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CONNECTIONS ON THE SECOND TANGENT BUNDLE

ALENA VANZUROVA, Olomouc

(Received June 29, 1982)

In [2], the author described a construction of a prolongation F(I', A) of a (gener-
alized) connection I' on a fibred manifold z : Y - M with respect to an arbitrary
prolongation functor F of order (r, s) (from the category #.#, of fibred manifolds
with diffeomorphisms to the category 2#.# of 2-fibred manifolds) by means of an
auxiliary linear r-th ‘order connection A on the base manifold M. In the special case
of a trivial fibred manifold id : M — M, we obtain in this way a connection F(4):=
:= F(0, A) on FM, where 0 denotes the unique connection on id : M — M.

A naturai'que'stion arises, when a connection. 2 on FM is. of the form 2 = F(A)
for a suitable higher order linear conneéction 4 on M. We shall not discuss this prob-
lem-in full generality, but we its solution for the functor F = TT, the 1terat10n of the
tangent functor T.

"' A 'prolongation functor F (for the definition, : see [2] 89— 90) from the category M
of smooth manifolds and mappings to the category F M of smooth fibred manifolds
is said to be of order r, if for any two maps f, g : M — N, j.f = j.g implies Ff|F .M =
= Fg|F.M, where F,M denotes the fibre over x € M "and j; means the r-jet at x.
Thus for any two mamfolds M N, an r-th order functor F induces an assoc1ated ‘map

FMN FM@J’(M N)- FN, o
where @ denotes the Whltney sum of. fibred manxfo]ds e M — M- and
&: J'(M, N) - M, with a being the sourte Jet projection.

The construction of the connection F (A) for a functor F : M — F M of order r
can be described via its lifting map,(see [4]) F (A) FM @ TX — TFM. We define

F(A) (z,v) = (F¢) (2) for ze F,M, ve T,M, xe M, where { is a vector satisfying
A(v) = ji{, and F{ is its prolongation. In [4] it was proved that the value (F{) (z) of
the prolonged field F{ at z € F,M depends only on j3{, and the induced map

'FM @ J'TM —.T(FM)

is smooth and linear with respect to J"TM. We shall recall the proof here, and derive
the coordinate form of F(A).
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Let (x*, y?) be a local fibre coordinate system on FM such that x* are local coordi-
nates on M. The flow of the vector field F( is defined by

exp H(F{) := F(exp 1) .

In local coordinates, { = Ci(x) .0[0a}, exp L = (p;(x), ..., @7 (x)), m = dim M,
and 9¢;/0t = {i(x), i = 1,..., m. Let

(1) Fym:) = F”(x‘,‘ XL XL e X5y V9

be the coordinate expression of the associate map F, M_M, where X, ..., x},.,, are the
induced coordinates on J'(M, M). Then F,, = (¢}, F” - ¢,). The coefficients of F{

with respect to the basis 8/0x’, 8/0y? of TFM are d¢;[0t and 8(F” - ¢")/ot, respectively,
so that

5(F o(p,) 6
2 F{=(
) (x ) o o
Since
- o(FPoq,) _ OF AL é¢, . o el
ot oxt ot oxt ae\ax) T ol ot\ax...ox"

and

o o o (o0 g
ot \oxi ... oxix) okl .. ox\or ) oxIr...ox
we have

oF . ) i P4 P
3) F¢= '—+ o ot .9
@) Fr=t ox’ <6" o 6" ox 0%, Cox ... 6xj’) dy?

Any linear connection 4 : TM — J'TM of O}def r on M can be expressed in the form

c} = I’,t,(x) . Ck
A

... 1,-F s jr(x) ¢,

where C i are the natural fibre coordmates on TM, and ¢} I v, ¢ J1...J, are the iﬁdueed
coordinates on J'TM. Then the equations of F (A) FM - J'FM are

P P
o rife). o o

@ F(A): y} = Iiy,...(x) - % : 7 ax
j( ]r .,

Before d1scuss1ng the case F = TT, we mtroduce some useful notions and deduce
some auxiliary results.

