'(i) almost everywhere in <0, ir>. The proof of the second part of this theorem 
is similar to the first one. 

3.4. Remark. Let us remark that many other interesting properties can be proved 
for the weak solution of the boundary value problem (3.4). Let us mention for 
instance that if the function u is a weak solution of the boundary value problem (3.4) 
and / 5= 0 then u and its derivative u' have only a finite number of zeros in <0, rc>. 
For the proof see [7], Appendix V. 

3.5. Theorem. Let |ju, v] = [A + a, X + jS], where |a| 4- |j?| < c2(X, X)js (for 
c2(X, X) and s see Section 2). Then the boundary value problem (3.4) has at least 
one weak solution u e Vfor an arbitrary right hand sidef e Lt(0, K). Iff e C(<0, n}) 
then the boundary value problem (3.4) has at least one classical solution in the 
sense of 3.3. 

3.6. Theorem. Let [#, v] e Ax and let g(t, z) be a real function defined on <0, rc> x 
x R1. Let the function g(t, z) satisfy Caratheodory's conditions and, moreover, 
let there exist a function r(t)e Lq(0, K) SO that 

l ^ z ^ K O + ^ ^ v ) ^ - 1 

holds for each z eR1 and for almost all t e (0, K) (q -= pj(p — 1)). 
Then the boundary value problem 

(3.9) (Ju, v)x - n(Su+
9 v)x + v(S«~, V)X + (Gu, v)x = (F, v)x 

has at least one weak solution for an arbitrary right hand side fe L^O, 7c). / / we 
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suppose g(t, z) e C(<0, rc> x R1) and fe C(<0, rc>), t/ie boundary value problem 
(3.9) ftas at /easf one classical solution in the sense of 3.3. 

3.7. Remark. The last expression on the left hand side of (3.9) is defined as follows: 

(Gu, v)x = J g(t, u(t)) v(t) dt, u,veX. 

To prove Theorems 3.5 and 3.6 means nothing else than to verify the assumptions 
from Section 2. 

3.8. Remark. Similar theorems about the existence of weak solutions of the 
boundary value problem (3.4) or (3.9), may be formulated for the nonlinear Sturm-
Liouville equation of the fourth order (for operators J and S see for instance [7], 
Appendix V). 

Let k be a positive integer, Q czTlN a bounded domain (N ^ 1) with a lipschitzian 
boundary dQ if N > 1. Let atj e Lt(Q), ais = aJt (i and j are multiindices). Suppose 
there exists a constant y > 0 such that 

(3.10) x ^ ) W ^ ^ ; 
1*1 = 111=* 1*1=* 

for all ^eR 1 , \i\ = k, and almost all t eQ. Put X = Wj'2(fi), Y = X*, Z = 
== L2(Q), C = {fe L2(Q); f(t) ^ 0 for almost all t e Q}. For c e Ljp) define the 
operators J and S: 

(3.11) (Ju, v)x - £ f a0<t) D* ti(f) D' u(0 dt 

and 

(3.12) (Sz,t;)x= f c(r)z(r)K0dr, 

for all u e X, v e X*, zeZ. 

3.9. Definition. Let/eZ.2(.G) and let g(t, z) be acting from Q x R1 into R1 and 
satisfy Caratheodory's conditions. Suppose there exists such a function r(t) e L2(Q) 
and a constant c2 > 0 that 

|ff(r, z)\ < r(t) + c2\z\ 

holds for each z e R1 and almost all f e 0. The function M G TVo ,2((2) is said to be the 
weak solution of the Dirichlet problem 

(3.13) £ (-iyDiaiJ(t)D
iu(t))-nc(t)u+(t) + vc(t)u-(t) + 

| i | = | . / |=* 

+ g(t,u(t))=f(t), teQ, 

u(t) = 0, t e 5Q 
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if the identity 

(3.14) - (Ju9 v)x - n(Su+
9 v)x + v(Su~9 v)x + (Gu9 v)x = (F, *)x 

holds for all v e W0
,2(Q) (the operators G and F are the same as in the special case 

• Q « ( ( > . * ) ) -

3.10. Lemma. The operators J and S satisfy the conditions (J l ) — (J 3) and 
(S 1)—(S 3), respectively, from Section 2. 

For the proof we use the same arguments as in 3.2. 
Denote by a(S(J~1)) the spectrum of the completely continuous operator S(J~x). 

