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Časopis pro pěstování matematiky, roč. 105 (1980), Praha 

CONSTRUCTING THE MINIMAL DIFFERENTIAL RELATION 
WITH PRESCRIBED SOLUTIONS 

Jifei JARNIK, Praha 

(Received May 16, 1978) 

Let RH be the n-dimensional Euclidean space, Xn the system of its nonempty 
compact convex subsets, Xn = Xn u {0}. 

Let us denote by B(x, r), B(x, r) respectively the open and the closed ball in RH 

with a centre x and a radius r. 
Given M c Rn, then Q(M, e) is the e-neighbourhood of the set M, Q(M, e) the 

closure of the neighbourhood. The symbol conv M stands for the closed convex 
hull of a set M c Rn, m(A) is the (one-dimensional) Lebesgue measure of a set A cR. 
If J is an interval, M c Rn, then the upper semicontinuity of a mapping F : J x 
x M -* Jf „ or F : J x M -* Jf ° is defined in the usual way. 

Our aim is to prove the following theorem. 

Theorem. Let a < p. Let E denote a set of functions x : Jx-+ Rn with the following 
properties: 

(i) for each xeS, Jx is a closed subinterval of J = [a, /?]; 

(ii) x is absolutely continuous; 

(iii) there exists a function £ : [a, /?] -» R+ = [0, +oo) w/f/i Jf £(*)d ' -S 1 such 

that \x(t)\ <; £(t) holds for almost all t e Jx; 

(iv) to each xeS there is xx e Jx such that |x(fx)| g 1. 

Then there exists a mapping Q : H - • Xn, where H = [a, ft] x B(0, 2), swcft 
that Q(t, •) is upper semicontinuous for almost all t e [a, /?], eac/i x e S is a solution 
of the relation 

(1) x e Q(t, x) 

and Q is minimal in the following sense: ifS:H-+ Xn, S(t, •) is upper semi-
continuous for almost all t e [a, />] and each xeS is a solution (on Jx) of the rela
tion 

* € S(t, X) , 
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then 
Q(t9 x) c S(t, x) 

for almost all t e [a, JS] and all x e 5(0, 2). 

Remarks. 1. Let us notice that the minimality property of Q guarantees its 
uniqueness. 

2. In addition to the upper semicontinuity of g, it will be clear from the proof 
that Q(t, x) c 5(0, £(t)) (cf. condition (iii) of Theorem). Hence Q satisfies as
sumptions for the existence of solutions of (1). 

3. According to [1, Definition 1.4], a mapping F : H -+ Jf ° belongs to the class 
S?@*(H -» Jf°) if it satisfies the condition: to every e > 0 there is a measurable 
set At c R such that m(R — Ae) < e and the function F\Hn(AeXRn) is upper semi-
continuous; mappings from Sf2*(H -» Jf °) may be called Scorza-Dragonian 
mappings as Scorza-Dragoni introduced the corresponding class of functions 
f:H-*R. 

The main result [1, Theorem 1.5] applied to the mapping Q:H -+ jf^ with the 
properties specified in Theorem yields that there exists a Scorza-Dragonian mapping 
6 0 : H -• #°n which fulfils Q0(t, x) c Q(t, x) for almost all t e [a, jS] and all x e 
€ 5(0, 2), and each u e 3 is a solution of the relation 

x e Q0(t, x) . 

Hence necessarily Q == Q0, i.e. Q is Scorza-Dragonian. 

Proof of Theorem. If x, y are two functions satisfying conditions (i) —(iv), 
let us introduce the distance #(x, y) in the following way: 

Denote by Jx = [ax, fcj, Jy = [ay, by\ the definition intervals of x, j , respectively, 
and set 

*(') = 
' X > x(ř) for t e Jx 

x(ax) for a ^ t < ax, 
x(bx) for bx< t £ p; 

then x : J —> R". Introducing y : J -* R" analogously, we define 

Q(X, y) = max \x(i) - y(t)\ + \ax - ay\ + \bx - by\ . 
teJ 

It is easily verified that this formula defines a metric on the set of functions satisfying 
(i)—(iv). We shall show that the set 3 has an at most countable dense (with respect 
to Q) subset. Indeed, set 

F = {x : J -• jRn | x satisfies (ii)," (iii), (iv)} . 

The set S with the above defined metric Q is naturally imbedded into the Cartesian 
product r x J x J. As F is separable in virtue of (ii)—(iv), we conclude that 3 is 
separable as well. 
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Consequently, there is an at most countable dense subset of S, say 

V= {vl9v2,...} c 3. 
Let us denote 

A{ = {t e Jv. | Vi(t) does not exist} , i = 1, 2,..., 

A = J - U Ai. 
i = i 

Then m(A) — /? — a. 
Let us define functions & : [a, p] x B(0, 2) -» Jf°, i = 1, 2, ... by 

(2) Qit x) = M - f° r ^ [ « « f l - ^ 
U l ' ^ ( c o n v l ^ l ^ e ^ r 1 ) } for re j l 
and put «, 

Q(', *) = 0 Qt(t, x). 
» = i 

We shall prove that the mapping Q has the properties from Theorem. First, let us 
introduce an auxiliary result. 

