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CONVOLUTION OPERATORS FOR THE ONE-SIDED
LAPLACE TRANSFORMATION

SALVADOR PEREZ-ESTEVA, Pullman
(Received July 15, 1983)

NOTATION

Throughout the paper, we will refer to the classical spaces defined in [7]: 2 the
space of test functions in R, its dual 2’, & the space of complex C* functions defined in
R, & the space of rapidly decreasing functions in R, its dual &', and O¢ the space of ra-
pidly decreasing distributions. All the above spaces have their usual topologies. I*(R) is
the Hilbert space of square integrable functions, N the set of all nonnegative integers.
For meN, D™ = d"'/dx"' is the distributional derivative of order m. The Fourier
Transformation % : %’ — &’ is based on the kernel e™. For ye R we write
e,(x) = e’ 1, is the translation operator: 75 ¢(x) = ¢(x — p) for @€ 2, and
(tpf, @) = f, 140> for fe D' and pe D. If fe D' has support in [oz, o) and
e_,f€ & for some a,y€ R, then for ¢ > y, F(e_,f) is a function and ¢ + it >
- F(o + it) = #(e_,f) (r) is a holomorphic function on ¢ > y which is called the
Laplace Transform on f and is denoted by £f (o‘ + ir). From now on y will be a posi-
tive number.

Definition 1. Let £9, = {fe 2’ : suppf = [0, ), e_,feI*(R)}. We write
&5, =1,%,, forae R and &5, = D*%5, for peN.

Remark. &3, was denoted L,, in [3]. The space &, is Hilbert with the inner

product:

CDPf, D72, = <f, g% = j ¢_s, /7 dx.

R

For p = 0 the proof follows from the completeness of I*([, o0)). In the general

x

case, notice that D? : &5, — &, is injective.

Definition 2. Let p e N and « € R. Then we define H}, to be the space of all holo-
morphic functions F on the set {¢ + ite C:0 > y} for which
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2a0 : 2
supJ~ ¢ I:(o- +2”) dr < .
g (6% + %)

o>y

Proposition 1. For any pe N and a € R, the Laplace Transformation maps £,
onto Hy,.

Proof. For 3, the proof is in [3]. The general case follows from the formula

L(t,D*f) (u) = e &L f(u), feLy,, Ru>y.

Lemma 1. Let € R and pe N. Then

1) For each F € H:, the limit Lim e**™F(¢ + it)/(c + it)? exists in the topology
' a-y+

of IZ(R) (with respect to the variable t). We denote
a(a +it) . a(y+ir) 1
Lim © F(.O‘ +it) _e F(y + it)
ooyt (0 +i7)? (y + izy?
2) H;, is a Hilbert space with the inner product

e 2™ ( F(y + it) G(y + ir) de
2n Jg (»* + ?)? )
With this inner product the Laplace Transformation & is a unitary mapping
of %5, onto H},.

(F s G):v =

Proof. It is an immediate consequence of ([3], Lemma 4) and Proposition 1.

Remark. From Proposition 1 and Lemma 1 we easily see that Hy, = Hp,{ ,.
Hence H;, < H;,,, and &£}, < %},,,, where all the inclusions are continuous.
We also have continuous inclusions &, < .S,”’;y for < a. For any pe N and € R
we have H3, = uPe™**HQ,.

Definition 3. We define £, and H,, to be the strict inductive limits:

&,y =indlim &, ,

a—+—o0

H,, = ind lim Hy, .

a— -

By Lemma 1 we have

Theorem 1. The Laplace Transformation is a topological isomorphism of %,

onto H,,y.

Proposition 2. Let pe N. Then 9 < &, = 9', where the inclusions are continuous
and 9 is dense in &£ ,,.
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Proof. For p = 0 it is evident. By the remark after Lemma 1 we have 2 < H,,

continuously. It is clear from the case p = 0 that the inclusion £,, = 2’ is contx-

nuous. Finally, if a sequence {@,},.xv = 2 converges to f in Z,,, then { D’(p,,} con-
verges to D?f in & ,,. So 9 is dense in &, :

Definition 3. Let p, e N, p < q. Let C},, be the space of continuous linear opera-
tors T: &,, » £,, such that T(t,f) = 1, T(f) for any B € R, f€ &,,. The elements
of C}, are called convolution operators.