3.11. Theorem. Let the couple of parameters \x and v satisfy \ji9 v] = [A -F a, 
A 4- J8], where ot, /?, A are real numbers such that 

|a| + |jS| < Idist(A, o(S(J"1))), 
s 

Tften ffte Dirichlet problem (3.13) (wftft # = 0) ftas a* least one weak solution for 
every f e L2(Q). 

Proof. The space Fis a Hilbert space and that is why 

c2(X,X) = inf \\Ju - XSu\\Y = inf \\Ju - XS^-^Ju))^ ^ 
IMIx-- IMIx-1 

£ dist (A, ^ ( J " 1 ) ) ) inf || Jii||r £ y dist (A, ^ ( J " 1 ) ) ) 
ll«llx-* 

(see e.g. [10]). Now it is sufficient to apply the assertions from Section 2. 

4. Nonlinear Sturm-Liouville equation of the second order with constant coefficients. 
This section deals with the solvability of the homogeneous Dricihlet problem for the 
Sturm-Liouville equation of the second order with constant coefficients. The results 
from Sections 2 and 3 are used in the proofs of the assertions of this part and the 
the sets Ai9 i «. —1, 0, 1, 2, 3 are investigated. 

We are concerned first with the initial value problem 

(4.i) - ( K 0 l ' - a *'(0)' - /*|«+(0I'"2 w+(0 + v|u-(0|'-2 «-(0 - AO > 
u(t0) -= at, u'(t0) = «2 . t e R1 

where al9 a2, t0 are real numbers and feL1$loc(R
1) (the space of locally Lebesgue 

integrable functions on a real line R1). 

4.1. Definition. Let u be a real function of the real variable, suppose u' to be con
tinuous and \u'\pmm2 u' absolutely continuous on each compact interval in R1. If 
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the function u fulfils the initial conditions in (4.1) and the equation (4.1) holds 
almost everywhere in R1 then u is called a solution of the initial value problem 
(4.1). 

4.2. Remark. If fe C(l) for an interval J c R1 then |M'|P~2 U' e Cl(I) and the 
equation (4.1) holds for each t el (see 3.3). 

4.3. Remark. Suppose that \i > 0 and v > 0. It is possible to prove that the con
dition fe LucjR1) guarantees the existence of a solution of the initial value problem 
(4.1) and the solution is determined uniquely. The method of the proof of these 
assertions is similar to that used in the theory of ordinary differential equations of 
the type / = f(x, y) (see e.g. [2]). 

Elementary properties of the equation 

(4.2) - (M'~ 2 O' - /*KIP~2"+ + v|u-|*-2 i|- = k 

where k is a constant, yield the following assertions. 
If the function u satisfies (4.2) and the initial conditions 

ii(0) = 0 , w'(0) = a2 > 0 
then 

(4.3) t0 = inf{* > 0 ; u'(t) = 0} 

is a finite number and 

u+(t0 + t) = u+(t0 - t) 

for all t e <0, *0>. 
If a2 < 0, it is possible to prove that t0 defined by (4.3) is a finite number and 

M~('O + 0 = u"(to ~ 0 

holds for each t e <0, f0>. 
If the function u is a solution of (4.2) with k = 0 and 

i*(0) = 0, w'(0) = a2 * 0 

then u is a periodic function with the period ((At/ju)1^ - (ktjv)1/p) n where kt is the 
least eigenvalue of the boundary value problem 

(4.4) - f l u f ~2 uj - X\u\p-2 u = 0 , 

u(0) = u(n) = 0. 

