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Časopis pro pěstování matematiky, roč. 107 (1982), Praha 

STRUCTURE EQUATIONS OF GENERALIZED CONNECTIONS 

IVAN KOLAR and VLADIMIR LESOVSK*, Brno 

(Received November 20, 1980) 

Starting from some recent results by the first author, [2], [3], we deduce the struc
ture equation of an arbitrary (generalized) connection on a fibered manifold with 
fiber parallelism. For a so-called homogeneous connection we obtain an interesting 
generalization of the classical structure equation of a principal connection. We also 
clarify that the homogeneity of the connection is an essential tool to deduce a kind 
of generalized Bianchi identity. — Our consideration is in the category C00. 

1. For any vector bundle E -> X, a linear base-preserving morphism cp : /\k TX -> 
-> E will be called an F-valued fc-form. Given a linear connection C on £, Koszul, 
[4], has defined the exterior differential dcq> : Ak+1 TX -> E. In some local co
ordinates xl on X and some additional linear coordinates zp on £, if cpp are the com
ponents of cp and TPi are ChristoffeFs symbols of C, then the components of dccp are 

(1) dcpp - rp
qi dxl A cpq . 

For fc = 1, KoszuFs formula reads 

(2) (dc<p) (£, ij) = CV{ <f>(ti) - c v, <p(Z) - KK- •/]) 

for any vector fields £ and rj on X, provided CV5 has the usual meaning of the absolute 
derivative. 

Given a fibered manifold p : Y -> X, SL linear base-preserving morphism 
<p : Afc TY -> E will be called an F-valued fc-form on 7. Any linear connection C 
on E induces a linear connection p*C on the induced vector bundle p*E -> Y, [1]. 
We define dc(p := dp*c(p, where cp on the right-hand side is interpreted as a map 
A* TY -> p*£. Obviously, dccp can be regarded as an .E-valued (fc 4- l)-form on Y. 
Formula (2) has now the form 

(3) (dc9>) ({, •/) -= P.CV. 9(1,) - P.CV, 9({) - <p&Z, ,]) 

for any vector fields £ and // on Y. An E-valued fc-form 9 on I'will be called horizontal 
if (p(Alt..., Ak) — 0 whenever at least one of the vectors Alt ...,Ak is vertical. 
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2. A fiber parallelism on a fibered manifold p : Y-> X is a triple (Y, E, Q), where 
n : £ -> K is a vector bundle over the same base X and 6 : Y © F -> Vyis a morphism 
over y of the fiber product Y © E into the vertical tangent bundle VY of y such that 
Q(y) : Eniy) -> VyY is a linear isomorphism for every y eY. Any vector A e £,. 
determines a vector field QA on the fiber Yx and every section a :X -> E induces 
a vertical vector field Qo on Y. The structure function of Q is a map SQ: Y ® /\* E --> 
-> £ defined by 

(4) sQ(y, -4, *) = e(yr1 (["e ,̂ e*],) -

A (generalized) connection on Y means any section F : Y-> J*Y, where J*Y 
denotes the first jet prolongation of Y, [5]. For every y eY, T(y) is identified with 
a horizontal subspace in T̂ Y and any vector A e TyY is decomposed into A = hA + 
+ uA with hA e T(y) and vA e VyY. The connection form of F is an F-valued 1-form 
a> on Y determined by 

(5) co(A)=Q(y)~1(vA). 

The curvature form of F is a map Q :Y(B A2 TX -> E defined by Q(y, £x, rjx) = 
= — ca([F£, rrj]y), x -= py, for any vector fields £ and ^ on X, provided F£ means 
the F-lift of <!;. Obviously, Q can be regarded as a horizontal E-valued 2-form on Y 
On the other hand, dcco is also an F-valued 2-form on Y. 

3. We have to recall the concept of the deviation form <5(F, C, Q), [3]. Con
nections F and C determine the product connection F © C on Y © E, which is trans
formed by Q into a connection Q(T © C) on VY. On the other hand, F is canonically 
prolonged into a connection VF on VY, [2]. Under standard identifications, the dif
ference Q(T © C) - VF can be interpreted as a map 5(T, C,Q):Y © E © TX -> E 
linear in both E and TX. Dualizing with respect to E, we can regard <5(F, C, Q) as 
a horizontal £ ® £*-valued 1-form on Y 

Lemma 1. Given Ae Ex and B e T^X, xeX, let o be a section of E with JXG =» 
= C(A) and £ a vector field on X with £x = B. Then 

(6) <5(F, C, Q) (y, A, B) = co([F£, Qo],) . 