For Te C, and meN we define D"T: £,, - L, by D™ T(f) = D"(T(f)).
Evidently . D"‘Te Cyy+m- Conversely, if Te Cp, then for any fe #,,, there exists
a unique S(f) € &,, such that T(f) = D(S(f )) Since the topology of £, is copied
from %, through the oprator D? we have that S: &, — %, is continuous. Further,
S is ]inear and 7,S = St, for any B € R, so we have the following lemma:

Lemma 2. Let g € N. Then for any Te Cy, there exists a unique S € Cyo such
that DS = T.
Lemma 3. Given Te C}, and a € R there exists p € R such that T(Z3,) = £5,.

Proof. Suppose the opposite, then there is a sequence { f,,},,eN in #;, such that
supp T(f,) N (=0, —n) * 0. Let g, = (n|f,]3,)"" fo- Then limg, =0 in Z3

and lim T(g,) = 0 in %,, which is impossible since %, is a strict inductive limit so
n—o v .

there is § € R such that lim T(g,) = 0 in %%, which contradicts that supp T(g,) N

N (—o0, —n) * 0.

Lemma 4. Let Te C}, p,qe N, p < q. Then T(2) = & and T: 9 > & is con-
tinuous.

Proof. 1) Let Te C}, and ¢ € 9. Take x€ R such that supp ¢ U supp. T((p)
U supp T(D¢) < [«, o).
Consider the function

g(x) = J in(Dfp) dy = J:T(Dq)) dy a<x

0 otherwise.

Since ey T(Dg) € L(R), T(Dg) is locally integrable, and g(x) is well defined.
Further, g is absolutely continuous and Dg = T(D(p) (the distributional derivative).
On the other hand hm n[z ;¢ — ¢] = Dp in @ and hence in &,, Thus

hm "[T 1m T(P)] — T((D)] T(Do). Since %o, is a strict inductive limit, there

ex1sts d e R such that the last limit exists in £§,. We can assume without loss of
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generality that @ = d. Thus

e-y[n(t-1m T(0) — T(@))] = e-, T(Dp) in L(R).
It follows that

X

o) = [ T0g)dy = tim [ afeyT0) ~ TO0)] =

—

x+1/n
=limn J T(¢) (y) dy = T(p)(x) almost everywhere .

n—oo x

We deduce that T(g) is continuous (it can be represented by a continuous function),
similarly T(Dg), so g(x) is everywhere differentiable, and its classical derivative
satisfies

D g(x) = D(T(¢)) (x) = T(Do) (x) -
Inductively we prove that T(¢) € &, and the classical derivative D" T(¢) (x) equals
T(D"p) (x) for any x € R.

2) Now we prove that T: 9 — & is continuous: Let K = R be a compact set.
Let a€ R such that K < [«, ). By Lemma 3, T(Z5,) = &5, for some feR.

So there exists C > 0 such that_[ le_y T(f)l2 dy < CJ le_,fl2 dy forany f e Z5,.
8 R -

Hence if M < R is a compact set and ¢ € D¢ = {y € D : supp ¥ € K} then

X X 1/2 X 1/2
sup |T(e) (x)| = supj |T(Do)| dy < sup (J le,|? dy) (J le-, T(D(p)|2dy) <
xeM xeM g xeM B B

/
=C (I |e-,Do|? dy)l : < C*sup |D o(x)| .
R xeK

Thus T: 9 — & is continuous and the lemma is proved for C},.

3) For Te Cj, we have that T = DS where S € Cj,, so we can apply 1 and 2
to S. Finally, since &,, = %,, continuously we have C}, = Cp, and the proof is
complete.

Let Te C,,. By the previous lemma T:2 — & is a continuous linear operator
commuting with translations. Then there exists a unique distribution uy satisfying
T(¢) = ur * ¢ for any ¢ € 2 (see [6] p. 158). Further, if me N, D™ T(p) =
= D"(T(¢)) = D™(ur* ) = (D™ur) * ¢. SO upmy = D™ur.