These assertions based only on the elementary properties of the equation (4.2) 
enable us to prove the following theorem. 
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44. Theorem. All eigenvalues of the boundary value problem (4.4) form a se
quence 0 < Xx < X2 < X$ < ... < Xn < ... with 

lim Xn = -f- oo . 
n-*ao 

To the least eigenvalue Xx there corresponds one and only one eigenfunction u 
(we suppose that v'(0) = 1 for each eigenfunction v) Moreover, u(t) > 0 for alt 
t e (0, n). If Xn(n ^ 2) is an eigenvalue of (4.4) and vn is the corresponding eigen
function then there exists t0 e (0, n) such that v„(t0) = 0. To each Xn there cor
responds one and only one eigenfunction vn. 

Proof. Let X e R1 be an eigenvalue of (4.4) and let v be the corresponding eigen
function. Assume v(t) > 0 in some ri^ht reduced neighbourhood of zero P+(0). 
For X < 0 we obtain from the equation (4.4) that 

{fe(0,7t>; v(t)~0} - 0 . 

For X = 0 we obtain v s 0 in <0, n}. This yields the inequality X > 0 for each eigen
value of the problem (4.4). Denote Xx = inf {X > 0; X is an eigenvalue of (4.4)}. Using 
Remark 4.3 it is possible to prove that the set of eigenvalues of the problem (4.4) 
is nonempty. Assume that Xx > 0. There exists a sequence of eigenvalues {xm}*=1, 
a sequence of the corresponding eigenfunctions {wm}*=1 and a sequence of real 
numbers {tm}m=x so that limtm = Xx and ||*mwm||x = 1, m = 1, 2, . . . There exists 

m~><x> 

a subsequence {tmjwmk}^x and w0eX such that tmkwmk -
x w0 (i.e. {tmiwmk}^x 

converges weakly to w0 in the space X). The operator S is strongly continuous and 
so S(tmkwmk) ->

x* Sw0 and xmk S(tmkwmk) -*** XxSw0. Thus we have J(tmkwkk) -+x* 
-+x* XxSw0. In virtue of the continuity of the operator J""1, it is tmtwmk -»

x w0 and so 

Jw0 — XxSw0 = 0. 

It is proved that Xx is an eigenvalue. For Xx = 0 it is J(tmkwmk) -*** Ox and so 
tmjwmk -*

x Ox which is a contradiction with |fmiwmJx = 1. So we have Xx > 0. 
Let ux be the eigenfunction corresponding to Xx. Suppose there exists such te 

€ (0, n) that u(t) = 0. Choose t0 e (0, n) so that t0 = min {t e (0, TC); u(t) = 0} (this 
step is senseful according to 3.4). Define 

«o-..£.).. t e <0, TC> . 
\n / 

Then 

-(|в;|*-a ð-y -- (^Y л,(|fi|*-2 в) - o, 

ő(0) «ð(я) * 0 

which is a contradiction with the fact that Xx te the least eigenvalue. We have proved 
that no eigenfunction corresponding to Xx tchauges its sign; ^ r ,; , , 
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Directly from the equation (4.4) it is possible to prove that to each eigenvalue A 
there corresponds one and only one eigenfunction v. Denote Xk = kpXl9 k ^ 2, k an 
integer. Define a function vk in this way: 

vk:tt-> 
±«,.(fcí), í 6 ( 2 ^ ' ( 2 / + 1 ) ^ ) ' 

- i uXi(kt), te <0, n> N (li í , (2/ + 1) 5) 

where / = 1, 2,. . . , \k if fc is even, / = 1, 2,. . . , [£fc] -f 1 if fc is an odd number; 
the symbol [t] denotes the integer part of the real number t and uXl is an eigenfunction 
corresponding to the least eigenvalue Xv In this way we obtain eigenfunctions vk 

which correspond to the eigenvalues Ak for all fc ^ 2. On the other hand, if v is an 
eigenfunction corresponding to Ak for some fc ^ 2 then according to 4.3 we have 
v = vk in <0, TC>. Finally, if A 4= Ax is an eigenvalue of (4.4) and v is the corresponding 
eigenfunction then there exists t e (0, n) such that v{t) = 0. Put t0 = inf {t e (0, rc>; 
v(t) = 0}. According to 4.3 it is 

v{t)=^uQ-tY fe<0,fo>. 

