Časopis pro pěstování matematiky

Ján Jakubík
On linearly ordered subgroups of a lattice ordered group

Časopis pro pěstování matematiky, Vol. 107 (1982), No. 2, 175--179
Persistent URL: http://dml.cz/dmlcz/118119

Terms of use:

© Institute of Mathematics AS CR, 1982
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

ON LINEARLY ORDERED SUBGROUPS OF A LATTICE ORDERED GROUP

JÁn Jakubík, Košice

(Received September 1, 1980)

In this note the following conditions for a lattice ordered group G will be considered:
(a) G is singular.
(b) Each linearly ordered subgroup of G is cyclic.
(c) For each $0<h \in G$ there exists a group which is the largest linearly ordered subgroup of G containing h.

The standard terminology and notation for lattices and lattice ordered groups will be used (cf. [1]).

Conrad and Montgomery [2] proved that if G is archimedean, then (a) implies (b), and they proposed the question whether (a) is implied by (b) for each archimedean lattice ordered group G. The author [3] proved the following result showing that the answer to this question is negative:

Proposition 1. There exists an archimedean lattice ordered group G such that G fulfils (b) and G fails to be singular.

Further, we have
Proposition 2. (Cf. [3].) If G is a complete lattice ordered group and if G fulfils (b), then G is singular.

In Proposition 2 the assumption of completeness cannot be replaced by assuming the σ-completeness (cf. Rotkovič [4]).

In [4] (Lemma 1) it was asserted that if a lattice ordered group G fulfils the condition (b) then G is archimedean. It will be proved below that this assertion does not hold. Also it will be shown that each abelian lattice ordered group fulfilling (b) must be archimedean.
The condition (c) was applied in [4] (proof of Lemma 1). It will be established that each archimedean lattice ordered group fulfils (c), but (c) need not hold for non-
archimedean lattice ordered groups. The class \mathscr{B} of all lattice ordered groups fulfilling the condition (b) is closed with respect to direct products (but \mathscr{B} fails to be closed with respect to homómorphic images).

We need the following examples of lattice ordered groups.
Example 1. Let N_{0} be the set of all integers, $G=N_{0} \times N_{0} \times N_{0}$. For $g_{i}=$ $=\left(x_{i}, y_{i}, z_{i}\right)(i=1,2)$ we put $g_{1} \leqq g_{2}$ if either $z_{1}<z_{2}$, or $z_{1}=z_{2}$ and $x_{1} \leqq x_{2}$, $y_{1} \leqq y_{2}$. The operation + in G is defined componentwise. It is obvious that G is a nonarchimedean abelian lattice ordered group.

Example 2. Let F_{0} be the set of all functions $f: N_{0} \rightarrow N_{0}$ with finite supports. For $f \in F_{0}$ we denote by sf the support of f. In F_{0} we define the operation + and the lattice operations componentwise. If $z \in N_{0}$ and $f \in F_{0}$, then f^{z} denotes the function belonging to F_{0}, such that

$$
f^{z}(i)=f(i-z)
$$

is valid for each $i \in N_{0}$.
Let $H=F_{0} \times N_{0}$. For $h_{i}=\left(f_{i}, z_{i}\right) \in H(i=1,2)$ we put $h_{1} \leqq h_{2}$ if either $z_{1}<$ $<z_{2}$, or $z_{1}=z_{2}$ and $f_{1} \leqq f_{2}$. Further, we set

$$
\left(f_{1}, z_{1}\right)+\left(f_{2}, z_{2}\right)=\left(f_{1}+f_{2}^{z_{1}}, z_{1}+z_{2}\right) .
$$

It is not hard to verify that H is a nonarchimedean lattice ordered group.
Lemma 1. Let $f \in F_{0}, f \neq 0,0 \neq z \in N_{0}$. Then f and f^{z} are incomparable.
The proof is easy.
Lemma 2. Let $h_{1}, h \in H, 0 \neq h_{1}=\left(f_{1}, 0\right), h=(f, z), z \neq 0$. Then the elements h_{1} and $-h+h_{1}+h$ are incomparable.

Proof. We have $-h=\left(-f^{-z},-z\right)$. Hence

$$
\begin{gathered}
-h+h_{1}+h=\left(-f^{-z},-z\right)+\left(f_{1}, 0\right)+(f, z)= \\
=\left(-f^{-z}+f_{1}^{-z},-z\right)+(f, z)=\left(-f^{-z}+f_{1}^{-z}+f^{-z}, 0\right)=\left(f_{1}^{-z}, 0\right) .
\end{gathered}
$$