Let F, G : M — F M be two prolongation functors. We say that G is an extension
of F, if for any manifold M, FM is a fibred submanifold of GM, and for any map
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f:M — N, the following diagram commutes:

oM -, G6N

8 1 T
() FM —LsFN .
i l

M—I—>N

A vector field { on a manifold Y is called reducible to a submanifold Z (x Z-Y
being the imbedding), if there exists a vector field # on Z such that the following
diagram commutes:

Y—>TY

Z—1-7TZ

Lemma 1. Let G be an extension of F, and let { be a vector field on M. Then the
vector field G{ on GM si reducible to FM, and F{ is the corresponding reduction.

Proof. It suffices to apply the diagram (4) to the flow of ¢.

A connection I' on a fibred manifold = : Y— M is called reducible to a fibred
submanifold Z 5 Y, if there exists a connection X on Z such that the following dia-
gram commutes:

Y—Lo Jiy

z—2sJ'z
The connection £ = I'|Z will be called the reduction of I to Z.

Lemma 2. Let G be an extension of a prolonagation functor F, and letsand r, s =
2 1, be the orders of G and F, respectively. For any manifold M and any linear
connection A of order s on M, A:TM — J°TM, the prolonged connection G(A)
is reducible to FM = GM, and the corresponding reduction is G(A)[FM = F(A),
where A = jSo A (j: denotes the jet projection J*'TM — J'TM).

Proof. This follows directly from Lemma 1.

Given two fibred manifolds U 5 Y, Y5 X, the qumtuple U3 Y3 X is called
a 2-fibred manifold.

A prolongation functor G (of order s) is called a prolongation of a functor F (of
order r, r < s), if for any manifold M, GM — FM — M is a 2-fibred manifold, and
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for any map f: M — N, the following diagram commutes:

6M -2, GN

l !

(12) FM—L, FN .

! 1

M-I, N

A vector field { on n: Y - X is said to be projectable (or projectable over r]), if
there exists a vector field n on the base manifold X such that Tr o { = o 7. In local
fibre coordinates x*, y” on Y, the expression of a projectable vector field { is {(x, y) =
n'(x) . 8/ox’ + {*(x, y) . 0/0y®, where n = n'(x).d[ox' is the underlying vector
field.

Lemma 3. If G is a prolongation of F and { is a vector field on a manifold M,
then the prolonged vector field G{ is projectable over F(.

The proof is similar to the proof of Lemma 1.

A connection I' on a 2-fibred manifold U 5 Y5 X is called projectable (more
precisely g-projectable over X), if there exists a connection £ on Y such that the fol-
lowing diagram commutes:

v—". Jww

L b

X X

In local fibre coordinates x’, y?, u® on U, the equations of I" and X are
P _ FP ’
r:’ Fi(x, ) Z:y0 = Fi(x,y).
2} = GY(x, y, u);

As a direct consequence of Lemma 3 we obtain

Lemma 4. If G (of order s) is a prolongation of F (of order r £ s) then for any
manifold M and any linear connection A:TM — J*TM, the connection G(A) is
projectable over F(A), where A = ji o A.

A 2-fibred manifold U5 Y5 X is called a semi-vector bundle, if U Y is
a vector bundle. If U5 Y5 X is a semi-vector bundle, then obviously

1
J'U 2% J'Y 5 X is a semi-vector bundle, too. A projectable connection I' : U —
— JU over a connection X : Y — J'Y on a semi-vector bundle U = Y — X induces
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for any y e Ya map I'/U, : U, —» (J'U)y, of vector spaces, where U, denotes the
fibre over y. I is said to be semi-linear, if the maps I'|U, are linear for all y € Y.
In linear coordinates u* on U, the equations of I are

: . [y =Fixy),
uj = G5 (x,y). v .

