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Časopis pro pěstování matematiky, roč. 108 (1983), Praha 

CONNECTIONS ON THE SECOND TANGENT BUNDLE 

ALENA VANSUROVA, Olomouc 

(Received June 29, 1982) 

In [2], the author described a construction of a prolongation F(F, A) of a (gener­
alized) connection F on a fibred manifold n : Y -> M with respect to an arbitrary 
prolongation functor F of order (r, s) (from the category 2FJ(Q of fibred manifolds 
with diffeomorphisms to the category 23FJC of 2-fibred manifolds) by means of an 
auxiliary linear r-th order connection A on the base manifold M. In the special case 
of a trivial fibred manifold id : M -• M, we obtain in this way a connection F(A) : = 
: = F(0,4) ° n FM, where 0 denotes the unique connection on id : M -> M. 

A natural question arises, when a connection I on FM is. of the form I = F(A) 
for a suitable higher order linear connection A on M. We shall not discuss this prob­
lem in full generality, but we its solution for the functor F = TT, the iteration of the 
tangent functor 7. 

A prolongation functor F (for the definition, see [2J, 89—90) from the category Jt 
of smooth manifolds,and mappings to the category SFJt of smooth fibred manifolds 
is said to be of order r, if for any two mapsf, g : M -> N,jxf = fxg implies FfjFxM = 
-= FgjFxM, where FXM denotes the fibre over xeM and j£ means the r-jet at x. 
Thus for any two manifolds M, N, an r-th order functor F induces an associated map 

FMtN:FM®r(M,N)->FN, 

where © denotes the Whitney sum of, fibred manifolds n : FM •-• M and 
6c: Jr(M, N) -> M, with a being the source jet projection. 

The construction of the connection F(zl) for a functor F : Jl -» 3FJt of order r 
can be described via its lifting map,(see [4]) F(A) : FM © TX -• TFM. We define 
F(A) (z, t;) = (FC) (z) for z e FJVf, t; e T^M, xeM, where £ is a vector satisfying 
A(v) == J^CJ and F£ is its prolongation. In [4] it was proved that the value (F£) (z) of 
the prolonged field F£ at z e FXM depends only on jr

x£, and the induced map 

FM © JTM -+.T(FM) 

is smooth and linear with respect to JTM. We shall recall the proof here, and derive 
the coordinate form of F(A). 
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Let (#', yp) be a local fibre coordinate system on FM such that x{ are local coordi­
nates on M. The flow of the vector field PC is defined by 

expf(FQ:=F(exp*C). 

In local coordinates, C = V(x) . 3/oV, exp *C = OPH*)' •••» <Pr(x))» m ~~ dim M, 
and dcp\\dt = C^*)- * = 1, . . . , w. Let 

(1) FMM:y'' = F''(xi,xi,xj,...,x
i
J^Jr,y'') 

be the coordinate expression of the associate map FMM, where Xj,..., 3cj1 #>_,r are the 
induced coordinates on Jr(M, M). Then F9t = (<p\, Fp o <p,). The coefficients of FC 
with respect to the basis d\dx\ d]dyp of TFM are _ty|/df and d(Fp o <pr)/df, respectively, 
so that 

(2) n_c .w .A + ______.___. 
w w dx'.» a. a,-" 
Since 

____5_} = __! f!s_ __! _. l_2.^ 3F* Al___3___L__\ 
df ~ dx1 ' dt dxj'dt\dxJ) '" dxl

Mr' dt [dx?1... dx1') 
and 

dt\dxJl.;.dxJk) dx* ... dxJk \dt ) dx11... dx1*' 

we have 

w dx' \dxl dx) dx1 d3c},...;_ dxJl...dxJ'J dy" 

Any linear connection A : TM -» JrTM of order r on M can be expressed in the form 

f« --1A*).--*, " 
^ : 1 : 

• ; ' • • • • • ' . . - . <L.Jr=njl...Jr(x)-?> 

where,£' are the natural fibre coordinates on TM, and Cj> • ••> Cj_..._/r are the induced 
coordinates on JrTM. Then the equations of F(A) : FM -> J1FM are 

(4) F(A):y! = r«,,...,_(x). - ^ - + ... + r j , ( x ) . ^ + £ . 
"Xjj~jr °XJ °X 

Before discussing the case F = TT, we introduce some useful notions and deduce 
some auxiliary results. 