Let us show now that supp u; = [oc, o) for some « € R. It is sufficient to do so for
Te C}o. Let {@,},en = 2 with supp ¢, = [—1, 1] and lim ¢, = ¢ in the topology

of @', where ¢ is the Dirac distribution. Then {@,},.y = %5, and there is a € R
such that supp T(p,) < [, ) for any ne N. If € 2 and supp ¢ = (— 0, a) then

Sur, ¥ = lim Cur * ¢, Y = lim (T(p,), ¥> = 0

n—ow n—*o©
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which proves that supp ur < [a, ). Since any Te C,, is a derivative of some
S e C},, the proof is complete. Given p,geN, p< g and a€R, let 0y, be the
space of continuous linear operators T: &), — £5,. O, is a Banach space with
the usual norm
[Tl = sup_ [T,
Irioep

The spaces Oj,, have the following propertles.

1) 0;,, = 0% for & < B. The inclusion is continuous.

2) OPQY < 03‘17

3) D™: 0},, = 05,4,y is an isometry.

4) If Te 0,, then the composition To D? € 0, and .the mapping T+ To D? is
an isometry of Oy, onto Og,.

Now we define the strict inductive limit

0., = ind lim 0%

pPqy pqy *
-

continuously.

By Lemma 3, C}, = O,,,, thus we can equip C}, with the topology of O,,,

Lemma 5. If Te 0%y, N C}, and fe L5, then

T(f)e 25" and |TU|5;" < [TlCo, |£15, -
Proof. T(f) = 7, T(z-.f), so

1/2 1/2
(J Ie_, T(f)|2 dx> = e"’(j |e_, T(r_,,f)l2 dy) <
R R
1/2
s e, j le-yr(r_,fnw) = [T, 1115,
R

Theorem 2. Given p,qe N, p < q, the mapping
(T,f)-T(f): C}y x &,, > Z,, is hypocontinuous .

Proof. For g = 0.

1) Let B be a bounded set in %,,. Then B is bounded in some £3,, so || f[§, £ M
for any f e B and some M > 0. Let V be a neighbourhood of zero in #,,. For each
S€R let ¢, such that {fe L, :|f[}, <&} = VL, Let w;={Te 0}y, N
N Ch: [|T"00y < &,45/M}. Then if Tew; and fe B, we have by Lemma 5 that
IT()]57” < e+, hence T(f) € V.

2) Let B c C}, be a bounded set, then B = 04, for some f € R and is bounded
there. Let V and {€;}scr be as in 1. Let M > 0 such that ||T||8,, < M for any Te B.
Then if w, = {fe &5, "f"o, < &,4+5/M} we have |T(f)|5;? S &,44, 50 T(f) € V.
The proof for the case g = 0 is now complete. The general case is a consequence of
1, 2 and properties 3 and 4 of 0;,,.
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Theorem 3. 2 c C;’,q < 9' and each inclusion is continuous.

Proof. Let ¢ € @ and f € &,,. It follows from the inequality [e_,p * e_,f|| 12r) <
< |le-y@||l 1wy [le-4f |l L2cry that the inclusion 2 < C3, is continuous. Let us prove
the continuity of C}, n 0§,, = 2'. Take a sequence {T,},.y converging to zero in
Cjo N 05, and B = 2 bounded. Then there exists a compact set K = R and x€ R
such that B = 9¢ — &5,. Further, we can assume thatforany ¢ € B the function

= ¢(—x) is also in Dy. Clearly {D§ : ¢ € B} is a bounded set in Z,. Let
M > 0 such that |D@|;, < M for any ¢ € B. The given ¢ € B we have

[Kur, 93] = |ur, * 6(0)] < j

- o0

lur, » Do dy = J' " |uz, + Do dx <

at+p

. 0 1/2 /(0 1/2

é(j Iey|2dy) (j Ie-y(un*D@)I’dY) < Clo, B)M] |50,
a+p at+p

So C} = 2’ is continuous. The rest of the proof is a simple application of properties
2 and 3 of 0F,,.

For the following results it is helpful to recall that if f, g € 9’ have supports in
[, ) for some a € R, then for any o e R, e_,(f *g) = e_,f * e_,g. In particular

we have (e_,ur) * ¢ € I*(R) for any Te C}, € P and ¢ = y.

Lemma 6. Given 0 < p < q integers and Te C,, then e_,ur € O¢ for any ¢ > y.

Proof. Let Te C},, for any ¢ > y and ¢ € 2, the function (e_ ,uy) * ¢ is integrable.
X
Hence (e_,ur) * ¢(x) = J e_,ur * D ¢(g) dy is a bounded function. This implies

that any regularization (e_,,uT) * ¢ is rapidly decreasing at infinity. It follows that
e_,ur € Oc. We have to show now that e_,D™ur e O¢ forany me N, o > yand Te
€Cho. For m =1 we have e_,Duy = D(e_,ur) — oe_,ur which is an element
of O¢. We complete the proof by induction.