Similarly, if tx = inf {t e(f0, rc>; KO = °} t h e n 

K0= - ^ - ^ u ( — — ( ' - ^ V '6<*0,*i>- ' 
7U \fi - f0 / 

This fact implies the existence of fc ^ 2 such that A = kpXt = A*. -
Let us redall that in Section 3 we have defined the weak solution of the boundary 

value problem ! 

(4.5) - (M P "V) ' -v\u + \'+2u+ + y|iT|*-2tr = / , 

u(0) = w(rc) = 0. 

4.5, Theorem. Boundary value problem (4.5) wiffe / = 0 has a nontrivial weak 
solution if and only if one of the following conditions holds: 

(i) 11 = Ax, v arbitrary;' 

(ii) /1 arbitrary, v -= A^ 

(iii) /i > Ax, v'!> Ai " " 'v* 

W l ( / i ' ) " ( ( ^ + ( v n ( A i )
1 " 6 N ' 
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w 

w/iere N denotes the set of all positive integers. 

Proof. Let M be a nontrivial weak solution of (4.5). Then u e C1«0, rc>) according 
to 3.3 and according to 3.4 the function u has only a finite number of zeros in <0, rc>. 
If the function u has no zero in (0, n) then according to 4.3 we obtain (i) or (ii). 
In the opposite čase it is possible to divide the interval <0, n} into a finite number 
of subintervals so that on each of them it is either u(t) ^ 0 or u(t) ^ 0. In accordance 
with 4.3 it is 

40 = *!«*. ((£)'''('-«)V í 6 ( a ' a + ( ^ f " 
if u(í) > 0 on (a, a + (A1/n)1/p n); 

«(í) = -X2«Al ( ( 0 * (t - /?)) , (6 (p, fi + (^J" *) 

if u(t) < 0 on (/?, p + (Ajv)17* n), where JK̂  > 0, K2 > 0 are suitable constants 
such that u e C\(0, it>) and uXl is an eigenfunction corresponding to the least eigen-
value Xv If u e= Cj«0,7C» (i.e. u e C^O, w» and u(0) = 0, u(n) = 0) then the con-
dition (iii) is necessarily fulfilled. On the other hand, if one of the conditions (i), (ii) 
or (iii) is fulfilled then in the samé way as in the first part of the proof it is possible 
to construct a nontrivial weak solution of (4.5) with/ = 0 . 

From Section 2 and from the previous theorem we obtain the existence result for 
weak solutions of (4.5). The reader is invited to see the figuře in 4.10. 

4.6, Theorem. Let the parameters fi and vfulfil one of the conditions 
(i) n < Xl9 v < Xt; 

(ii) fi > Xu v > Al5 

{W + W i W ' (W1/' + (V)1/P)(A1)1/P ' 

k e N, k ^ 2. 77i€n ífte boundary value problém (4.5) /tas ař /easí one weafc solution 
for an arbitrary right hand sidefeL^O, n). 
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4.7. Theorem. Let the assumptions of (4.6) befulfilled. Moreover, let g : <0,7t> x 
x R1 -» R1 satisfy the conditions from 3.6. Then the boundary value problém 

- ( K o r a «'(0)' - /»i«+wra "+(o + *i«"«i'-a «•« + «o. «w) - AO .. 
u(O) = u(7t) = O 

has aí least one weak solution. 
Denote by $l?iv) and <ř(JY} (if there is no danger of misunderstanding, we write &+j 

and 4>_t only) the solutions of the initial value problém 

(4.6) - ( K o i p - 2 «'(*))' - Mi«+(oi'"a M+(O + * k ( o r 2 «ww = o, 
u(0) = O , u'(0) = 1 and w(0) = 0 , u'(0) = - 1 , 

respectively. Using the elementary properties of the solution of (4.6) we can pro ve that 

{[>, vjeR1 ; n g 0, v > Aj u {Jji, v] eR; \I > A1? v £ 0} <= A2 . 
Theorem 4.6 implies that [/i, v] is an element of a component of A0 which does not 
contain the point [A, A] for any A e R1 if and only if 

(4.7) <*>{-f iv}(*) . * ! f i f } («) > 0 . 

