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časopis pro pěstování matematiky, roč. 105 (1980), Praha 

Z^-NORM OF ITERATES AND THE SPECTRAL 
RÁDIUS OF MATRICES 

ZDENĚK DOSTÁL, Ostrava 

(Received October 18, 1977) 

Let B be a finite dimensional Banach space. Let L(B) denote the algebra of all 
linear operators on B and let the operator norm and the spectral radius of A e L(B) 
be denoted by |A.| and \A\9, respectively. 

If Ae Ufi) and |A | = 1, then the spectral radius formula suggests the conjecture 
that for some natural number m, nontrivial bounds for |^4m| in terms of \A\a and vice 
versa may be given. 

The first positive result of the kind was presented by V. PTAK and J. MARIK [1], 
who have computed the critical exponent of the J^-space. If we denote the complex 
n-dimensional vector space by Bnoo, the norm l*^ of the vector x = (xlf..., xn) 
being defined by the formula 

|*| • = max N ' 
i = l , . ..,n 

then their theorem says that the spectral radius of A e L(Bnoo), l A ^ = | 4 n 2 ~ n + 1 | 0 0 = 
= 1, is equal to one. 

Later, V. Ptak [2] introduced for 0 < r < 1 the quantity 
C(B, r, m) = sup {\Am\ : A e L(B), \A\ = 1, \A\. = r} 

and found, for an n-dimensional Hilbert space Hn, a certain operator A e L(Hn) 
such that |Al| = 1, \A\a = r and \An\ = C(Hn, r, n). Recently, the present author [3] 
has proved that this extremal operator is unique up to multiplication by a complex 
unit and similarity by a unitary mapping. For further references see [2]. 

The purpose of this note was originally to find the extremal operators in L(Bna0). 
We have not succeeded in general, nevertheless, we have found for each r, 0 = r g 
^ 2 1 / B - 1, an operator AeL(B„t00) such that \A\n = 1, \A\a = r and lA"1^ = 
= C(Bnoo, r, m) for all natural m. 

Let n be a fixed natural number and let Mn denote thealgebra of all n x n complex 
valued matrices. 

Regarding a matrix A == (au) as an operator on Bno0, we can write 
n 

Uloc = m a x £ k 7 | -
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Let OLU ..., a„ be given complex numbers. Consider the recursive relation 

(1) Xk + n = 0CxXk + . . . + QtnXk + n^1 . 

For each i, 1 = i = n, we denote by w^a-.,..., a„) the solution (wi0, wa, wi2,...) 
of this relation with initial conditions 

(2) % wtt(alf ..., a,) = 5lfik+1 , 0 :_ fc ^ n - 1 . 

In the following lemma we shall learn the meaning of wik: 

Lemma 1. Let Ae Mn and 

(3) An = (xtE + a2A + ... + artA""- . 

Then for all fc = 0, 

(4) Ak = wlk£ + w2kA + ... + wnkA
n~l . 

Proof. The statement is obvious for fc rg n. To prove the lemma for fc > n by 
induction, suppose that s > n and that (4) holds for fc = 0, 1,..., s — 1. Put q = 
= s — n. If we multiply (3) by Aq and use the induction hypothesis, we successively 
get 

A* = S M 1 * 1 " 1 = I a i E ^ + i - i - 4 - " 1 = 
i = i i = i j = i 

- t ( t «.">..•.-iM'~1=t";.-4'~1. 
7 = 1 i = l 1=1 

Let us denote now the companion matrix of the equation 

(5) 

by r(a!, ...,a„), that is 

â  + <x2x + ... + aяx
] и - l 

" 0 1 0 . .. 0 
0 0 1 . .. 0 

0 0 0 . .. 1 
a. a2 a3 . .. a, 

г = 

and observe that (5) is the characteristic equation of T. Thus by Cayley-Hamilton's 
theorem T satisfies the assumptions of Lemma 1 and we can write for each fc = 
= 0,1,2,... 

(6) r ' = wlk£ + w 2 ^ + . . . + w,,kr''--. 