Let F, G : J( -> 3PJt be two prolongation functors. We say that G is an extension 
of F, if for any manifold M, FM is a fibred submanifold of GM, and for any map 
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/ : M -> N9 the following diagram commutes: 

GM-^-»GN 

(5) FM - ^ U FN . 

A , A 
M —i-* N 

.4 vector field f on a manifold y is called reducible to a submanifold Z (x : Z -> y 
being the imbedding), if there exists a vector field t] on Z such that the following 
diagram commutes: 

y-

Lemma 1. Let G fee AH extension of F9 and let f be a vector field on M. Then the 
vector field G£ on GM si reducible to FM9 and PC is the corresponding reduction. 

Proof. It suffices to apply the diagram (4) to the flow of C-

A connection r on a fibred manifold n : Y-* M is called reducible to a fibred 
submanifold Z-+Y9 if there exists a connection I on Z such that the following dia­
gram commutes: 

Y-^JXY 

- I , I" -
The connection X -= T\Z will be called the reduction of r to Z. 

Lemma 2. Lef G fee an extension of a prolonagation functor F9 and let s and r9s ^ 
;> r, be the orders of G and F9 respectively. For any manifold M and any linear 
connection A of order s on M, A: TM -* JSTM9 the prolonged connection G(A) 
is reducible to FM a GM9 and the corresponding reduction is G(A)jFM = F(A)9 

where A-js
roA (ja

r denotes the jet projection JSTM -» JrTM). 

Proof. This follows directly from Lemma 1. 
Given two fibred manifolds U -4 Y9 Y^X9 the quintuple U - i Y ̂  X is called 

a 2-fibred manifold. 

A prolongation functor G (of order s) is called a prolongation of a functor F (of 
order r,r £ s)9 if for any manifold M, GM -* FM -> M is a 2-fibred manifold, and 
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for any m a p / : M -> N, the following diagram commutes: 

GM-^-+GN 

1
 FT

 l 

(12) FM—+-+FN. 

A , * 

A vector field £ on n : Y-> X is said to be projectable (or projectable over rj), if 
there exists a vector field // on the base manifold X such that Tn o £ = r\ o 7r. In local 
fibre coordinates x£, >>p on Y, the expression of a projectable vector field £ is £(x, y) = 
//'(x) . 5/5xf + £p(x, j ) . 3/3^, where r\ = iy'(jc) . djdx* is the underlying vector 
field. 

Lemma 3, If G is a prolongation of F and £ is a vector field on a manifold M, 
then the prolonged vector field G£ is projectable over F£. 

The proof is similar to the proof of Lemma 1. 
A connection F on a 2-fibred manifold U --+ Y--+ X is called projectable (more 

precisely q-projectable over Z), if there exists a connection Z on Y such that the fol­
lowing diagram commutes: 

U—^-* J 1 ^ 

— U Jlq. J ^ 

i-
In local fibre coordinates x\ yp, u* on U9 the equations of F and .1 are 

'•••\yrFJ.f'y\ -^-'R'.rt-' 
UI = £?(*, * w ) > 

As a direct consequence of Lemma 3 we obtain 

Lemma 4. If G (of order s) is a prolongation of F (of order r ^ s) then for any 
manifold M and any linear connection A : TM -* JSTM, the connection G(A) is 
projectable over F(A), where A = js

r o A. 

A 2-fibred manifold U --* Y-̂ > X is called a semi-vector bundle, if IT -^ Y is 
a vector bundle. If U -^ Y -^ X is a semi-vector bundle, then obviously 
JlU —-> J1Y-^* X is a semi-vector bundle, too. A projectable connection F : U -* 
-+ J*U over a connection _£ : Y-> J1 yon a semi-vector bundle 1/ -• Y-* -Y induces 
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for any y e Y a map TJUy : Uy -*• ( J ^ i w of vector spaces, where Uy denotes the 
fibre over y. T is said to be semi-linear, if the maps r/Uy are linear for all y e Y. 
In linear coordinates ua on U, the equations of .T are 