In the sequel we shall prove that in the čase (4.7) there exists no weak solution of 
(4.5) for a certain right hand side/e Lt(0, TI). 

4.8. Lemma. Suppose there exists such a t0e (0, n) that 

*± i(0 > ° > *± i(0 < ° for a11 ř e <řo> « > . 
Then there exists a right hand side f e 1^(0, n) such that the boundary value 
problém (4.5) has no weak solution. 

Proof. Let / : R1 -> R1 be such a function that fe L^R1), /(ř) = 0 for all t e 
e ( - oo, ř0> u (TT, + oo) and f(t) < 0 for t e (ř0, ÍC>. We háve / e Lt (0, it). Let $a be 
the weak solution of the boundary value problém (4.5) with the right hand side / 
and suppose #a(0) = 0, $j(Q) — a- For a > 0 according to 4.3 it is 

9Jtt) = **+i(t), íe<0,řo>. 

Put tt = inf {te(t0, n}; #a(í) = 0}. The interval (ř0, tt) contains a point tt with 
the property 

(4.8) (^)'(tl)<S. 
In the opposite čase 

f ^ f ^ = «>o, te(r0-,(l) 
#+i (*) #+i( 'o) 
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which is impossible. From (4.8) we obtain 

(4.9) / ( * ; * + i - * « * ' + i ) ( t i ) < 0 

which is the same as ""(T.) < 0, where 

F:t^(|4>;|'-2<j»;($+1r i-Kr ii$'+1r24>'+1)(T), 

for the function z -» \z\p~2 z is increasing on R1. It is possible to prove the existence 
of a set s4 c (t0i TX) with meas si > 0 such that the following conditions are 
fulfilled: 

(o m < 0, 
00. *(') < °> 

(iii) F'(t) < 0 
for all t € sf-

Really, if $'a(t) < 0 for all t e (t0, Tt) then (ii) and (iii) are fulfilled because F(t0) = 
» 0, F(tt) < 0 and F is absolutely continuous on (t0, Tt). In the opposite case denote 
x2 = sup {t < tj; ^(t) a 0}. It is T2 < tt (see 3.4) and according to (4.9) we have 
*J(Ti) < °- W e conclude <P'a(t) < 0, f e ^ , ^ ) . Since F(T2) > 0, F(TX) < 0, the 
conditions (i)—(iii) aree fulfilled. We have 

(4.10) F'(t) = Fx(t) + F2(r) < 0 for all / ^ , 

where 

*.(o = t(i*«ra *«x (*+i)
p"1 - (*-r - (K+ir- *'+i)'] (o. 

**(0 = [(|*:r2*:)(*+V)' - (•r1y(l*+ira*+i)](0 = 
= (- -1) *:*'+1[|*:r2 *p

+"i2 - * r 2 | * ' + i r 2](0 • 
The condition (ii) implies fl*;!*-2 *~.~2 - «J~2j*'+i|*~"a)(*) > 0 f o r a11 fe-~f> 
So we have 

(4.11) F2(t) > 0, t e ^ . 

From the relations (4.10), (4.11) we conclude 

(4.12) Ft(t) < 0, test. 

On the other hand, the equation (4.6) implies 

fi(0=-/(0*(*+ir l(0>0. teJ, 
where jf c j4, measj?> 0. This fact contradicts (4.12). For a = 0 we have 
$0(t) = 0 for all t e <0, f0>. Denoting 

tt = inf{te(f0,Jt); <P0(t) = 0} , 

180 



we obtain the existence of z0 e (f0, tt) such that 4>0(z0) = 0. Suppose that z0 is 
chosen as follows: 

z0 ~ sup {z e (r0, tt); <f>0(z) = 0 } . 