Proposition 3. Let p,ge N, Te C}

Py’

fe ZL,, Then T(f) = ug *f.

Proof. It is easily seen that the mapping f—e_,f: &,, = &’ is continuous for
eachpeNand o = y. Let fe £, and {@n}nen cOnverging to f in &,,. Since e_,ur €
€ O¢ for ¢ > 7, we hdve in &’

. €-g T(f) =€C_4 (llm (P,,) = hm €_¢ T((Pn) = lim e—¢r(uT * (pn) =

n—o

=lime_ Ur*€_,0, = €_ur*€_,f.
n-*o0

Hence T(f) = upf.
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Theorem 4. Given p,ge N, p < q,f€ &,, and Te C},, then & T(f) = Lur . &f.

pPg°

Proof. By Proposition 3,

Fle_, T(f)) = F(e_ur xe_,f) = F(e_,ur) F(e_,f)
L(T(f)) (o + it) = Lug(o + it) Lf(c + i)
for o > y.

Definition 4. Let p, ge N, p < q. We denote by M}, the space of all functions G
holomorphic on Re z > y such that the mapping F + GF: H,, - H,, is well defined
and continuous. .

We notice that £(C},) = M},. Conversely if G € M}, it is easy to see that the map-
ping T(f) = £~ (G £(f)) is in C}, and Lu; = G. Thus £(C?,) = M},. From the
properties of Cj, we conclude that My, is the space of holomorphic functions G =
= u% "G’ where x € R, G’ € M}, and F — G'F : H}, — H{, is continuous. On the
other hand, it is not difficult to prove that M} = u?"PMg,. So it is enough to know
Mg, to characterize M}, and then C},.

Theorem 5. A holomorphic function G in Reu > y is in M}, if and only if G =
= y?"Pe”*G’ for some a € R and G’ is a bounded holomorphic function on Re u > 7.

Proof. If G’ is holomorphic and bounded on Reu > y we clearly have that
G’ € M}, moreover G’ as a linear operator maps H, into itself. Conversely let G’
be a function with these properties. For some C € R, C™'G’ has a norm 1 (as an auto-
morphism of HJ,). Since f(u) = u™! is a function in H), we have

[cm6u o, < u"]o, -

We deduce that |[(C™* G')" u™!|g, < |u~"||3, for any neN. We claim that
|C™* G'(u)| < 1 for Re u > y. Suppose the opposite so |C~! G'(g, + ito)| > M > 1
for some oy >y, T, M € R. Then for some & > 0, |G'(6, + it)] > M whenever
T (o — & Tp + £).

Hence

l(C ey w3, 2 (J‘ |C* G'(ao + it)| 2" dr)m . M"rmi

2 2 2 2
R oo + 1 so-e00 T

which is a contradiction. Thus |G’(a + i'c)| < C for o > y. The rest of the proof
follows from the comment after Definition 4.

Remark. We have considered all the distributions f with supp f < [«, o) for
some € R and e_,fe &% where y > 0 is a real number. Actually for such f there
exists a continuous slowly increasing function g such that e_,f = DPg. Let le &
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be 1 in a neighborhood of [«, ) and supp I = [B, o) where B < «. It is easy to
prove that

f= i D*(e,l,9)

where each [, is a linear combination of derivatives of I. Thus f e &£ ,; for any 6 > y.
We define £, = ind lim £, and notice that %, = ind lim R

p-® posoo

Theorem 6. The largest space of distributions T for which the convolution f+—

= Txf: &, = &L, is continuous, is precisely C’ = ﬂNC;, where C), = Lz) Cre-
pe q=p

Proof. Let T: &, » &£, be a continuous linear operator such that 7,7 = Tt,
for every B e R. Given p e N, the operator T: &, f — &, is continuous and linear.

If we denote B, the unit ball in %7, we have that T(Bp) is a bounded set in &,.

Hence there exists g € N such that T(B,) is a bounded set in £_% (See 5). Thus T:
Z,F = £, is continuous and that proves that Te Cj,. It follows that Te C'.
That every element of C” defines a convolution operator for ., is trivial.
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