Now let us turn our attention to the functor TT. Let py : TN — N denote the
bundle projection of TN. For a given manifold M, choose a local coordinate system
on TTM

(14) X!, &, X1, &

in the usual way, i.e. &' = dx’ on TM and X’ = dx', £/ = d¢! on TTM. On TTM,
there ‘exists a canonical involution iy : TTM — TTM, i}, = id (see [1]). In our co-
ordinates, ip(x’, &, X/, 8/) = (x/, X/, &/, £Y). Further, there are two projections
P1 = Prm> P2 = Ty, of TTM on TM, with the following coordinate expressions:

pl(xl’ 6", Xj, El) = (xj’ 61) ’
pz(x.i’ fj, Xj, Ei) = (xi, X.i) .

Obviously, p, = p; o iy and (TTM, TM, p,, p,) is a double fibred manifold in the
sense of [2], p. 88.

Given any morphism f: M — N and a local coordinate system y?, n?, Y?, H?
on TTN, chosen as above, the coordinate forms of the maps f, Tf : TM — TN and
TTf : TTM — TTN are

'Tf:{f:ypéf'(x),'_
afr
P2 i,
n pw ¢
TTf :
/ r=2 x,
ox’
HP = oy .é‘.X’+?ﬁ.Ei.
| ax* ox! ox!

Hence the functor TT (of the second order) is a prolongation of the first-order
functor T.

Denote by KM the common kernel of both projections p, and p,. KM is a fibred
manifold over M, for which the space K. M = {(x%, 0, 0, %)} of all vertical vectors
at 0 is the fibre over x, and p;/KM is the projection. Clearly, K.M ~ T, M. Thus KM
is a fibred submanifold of TTM, and KM ~ TM. For any f: M — N, y? = f?(x),
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define a map Kf : KM — KN by

= f"(z),
Kf : " =Y =0,
HP = 6f".5..
ox'

Obviously, K is a functor isomorphic to T, and TTis an extension of K.

Theorem. Let M be a smooth manifold, and let I be a (generalized) connection
on TTM, i.e. I' : TTM — J'TTM is a smooth section. Then there exists on M
a linear second-order connection A :TM — J*TM such that TT(A) = I' iff the
Jollowing conditions are satisfied:

(A) There exists a linear connection of the first order on M, A: TM — J'TM,
such that
(i) I is pj-projectable over the connection T(A) for j = 1, 2.
(ii) I is reducible to KM, the reduction being I'|[KM = T(Z)
(iii) I is semi-linear on the 2-fibred manifold TTM 2 TM 25 M over T(A) for
ji=12

(B) I' is invariant with respect to the canonical involution iy on TTM, i.e.
l(lnl ) o IM =T. : :

. Proof. Let I = TT(A). In local coordinates (14), the expression of A-is of the form

A:{é’i = Ii(x) . &, S
é;.jk=r;jk(x)-§l- T
The equations of TT(A) are
& =Tiyx). ¢,
(15) TT(A) : X,'; =TI;,(x). X/,
Ej =Tju(x).&. X" + I'jj(x). 5.
Setting A = j% o A, i.e.
A:4=T lk(x) ¢,
we have
| T(A): & = Tiy(x) - &
and it is easy to see that the conditions (A) and (B) are satisfied.

Conversely, let us assume that I satisfies (A) and (B). Then the expression of a con-
nection A4 from (A) is
A& =Th(x). &,
and
T(A): &l = Tifx). &

263



is the connection conjugate to A. According to (i),

& = yx). ¢,
r: x;= i) Xf
- B = Gx ¢ X

The reducibility condition (ii) implies that Gi(x, 0, 0, Z) = Ij,(x) . . The condition
(iiii) implies the existence of functions f(x, X) and gj,(x, £) satisfying

El=fi(xX). & + Ti(x). &,
and

El=gix, &) . X + Tjy(x). &7
This yields

B} =Tip(x). & . X* + Tjj(x). &7

From (B) we finally deduce that the functions I'}j;, are symmetric in j, k. Thus I" is
of the form (15), i.e. I' = TT(4). QED.
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