Proof consists in direct evaluation in local coordinates. 

4. As usual, the symbol 7\ will denote the tensor contraction combined witli 
alternation. Hence <o A <5(F, C, Q) is an .E-valued 2-form on Y. Analogously, the 
composition Sc(co, a>) of the structure function of Q and the connection form of r 
can be regarded as an £-valued 2-form on Y. 

Theorem 1. (Structure equation?) We have 

(7) dca) = -SQ(co, O)) + Q)A <5(F, C, Q) + O . 
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Proof. By bilinearity, it is sufficient to discuss the value (dcco) (A, B) in the fol
lowing three cases. 

(i) Both A and B are vertical, so that the second and third terms on the right-hand 
side of (7) vanish. Let A = (Qo)y, B = (Qo)y for some sections o and Q of E. Then 
a simple calculation shows that the both absolute derivatives in (3) vanish. Hence 
(dcco) (A, B) = ~co([Qo, Qo\y), which is the required value of SQ(co, co). 

(ii) Both A and B are horizontal, so that the first and second terms on the right-
hand side of (7) vanish. Let A = (r£)y and B = (rrf)y for some vector fields £ and r\ 
on X. Then c0(F£) = co(F )̂ = 0 and (3) implies (dcco) (A, B) = Q(A, B) by the 
definition of Q. 

(iii) A is vertical and B is horizontal, so that the first and third terms on the right-
hand side of (7) vanish. Let A = (Qo)y for a section a of £ satisfying jxo = C(A) 
and B = (F£)r In tn- s case, one finds the following coordinate expression for 
P*c^n co(Qo): 

(s) 8£ ? - w, 
where op(x) or £f(x) is the coordinate expression of a or £, respectively. But (8) 
vanishes at x = py by the assumption jxa = C(A). The second absolute derivative 
in (3) vanishes trivially, so that we have (dcco) (A, B) = — co([<2<r, r£]y) = <5(F, C, Q) 
(y, A, B) by Lemma 1, QED. 

A connection F on Y is called homogeneous, [3], if there exists a linear connection C 
on £ satisfying S(r, C, Q) = 0. In this case, C is uniquely determined and is said 
to be associated with F. The structure equation of a homogeneous connection is 

(9) dcco = -SQ(co,(o) + Q, 

where C is the associated connection. On every principal fiber bundle P(K, G), 
there is a canonical fiber parallelism 1V given by the classical fundamental vector 
fields on P, the corresponding vector bundle is X x cj (= the Lie algebra of G). 
By Lemma 1, a (generalized) connection F on P is principal (i.e. right-invariant) 
iff S(r, O, N) = 0, where O means the zero connection on the product bundle 
X x g. The structure function of N coincides with the bracket in g and d0co is the 
classical exterior differential of a g-valued form, so that (9) is reduced to the classical 
structure equation of a principal connection. 

5. Given F and C as above, the absolute exterior differential of an £-valued fc-form 
cp on Y is defined by 

Dc<p(Al5 ..., Ak+1) = d^/LA i , . . . , hAk+l) . 

Lemma 2. For any C, we have 

(10) Dc(dcco) = 0 . 
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Proof. Using (1), we find the following coordinate expression of dc(dc(w): 

(11) -d r j , A dx' AcoH rp
qir?j d*f A dx* A of, 

which proves our assertion. 
Quite similarly one deduces for every C, 

(12) Dcco = Q . 

Theorem 2. {Generalized Bianchi formula?) We have 

(13) . DCQ= -Q A <5(F, C, Q). 

Proof. Applying absolute exterior differentiation to the structure equation and 
using (10) and (12), we obtain (13). 

If F is homogeneous, we have DCQ = 0. We remark that the first author has 
deduced, [2], that for any (generalized) connection F the absolute exterior differen
tial of its curvature with respect to the vertical prolongation VF of F vanishes. For 
homogeneous connections, YT = g(F © C) holds by the definition of <5(F, C, Q). 
This gives another explanation of the role of the Bianchi identity for homogeneous 
connections. 
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