Now it suffices to apply Lemma 1.
Lemma 3. H fulfils the condition (b).
Proof. Let $H_{1} \neq\{0\}$ be a linearly ordered subgroup of H. Let Z be the set of all integers z^{\prime} with the property that $\left(f^{\prime}, z^{\prime}\right) \in H_{1}$ for some $f^{\prime} \in F_{0}$. We distinguish two cases.
a) $Z \neq\{0\}$. Let z be the least positive integer belonging to Z. Lemma 2 implies that for each $h_{1}=\left(f_{1}, 0\right) \in H_{1}$ we must have $f_{1}=0$. There exists $f \in F_{0}$ with $h=$ $=(f, z) \in H_{1}$. Let $0<h^{\prime}=\left(f^{\prime}, z^{\prime}\right) \in H_{1}$. Hence $z^{\prime}>0$. Let $k, z_{1} \in N_{0}$ with $z^{\prime}=$
$=k z+z_{1}, k \geqq 0,0 \leqq z_{1}<z$. Then $h^{\prime}-k h \in H_{1}$ and there is $f_{2} \in F_{0}$ with $h^{\prime}-$ $-k h=\left(f_{2}, z_{1}\right)$. Thus $z_{1}=0$, implying $f_{2}=0$ and $h^{\prime}=k h$. Therefore H_{1} is cyclic (generated by h).
b) $Z=\{0\}$. Since the positive cone of F_{0} fulfils the descending chain condition, the same is valid for the positive cone of H_{1}. Hence there exists $h_{1}=\left(f_{1}, 0\right)$ in H_{1} such that h_{1} covers the element 0 in H_{1}. Let $0<h=(f, 0) \in H_{1}$. Therefore $f_{1} \leqq f$.

Let $i \in s f_{1}$. From $0<f_{1}(i) \leqq f(i)$ it follows that there are $n_{i}, q_{i} \in N_{0}$ with $n_{i}>0$, $0 \leqq q_{i}<\dot{n_{i}}$ such that $f(i)=n_{i} f_{1}(i)+q_{i}$. Put $g_{i}=f-n_{i} f_{1}$. We have $\left(g_{i}, 0\right) \in H_{1}$ and $g_{i}(i)=q_{i}$. If $q_{i}>0$, then $0<g_{i}$ and $f_{1} \$ g_{i}$, which is a contradiction; hence $q_{i}=0$.

Let $j \in s f_{1}, j \neq i$. Assume that $n_{i}<n_{j}$. Hence

$$
g_{i}(j)=f(j)-n_{i} f_{1}(j)>f(j)-n_{j} f_{1}(j)=0,
$$

implying $g_{i}>0$. Because of $g_{i}(i)=0$ we infer that $f_{1} \nsubseteq g_{i}$, which is a contradiction. Thus there is a positive integer n such that $n_{i}=n$ for each $i \in s f_{1}$.

Now let $k \in s f$. Assume that k does not belong to $s f_{1}$. Put $g=f-n f_{1}$. Then $g \in H_{1}$ and $g(k)=f(k)>0$, hence $g>0$. For each $i \in s f_{1}$ we have $g(i)=0$, thus $f_{1} \nsubseteq g$, a contradiction. Hence $s f=s f_{1}$ and $g=0, f=n f_{1}$.

Corollary 1. There exists a nonarchimedean lattice ordered group fulfilling the condition (b).

Proposition 3. Let G be an abelian lattice ordered group. Assume that G fulfils the condition (b). Then G is archimedean.

Proof. Assume that G fails to be archimedean. Thus there are elements $g, h \in G$ such that $0<n g<h$ is valid for each $0<n \in N_{0}$. Let

$$
H_{1}=\left\{n_{1} g+n_{2} j: n_{1}, n_{2} \in N_{0}\right\} .
$$

Then H_{1} is a linearly ordered subgroup of G and H_{1} is not cyclic; this is a contradiction.

Let G_{0} be an archimedean lattice ordered group, $0<f \in G, 0<g \in G$. Let $0<\alpha$ be a real number. Suppose that, whenever $n_{1}, m_{1}, n_{2}, m_{2}$ are positive integers with

$$
n_{1} m_{1}^{-1}<\alpha<n_{2} m_{2}^{-1}
$$

then $n_{1} f<m_{1} g$ and $n_{2} f>m_{2} g$. Under these assumptions we write $\alpha f=g$.
Lemma 4. (Cf. [4].) Let H be a linearly ordered subgroup of an archimedean lattice ordered group G_{0}. Let $0<f \in H, 0<g \in H$. Then there is a real $\alpha>0$ with $\alpha f=g$.

For $0<f \in G_{0}$ we denote by $l(f)$ the set of all elements $g \in G_{0}$ with the property that there exists a real $\alpha(g)>0$ with $\alpha(g) f=g$. The set $l(f)$ is a linearly ordered subsemigroup of G_{0} containing f. Hence $l(f)-l(f)$ is a linearly ordered subgroup of G_{0} containing f. From this and from Lemma 4 we obtain:

Corollary 2. Let $0<f \in G_{0}$. Then $l(f)-l(f)$ is the largest linearly ordered subgroup of G_{0} containing f.