Lemma. Let Xj : [a, /?] -> Rn satisfy the assumptions (ii), (iii) of Theorem (with x 
replaced by Xj). Let there exist x : [a, j3] -• Rn, 

x(t) = lim Xj(t) 
j - 0 0 

for all t e [a, /?]. 
Then 

CO 

x(t) e H coriv {x/f)» *j+i(0> •••} 
1=i 

/or almost all t e [a, /?]. 
For this lemma, see [2, p. 395, Theorem D 18.3.10] or [3, Lemma 2]. 
Now we shall prove that each ueE satisfies the relation 

(3) u(t)eQ(t,u{t)) 

for almost all teJu. / 
Indeed, since Vis a set dense in S, there exists a sequence Wj = vkjeVJ = 1,2,..., 

such that 

(4) u(t) = lim Wj(t) . 
j-*co 

According to Lemma there is a set A c [a, J?], m(A) = /? — a, such that 
00 

1/(0 6 p| conv {w/0> wJ+.(»),...} 
J = I 

for all t e A n J,. 

Given f e ̂  r> yl, there exists for every positive integer i a positive integer j such that 

co^v {wX0> w>+1(0> •••}•= 2.(f, "(0) • 
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(To this aim it is sufficient to choose j large enough to satisfy \wq(t) — u(t)\ ^ i"1 

for all q §; ;.) 
Hence 

u(t) e Qi(t, u(t)) , 1 = 1,2, ... 

for almost all t which implies (3) immediately. 
Further, we shall prove that the mapping Q(t9 •) is upper semicontinuous for almost 

all t e [a, p]. 
Let us first mention an elementary assertion which is an immediate consequence 

of the compactness of the sets Qt(t9 x), i = 1, 2, .... For every e > 0 there is a positive 
integer i(e) such that 

(5) Q& x) c Q(Q(t9 x), e) 

for all i ^ i(e). Indeed, if this were not the case and if Q(t9 x) =t= 0 then we could 
choose rj > 0 and a sequence zt e Q((t, x), |zt- — y\ ^ ?/ > 0 for y e Q(t9 x). However, 
passing to a convergent subsequence if necessary we obtain z0 e Q(f, x) for z0 = 
= lim zi9 a contradiction. On the other hand, if Q(t9 x) = 0 then Qt(t9 x) = 0 for i 
sufficiently large and (5) is obvious. 

Now let (t9 x0) e H and e > 0. Find i(e) so that (5) holds for i ^ i(e) and suppose 
|x - x0| < (21(e))"1, z e Q(t9 x). Then also ze22j(£)(f, x), i.e. for every r\ > 0 there 
exists a convex combination 

with Vj e V so that 

and simultaneously 

hence 

I /WO. I /*; - - . PJ>° 
j-x ; = i 

| - -E^^(0 |< ' / 
1=1 

This means z e Qn$[t9 x0). Now we conclude from (5) that 

Q(t, x) c 62i(e)(t, x) c Ql(i)(r, x0) c ,Q(e(t, x), c) 

provided |x — x0| < 5 = (2i(e))-1 which proves the upper semicontinuity of the 
map Q. 

It remains to prove that Q is minimal in the sense mentioned in the theorem. 
Let us suppose that S has the properties from the theorem, i.e. S : H -• Jf °, S(t9 •) 
is upper semicontinuous for almost all t e [a, /?] and each u e 3 is a solution of the 
relation 
(6) x = S(t, x) . 
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Let e > 0, t e [a, /?]. Then there exists a positive integer i with the following 
property: if y e B(x, i"1) then 

(7) S(t, y) cz Q(S(t, x), a) . 

On the other hand, as the set Vis at most countable and all Vj e Vare solutions of 
(6), there exists a set D c [a, /?] with m(D) = /? — a such that 

(8) vj(t) e S(t, Vj(t)) for t e D n JVj, j = 1,2,.... 

Let x G E(0, i), t e D n A. Then we have in virtue of the definition of Qt (see (2)) 

(9) Q((t, x) = conv {vp(t) \ vp(t) e B(x, r 1 ) } cz conv U S(t, vp(t)) 
p 

where the union is taken over all p such that 

vp(t)eB(x9r
i). 

Consequently, (7) and (9) together imply 
00 

Q(U x) = 0 Qi(U x) c Q(S(t, x), a) . 
i-=i 

The number 8 > 0 has been arbitrary, hence the last inclusion holds for all a > 0. 
This implies immediately Q(t, x) c S(t, x) for all t c D n A, i.e. for almost all 
t e [a, /?] which completes the proof of the theorem. 
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