г .f .vf-=- ľř(*, .v), 
•K = GЦ.r,y).«" 

Now let us turn our attention to the functor TT. Let P^ : TN -» N denote the 
bundle projection of TN. For a given manifold M, choose a local coordinate system 
on 7TM 

(14) x U U ' , 3 i 77* 

in the usual way, i.e. £f = dx' on TM and X1 = dx', S' = d{' on TTM. On TTM, 
there exists a canonical involution iM: TTM -* TTM, iM = id (see [l]). In our co­
ordinates, iM(xJ, £J, XJ, SJ) = (xJ, XJ, £J, SJ). Further, there are two projections 
Px = PTM> PI = TPM of TTM on TM, with the following coordinate expressions: 

Pi(x
J,tJ,XJ,SJ) = (xJ,t;J), 

p2(x
J,ZJ,XJ,SJ) = (xJ,XJ). 

Obviously, p2 = Pi 0 fM and (TTM, TM, pl9 p2) is a double fibred manifold in the 
sense of [2], p. 88. 

Given any morphism / : M -• N and a local coordinate system yp, rjp, Yp, Hp 

on TTN, chosen as above, the coordinate forms of the maps f, Tf: TM -> TN and 
TT/": TTM -> TTN are 

TГ/: 

r/.|/:.v''=/''W, 
l ňf" *-dlL ť 

y p = ^ . * ' , 

g2/p 

dxldxJ Hp = 
дxl 

Hence the functor TT (of the second order) is a prolongation of the first-order 
functor T. 

Denote by KM the common kernel of both projections pt and p2. KM is a fibred 
manifold over M, for which the space KXM .= {(x(, 0, 0, S()} of all vertical vectors 
at 0 is the fibre over x9 and PtjKM is the projection. Clearly, KJM « T^M. Thus 1CM 
is a fibred submanifold of 7TM, and KM * TM. For any / : M -> N, yp = /p(x), 
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define a map Kf: .KM -» KN by 

V =/'(*), 
Kf:\1p=Y<> = 0, 

dfp 

HP = 2L . £ ' . 

5xf 

Obviously, K is a functor isomorphic to T, and TTis an extension of K. 
Theorem. Let M be a smooth manifold, and let F be a (generalized) connection 

on TTM, i.e. r.TTM-^J^TTM is a smooth section. Then there exists on M 
a linear second-order connection A : TM—• J2TM such that TT(A) = F iff the 
following conditions are satisfied: 

(A) There exists a linear connection of the first order on M, A: TM -*• JXTM9 

such that 

(i) T is pf protectable over the connection T(A)forj = 1, 2. 
(ii) F is reducible to KM, the reduction being TJKM = T(A). 
(iii) F is semi-linear on the 2-fibred manifold TTM 2+ TM ^ M over T(A) for 

3 = 1,2. 

(B) F is invariant with respect to the canonical involution iM on TTM, i.e. 
jm^oToiM^r. 

Proof. Let F = TT(A). In local coordinates (14), the expression of A is of the form 

AM =nk{x).?, 

The equations of TT{A) are 

<& =nj(x).zj, 
(15) TT{A):\xk = rkj{x).X\ 

[s\ =r\Jk{x).l;i.Xk + r\j{x).E>. 

Setting A = j \ ° A, i.e. 
A:^ = rjk(x).^, 

we have 
T{A) : & = rij(x) • & 

and it is easy to see that the conditions (A) and (B) are satisfied. 
Conversely, let us assume that T satisfies (A) and (B). Then the expression of a con­

nection A from (A) is 

and 
T(A) : <, < - rij(x) . f 
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is the connection conjugate to A. According to (i), 

r:lxl
k = r}rfx).xJ, 

K^k = G^yX, £, X9 &) . 

The reducibility condition (ii) implies that Gl
k(x9 0, 0, E) = F^x). EJ. The condition 

(iii) implies the existence of functions f^(x9 X) and g\j(x9 £) satisfying 

E\=f}j(x9X).V + r\s(x).E>9 

and 

This yields 

-5 . - iV*) .* ' .* + -V*)--*'-
From (B) we finally deduce that the functions r\jk are symmetric in I, fc. Thus F is 
of the form (15), i.e. P = TT(A). QED. 
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