Coroliary 3. Each archimedean lattice ordered group fulfils the condition (c).
A lattice ordered group G fulfilling the condition (c) need not satisfy (b) (e.g., let G be a noncyclic linearly ordered group).

Now let G be as in Example 1. Let $f=(0,0,1)$ and

$$
\begin{aligned}
& H_{1}=\left\{(x, 0, z): x \in N_{0}, y \in N_{0}\right\}, \\
& H_{2}=\left\{(0, y, z): y \in N_{0}, z \in N_{0}\right\} .
\end{aligned}
$$

Then both H_{1} and H_{2} are linearly ordered subgroups of G and $f \in H_{1} \cap H_{2}$. Also, $h_{1}=(1,0,0) \in H_{1}, h_{2}=(0,1,0) \in H_{2}$ and the elements h_{1}, h_{2} are incomparable. Hence there exists no linearly ordered subgroup H of G with $H_{1} \subseteq H, H_{2} \subseteq H$. Thus G does not fulfil the condition (c).

Let \mathscr{B} be the class of all lattice ordered groups fulfilling the condition (b). If $G \in \mathscr{B}$ and if H is an l-subgroup of G, then obviously H belongs to \mathscr{B} as well.

Proposition 4. The class \mathscr{B} is closed with respect to direct products.
Proof. Let $\left\{G_{i}: i \in I\right\}$ be a system of lattice ordered groups belonging to \mathscr{B} and let $G=\Pi_{i \in I} G_{i}$. Let $\{0\} \neq R$ be a linearly ordered subgroup of G. For $i \in I$ and $Y \subseteq G$ we denote by Y_{i} the projection of R into G_{i}, i.e., Y_{i} is the set of all $x \in G_{i}$ such that $x=y(i)$ for some $y \in Y$. Without loss of generality we can assume that card $I>1$ and $R_{i} \neq\{0\}$ for each $i \in I$.

Let $j \in I$ be fixed. Assume that there exist distinct elements $r_{1}, r_{2} \in R$ with $r_{1}(j)=$ $=r_{2}(j)$. Put $r=\left|r_{1}-r_{2}\right|$. Then $0<r \in R$ and $r(j)=0$. Let $R_{1}=\{g \in R: g(j)=$ $=0\}$. Hence R_{1} is a convex l-subgroup of R and $R_{1} \neq\{0\}, R_{1} \neq R$.
From $R_{1} \neq\{0\}$ it follows that there exists $k \in K$ with $R_{1 k} \neq\{0\}$. Clearly $R_{1 k}$ is a convex l-subgroup of R_{k}. Because R_{k} is a linearly ordered subgroup of G_{k}, R_{k} must be cyclic and thus $R_{1 k}=R_{k}$. In view of $R_{1} \neq R$ there is $0<g$ with $g \in R \backslash R_{1}$. Hence $g>r_{1}$ for each $r_{1} \in R_{1}$. There exists $x \in R_{1}$ such that $g(k)=x(k)$. We have $2 x \in R_{1}$ and $2 x(k)>g(k)>0$, thus $g \ngtr 2 x$, which is a contradiction. Therefore $r_{1}(j) \neq r_{2}(j)$. This implies that the mapping. $\varphi_{j}: R \rightarrow R_{j}$ defined by $\varphi_{j}(r)=r(j)$ for each $r \in R$ is an isomorphism of R onto R_{j}. Because R_{j} is cyclic, so is R. This completes the proof.

Proposition 5. The class \mathscr{B} fails to be closed with respect to homomorphic images.
Proof. Let I be an infinite set and for each $i \in I$ let $G_{i}=N_{0}, G=\Pi_{i \in I} G_{i}$. Since each G_{i} fulfils (b), according to Proposition $4, G$ satisfies (b) as well. There exists an l-ideal H of G such that G / H is not archimedean. Hence in view of Proposition 3, G / H does not fulfil the condition (b).

References

[1] G. Birkhoff: Lattice theory, third edition. Providence 1967.
[2] P. Conrad, D. Montgomery: Lattice ordered groups with rank one components. Czech. Math. J. 25 (1975), 445-453.
[3] J. Jakubik: Lattice ordered groups with cyclic linearly ordered subgroups. Čas. pěst. mat. 101 (1976), 88-90.
[4] Г. Я. Роткович: Решеточно упорядоченные группы с циклическими линейно упорядоченными подгруппами. Современная алгебра (Группоиды и их гомоморфизмы). Ленинградский гос. пед. инст. им. Герцена, 404 (1971), 439-451.

Author's address: 04001 Košice, Švermova 5 (Strojní fak. VŠT).

