
Časopis pro pěstování matematiky

Zdeněk Andres; Bohdan Zelinka
Logics of bipartite graphs and complete multipartite graphs

Časopis pro pěstování matematiky, Vol. 107 (1982), No. 4, 425--427

Persistent URL: http://dml.cz/dmlcz/118139

Terms of use:
© Institute of Mathematics AS CR, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118139
http://project.dml.cz


časopis pro pěstování matematiky, rofc. 107 (1982), Praha 

LOGICS OF BIPARTITE GRAPHS 
AND COMPLETE MULTIPARTITE GRAPHS 

ZDEN£K ANDRES and BOHDAN ZELINKA, Liberec 

(Received September 28, 1981) 

In [1] the concept of the logic of a graph is introduced. 
Let G be a finite undirected graph without loops and multiple edges, let V(G) be 

its vertex set. If A is a non-empty subset of V(G), then by A1 we denote the set of 
all vertices of G which are adjacent to all vertices of A. For the empty set we put 
0 1 = V(G). Further, denote A11 = (A1)1. For each A c V(G) we have A n A1 = 0, 
A c A11, (A 1 1 ) 1 = A1, (A 1 1 ) 1 1 = A11. For any two subsets A, B of V(G) the inclu
sion A c B implies B1 c A1 and A11 ^ B11. Hence the mapping A h-» A11 is 
a certain closure operation on the set of all subsets of V(G). The sets A for which 
A11 = A will be called the 11-closed sets in G. The empty set and the whole set 
V(G) are among them. 

The intersection of two 11-closed sets is again a 11-closed set. For the union 
this is not true in general. Nevertheless, to any two 11-closed sets A, B in G there 
exists exactly one 11-closed set which contains both A and B as subsets and is a sub
set of each 11-closed set in G which contains A and B; we shall denote it by A v B 
and call it the join of A and B. Evidently _A v £ = (A u B)11. 

The set of all 11-closed sets in G with the operation of join and the operation of 
meet equal to the intersection forms a lattice. This lattice with the operation AKA1 

added is called the logic of G and denoted by 2£(G). 
The logic S£(G) of a graph G is called orthomodular, if each set A e S£(G) has the 

property that an arbitrary set B e S£(G) such that A is a proper subset of B has a non
empty intersection with A1. If S£(G) is a modular lattice, then it is orthomodular. 

We shall prove two theorems. 

Theorem 1. Let G be a finite connected undirected graph without loops and 
multiple edges, let V(G) be its vertex set, let S£(G) be its logic. Let S£(G) have the 
property that to each atom A e S£(G) exactly one element A e S£(G) exists such 
that A A A = ty, - A v A = V(G). Then S£(G) is a Boolean algebra and G is a com
plete n-partite graph, where n is such an integer that 2n is the number of elements 
of S£(G). 
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Proof. Let A be an atom of JSf(G). Suppose that there exist two vertices x, y of A 
which are joined by an edge in G. Then {y} ^ {x}1 and consequently {x}11 c {y}1. 
As {x} c A, we have {x}11 e A11 = A. As A is an atom of S£(G) and {x}11 4= 0, we 
must have {x}11 = A. But then A c {j;}1, therefore y e {y}1, which is impossible, 
because G has no loops. Therefore A is an independent set in G. 

Now consider V(G) — A. Obviously (V(G) — .A)1 £ A; as A. is an independent 
set, so is (V(G) - A)1 Therefore (V(G) - A)11 n ^ = 0 and (V(G) - Al)11 c 
S V(G) - A, which implies (V(G) - A)11 = V(G) - _4 and V(G) - A e if(G). 
We have A n (V(G) - A) = 0, A u (V(G) - A) = V(G), hence V(G) - A is the 
complement of A in -^(G). On the other hand, we have A A A1 = A n A1 = 0. 
The set _4 v Al1 is equal to (A u A1)11. If (A u Al1)1 is non-empty, then there exists 
x e (A u .A1)1. This element x must be adjacent to all vertices of A, hence x eA1, 
but then ti is not adjacent to all elements of A1. Hence (A u A1)1 = 0 and 
(A u A1)11 = V(G). As the complement of A is unique (according to the assump
tion), we have A1 = V(G) — A. Hence each vertex of A is adjacent to all vertices 
of V(G) - A. 

It remains to prove that each vertex of G is contained in an atom of J£(G). Suppose 
that there exists a vertex y for which this is not true. Then {y}11 is not an atom of 
S£(G) and there exists an atom A of S£(G) such that A is a proper subset of {y}11. 
Denote B = {y}11 — A. We have B c V(G) — A, therefore each vertex of A is 
adjacent to all vertices of B. Obviously y e B, therefore A c {j*}1 and {y}11 £ A1 = 
= V(G) — A, which is a contradiction, because A is a subset of {y}11. 

Therefore the atoms of &(G) (being pairwise disjoint) form a partition of V(G). 
Each of them is an independent set in G and all of its vertices are adjacent to all 
vertices not belonging to it. This implies that G is a complete n-partite graph for 
a positive integer n. But such a graph is the direct sum of n graphs, each of which 
consists only of isolated vertices. The logic of a graph consisting only of isolated 
vertices is a Boolean algebra with 2 elements. The logic of the complete n-partite 
graph is then the direct product of n such Boolean algebras, hence a Boolean algebra 
with 2* elements. 

Theorem 2. Let G be a finite connected bipartite graph on the sets A, B. Then the 
logic S£(G) of G is orthomodular if and only if G is a complete bipartite graph. 

Proof. If G is a complete bipartite graph, then by Theorem 1 its logic is a Boolean 
algebra, therefore it is orthomodular. Now suppose that G is not a complete bipartite 
graph. If M is a subset of V(G) = .4uB such that M n / l 4 = 0 , M n J 5 # 0 , then 
no vertex is adjacent to all vertices of M, because a vertex of A (or of B) can be 
adjacent only to vertices of B (or A, respectively). Hence M 1 = 0, M 1 1 = V(G). 
This implies that each element of S£(G) different from V(G) is a subset of A or of B. 
As G is connected, for each a e A the set {a}1 is a non-empty subset of B and hence 
{a}11 c A. Analogously {b}11 £ B for each b e B. Hence there exists at least one 
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set A0 which is a non-empty subset of A and belongs to JSf (G). The set A0 is a non
empty subset of B. The subgraph G0 of G induced by the set A0 u A0 is a complete 
bipartite graph on the sets .A0, .A0. As G is not a complete bipartite graph, the graph 
G0 is a proper subgraph of G; as G is connected, there exists either a vertex of A0 adja
cent to a vertex of B — v40, or a vertex of A0 adjacent to a vertex of A — A0. If there 
exists a vertex x e A0 adjacent to a vertex of B — A0, then A.0 is a proper subset 
of {x}1 and consequently {x}11 is a proper subset of A0. Denote X = {x}11. Then 
{x}1 = X1 c £ and we have ,A0 A X1 = 0 and X is a proper subset of A0, hence 
ĉ f(G) is not orthomodular. If there exists a vertex y e A0 adjacent to a vertex of 
A — .A0, then A0 is a proper subset of {y}1 and consequently {y}11 is a proper 
subset of A0. Denote 7 = {y}11. Then {y}1 = Y1 c A and we have ^ A Y1 = 0 
and Y is a proper subset of A0, hence again -£f(G) is not orthomodular. 

Corollary. Let G be a finite connected bipartite graph on the sets A, B. Then the 
logic of G is modular if and only if G is a complete bipartite graph. 

This follows immediately from Theorem 1 and Theorem 2. 
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