There exists a point r1e(z09tl) such that the conditions (i)-(iii) are fulfilled 
but we write #0 instead of #a, a > 0. The rest of the proof is similar to that for a > 0. 
For a < 0 it is 

*.(0H«|»-i(0. '6<°>'o> 
and the proof is quite analogous to that for a > 0. It means that for the right hand 
side / defined above there exists no weak solution of the boundary value problem 
(4.5). 

The other cases can be proved by modifying the proof of Lemma 4.8. Thus we 
obtain the following theorem. 

4.9. Theorem. If the condition (4.7) is fulfilled then there exists a right hand side 
feL^O, K) such that the boundary value problem (4.5) has no weak solution. 

4.10. Remark. Theorems 4.5, 4.6 and 4.9 give us the classification of parameters 
\ji9 v] in the sense of Section 2. 
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4.11. Remark. The proofs of the previous assertions imply the existence of a right 
hand side / e 1^(0, n) (i.e. the space of almost everywhere bounded functions) such 
that the boundary value problem (4.5) has no weak solution. The abstract part of 
this paper implies the existence of a function fe C°°(<0, TI;>) the support of which is 
situated "near the point 7t", with the same property. 

It is possible to state some sufficient conditions on the right hand side / in order 
that the boundary value problem (4.5) may have a weak solution. Consider the initial 
value problem 

(4.13) - ( M * " 2 O ' - »\U + \P~2 u+ + V\U~\P~2 u~ = *f 
M(0) = 0 , M ' ( 0 ) = 1 , 

where/ e L^R1). Let ue be a solution of this initial value problem. For \i > 0, v > 0, 
the function u is determined uniquely. 

4.12. Theorem. Let e0 be a real number. Then 

(4.14) lim ||w« - wJc«o,n» = 0 . 
e->eo 

Proof. Fix 8 > 0 so that 0 £ P*(e0) and consider e e Pd(e0) only. Denote 

Q(z,t,e)= -ti\z+\p'2z+ +v\z-\*-2z- -ef(t), M G R 1 ; 

4 ( T ) - = | T | ' - 2 T , x e R 1 . 

It is possible to rewrite (4.13) into an equivalent form 

(4.i3)' [«'0), «/(<)] = [ . r 'MO) , e(«(0- ' . *)] 
[«(0),t<0)] = [<U]. 

It is possible to show that the vector function J[q~1(z2), 6(z1, t, e)] satisfies the 
assumptions stated in [2], Theorem 4.2, Chapter 2. This fact implies (4.14). 

The idea of the sufficient conditions upon the right hand sides / is based on the 
following theorem. 

4.13. Theorem. Let \ji9 v] e A2, i.e. 

#+ifc) > 0 , #-i(*) > 0 or #+1(fl) < 0, *-t(n) < 0 . 

/ / there exists a solution ua of the initial value problem 

-(\u'\p~2 u')' - fi\u+\p~2u+ +v\u-\p~2u- = / , 

u(0) == 0 , u'(0) = a 

such that ua(n) <; 0 or ua(n) ^ 0, respectively, then for the right hand side fe 
eLi(0, n) in question there exists a weak solution of the boundary value problem 
(4.5). 
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Proof of this theorem is based on Theorem 4.12. 
Let us mention for the illustration that if $+1(n) < 0 and ^-^TC) < 0 and if the 

function / e i ^ R 1 ) is such that f(t) = 0 for 16(-co, f0>, /(f) < 0 for t e(f0, TC) 
and f(t) = 0 for t e <7i, + oo), where t0 is an arbitrary point of the interval 
(TC — i7r(A1//i)

1/j>, it), then there exists a weak solution of the boundary value problem 
(4.5). To prove this assertion it is sufficient to apply Theorem 4.13 and a slightly 
modified proof of Lemma 4.8. 

4.14. Remark. It is interesting to see that if 

*!f iv}(7c) . <P{Hiv\n) < 0 

then applying Theorem 4.12 we can prove that there exists a weak solution of the 
boundary value problem (4.5) for any admissible right hand side. However, the same 
result was proved using the abstract part of this paper in Theorem 4.6, based on the 
Leray-Schauder degree. 
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