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Časopis pro pěstování matematiky, roč. 110 (1985), Praha 

A DISCONTINUOUS FUNCTION DOES NOT OPERATE 
ON THE REAL PART OF A FUNCTION ALGEBRA 

KRZYSZTOF JAROSZ, ZBIGNIEW SAWON, Warszawa 

(Received May 5, 1983) 

Let A be a function algebra on a compact Hausdorff space X and let h be a function 
on an interval /. We say that h operates by composition on Re A = {Ref.'feA} 
if h o u e Re A whenever u e Re A has the range in I. It is an old conjecture that 
if h operaters by composition on Re A and h is not affine, then A = C(X). J. Wermer 
proved the conjecture in the case h(t) = t2 ([4]) and A. Bernard in the case h(t) = \t\ 
([1]). S. J. Sidney proved that the conclusion holds if h is non-affine and continuously 
differentiable or if h is "highly non-affine" in a suitable manner [3]. O. Hatari proved 
the conjecture for h continuous, non-affine and not "highly non-affine" in S. J. 
Sidney's sense [2]. Thus, the conjecture is verified for any continuous non-affine 
function h. 

The purpose of this note is to prove the conjecture for any noncontinuous func
tion h. In this case one can obtain even more information about A, namely: 

Theorem. A non-continuous function h operates by composition on the real part 
of a function algebra A if and only if A is finite dimensional. 

Proof. Let A be a function algebra contained in C(X) for some compact Hausdorff 
set X and let h be a non-continuous real function which operates on Re A. Com
posing h with a suitable affine function, without loss of generality we can assume that 
there is a sequence (ct„)%L x tending to 0 and such that h(<xn) ^ 1 for all n e N while 
h(0) = 0. Assuming that A is infinite dimensional we get that there is a sequence 
(x-,)*= t of elements from the Choquet boundary of A and a sequence (Un)n=t of open 
pairwise disjoint subsets of X such that xn e Un for n e N. For a fixed s > 0 let 

00 

(fi/i)*= i be a sequence of positive real numbers such that £ sn ^ e, let (fn)n= x be 
n = i 

a sequence of elements of A such that for all n e N 

\\f„\\ = 1 = f«{x„) and sup {|/(x)|: xeXsUn}^sn, 

and let AQ be the subalgebra of A generated by the set {/„: n e A/}. We define an equi

valence relation on X: 

x' ~ x" = f(x') = f(x") for all/ in A0 . 
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The set Y = Xj~ is compact and such that A0 c= C(Y) c C(X). Moreover, the 
separability of A0 implies that Yis metrizable. Put yn = n(xn) where n:X -> Xj~ = 
= yis the natural projection. The set yis metrizable and compact, so the sequence 
(yn)n=z x possesses a convergent subsequence; for simplicity of notation we can assume 
that yn -> y0 e Y. We denote by c the Banach space of all infinite convergent sequences 
with the usual sup-norm, and we define two maps: 

00 

T: c -> A0: T((au a2, ...)) = £ (an - lim an)fn + lim an . 1 , 
n = l 

S:A0->c:S(f) = (f(y„))?=i-

It is easy to compute that by the definition of (f„)*=i we have ||S o T — Idc|| = 2e. 
Hence for s < \ the operator S is onto, so there is an f0 e A0 such that fo(yw) = a„ 
for all n e N. Let g0 e A be such that Re g0 = h o Ref0 and let (xa) be a net consisting 
of elements from the set {x„: n e A/}, convergent to some point x0 e X. We have 

xa -* x0 and n(xa) -> y0 , so TT(X0) = y0 , 

but 
Re g0(xa) = h o Ref0(xa) = h 0 Ref0(^a) = 1 

while 
Re g(x0) = h Q Ref0(x0) = h o Ref0(^0) = 0 ; 

this contradicts the continuity of g and therefore completes the proof. 
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