This equation enables us to solve the special maximum problem: 
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Lemma 2. Let A e M„, \A\X ^ 1. If the characteristic equation (5) of the matrix A 
fulfils 

(7) ' i i « . i _ - , 
i = 1 

l/ie/. for all k ^ 0, 

i = 1 

Proof. We may apply Lemma 1 to get 

\A% = i i w^-% <i i |Wft| \A*-% ti i |Wtt| 
i = 1 i = 1 i = 1 

for each A under the assumptions. Note that, in particular, T satisfies the assumptions. 
The first row of T* being (wlk, w2k,..., wnk) (see (6)), we get 

l-l- - i Kl • 
i = 1 

Now we shall denote, for 1 _ i <_ n, by __,- the polynomial 

(8) Ei(xl9...9xn)= £ * ? * ? . . . x * -
e / e { 0 , l } 

ei + . . . + t ? „ = i 

For any complex numbers Q19 ..., Q„ and i = 1, 2, ..., n, we put 

a & i . •••><?!.) = ( - l ) n ~ i £ n - i + i f e i , - . . ^ n ) , 

so that the roots of the equation (5) with coefficients <xt = a^gj, ..., on) are exactly 
£i> ••^en-

Let us compute an upper bound for such r's that |of| _ r implies 

(9) iKci."-.ff-)|-l-

Lemma 3. Let g_, ...,(9- fee anĵ  complex numbers. If \Q(\ __ 21/n — 1 for all 
i = l , . . . , n, then the inequality (9) holds true. 

Proof. Let 0 < r < 1 and note that 

a j(r>r>...>r) = ( - i r ' ( n _ ^ + 1 ) r » - < + \ 

i = 1,..., n. If |gj| __ r holds for all i = 1, ..., n, then |a,(e_, ..., 0-)| = |a,(r, r, ... 
..., r)|. Thus the supremum r0 of the set of all r's we are interested in is the only 
positive root of the equation 

-„(.)—• 
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Easy computation shows that r0 = 21/n — 1. 
To compute C(Bnoo, r, k) for r ^ 21/n - 1 and given k, it is enough to find 

n 
max "" !*,*(-!, . . . ,0n) | . 

I H - i ' I(?r,|=.ri-1 

The fact that the maximum is attained for all natural k if Qt = r is an easy con­
sequence of the following lemma, which was proved by V. KNICHAL ([2], Lemma 7). 

Lemma 4. For each i = 1, 2, ..., n and each k _ n, 

Wffcfel, •••> G.) = £i2ifc(ei> •••> &.) -

where et = (—l)" -1 and 

Gttfei. •••,&,) = Z c»(*i> • • •> *«) Si' • • • QT > 
e j £ 0 

ci + ... + t?n = fc-i+l 

where a// ef^ei, ..., e„) _ 0. 
The point of the lemma is that for k ^ n and i fixed, all the coefficients of wik 

are of the same sign. Thus if \Qt\ ^ r for i = 1, ..., n, then * 

W o i , ..., 0„)| = |Qifc(.2i, . . . , Qn)\ _ 

_|Q i*0% •••, 01 = | w *( r > •••> 0 | > i = 1, ..., n . 

We can sum up our results into the following theorem: 

Theorem 1. Let 0 < r = 21/n - 1, Ze* 

•.-<- ' ř- , („- . + ,)'"m 

/0r i = 1, ..., n and /eí 

0 1 0 .. 0 " 
0 0 1 .. 0 

0 0 0 . . 1 

<*1 <*2 a 3 • • <*«_ 

г = 

Then IT^ = 1, |T| f f = r and for each natural k, 

| T * | « . - e l N s - C ( B . , _ , r , k ) , 

where wlJk are /he solutions of the recurrent relation 

Xs + n = a l * s + a 2 * s + l + ••• + a n*s + n- l 

wifh initial conditions w{j = <5 fj+1, i = 1, ..., n, J = 0, 1, ..., n — 1. 
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We close the paper by two simple corollaries of Theorem 1. 

Corollary 1. Let 0 =: r < 1. Then C(Bno0, r, n) = min {1/(1 + r)n - 1}. 

Proof. Note that win = 0Lt for i = 1,..., n and apply Theorem 1. 

Corollary 2. Let 0 < s = 1. / / A e L(BM>00), lA^ ^ 1 and \An\^ = s, then \A\9 = 

£ (1 + s)1/n - 1. 

Proof. If [A], = r < (1 + s)1/w - 1, then 

\A% £ C(BW)00, r, n) = (1 + r)« - 1 < s . 

This study was suggested by V. Ptak, to whom I wish to express here my thanks. 
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