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časopis pro pěstování matematiky, roč. 110 (1985), Praha 

CONVOLUTION OPERATORS FOR THE ONE-SIDED 
LAPLACE TRANSFORMATION 

SALVADOR PEREZ-ESTEVA, Pullman 

(Received July 15, 1983) 

NOTATION 

Throughout the paper, we will refer to the classical spaces defined in [7]: _? the 
space of test functions in R, its dual _2', & the space of complex C00 functions defined in 
R, Sf the space of rapidly decreasing functions in R, its dual SP, and 0'c the space of ra­
pidly decreasing distributions. All the above spaces have their usual topologies. L?(R) is 
the Hilbert space of square integrable functions, N the set of all nonnegative integers. 
For meN, Dm = dm/dxm is the distributional derivative of order m. The Fourier 
Transformation $F : SP -> SP is based on the kernel e~ixy. For y e R we write 
ey(x) = Qyx. Tfi is the translation operator: rfi (p(x) = cp(x — p) for cp e _?, and 
<T/?/> <py = <f T-/?<P> f° r / - -#' and cp e _2. If fe _2' has support in [a, oo) and 
e_ y /e SP for some a, y e R, then for a > y, !F(p-af) is a function and o* + it H* 
H> F(<x -f it) = <F(t-af) (T) is a holomorphic function on <r > y which is called the 
Laplace Transform on f and is denoted by S£f(a + ii). From now on y will be a posi­
tive number. 

Definition 1. Let Se°Qy = {fe 9' : suppf c [0, oo), e_y /eL2(R)}. We write 
^ o y = T«i?g7 for a e fl and _7*y = Z)M£?0y for p e N. 

Remark. ._?Sy was denoted L2y in [3]. The space -_?£y is Hilbert with the inner 
product: 

<Dpf, Dp
gypy = </, 0>Oy = f e_2yf0 dx. 

For p = 0 the proof follows from the completeness of L2([a, oo)). In the general 
case, notice that Dp : S£%y -> _?£y is injective. 

Definition 2. Let peN and cce R. Then we define H£y to be the space of all holo­
morphic functions F on the set {a + ir e C : a > y} for which 
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f eHr(<r + iт)|2 . ^ 
sup !—^ ,J- dт < oo . 

-2\p 2Y 

Proposition 1. For any peN and oteR, the Laplace Transformation maps S£a
py 

onto Hpy. 

Proof. For S£°0y the proof is in [3]. The general case follows from the formula 

S£(zaD
pf)(u) = upz-auS£f(u), feS£0y, Ru > y . 

Lemma 1. Let ote R and peN. Then 

1) For each F e Ha
py the limit Lim ea(<T+iT)F(<x + rr)/((T + ir)* exists in the topology 

<x-+y + 

of l3(R) (with respect to the variable T). We denote 

. e
a(<r+iT) F(<7 + iT) ea(y+ iT) F(y + k) 

Lim - = . 
<--y+ (G + n)p (y + k)p 

2) Ha
py is a Hilbert space with the inner product 

, ү e " 2 ^ f Ғ(y + iт)G(y + iт)dт 
(Ғ'G)- = ^ Г J R ( ӯ T ^ — 

With this inner product the Laplace Transformation S£ is a unitary mapping 
ofS£a

pyontoHa
py. 

Proof. It is an immediate consequence of ([3], Lemma 4) and Proposition 1. 

Remark . From Proposition 1 and Lemma 1 we easily see that Hpy c Hp+lty. 
Hence Hpy a Hp+ly and S£a

py c S£a
p+ly, where all the inclusions are continuous. 

We also have continuous inclusions S£a
py cz S£\y for ft ^ a. For any peN and cceR 

we have Ha
py = upc'auH°0y. 

Definition 3. We define S£py and Hpy to be the strict inductive limits: 

S£py = ind lim S£a
py, 

Hpy = ind lim Ha
py . 

By Lemma 1 we have 

Theorem 1. The Laplace Transformation is a topological isomorphism of S£py 

onto Hpy. 

Proposition 2. Let peN. Then 3) c S£ py cz Q)', where the inclusions are continuous 
and $} is dense in S£pr 
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Proof. For p = 0 it is evident. By the remark after Lemma 1 we have S c Hpy 

continuously. It is clear from the case p = 0 that the inclusion Sepy cz ®* is conti­
nuous. Finally, if a sequence {<p»}neN cz Q> converges tof in Sf0y, then \Dp(p„} con­
verges to Dpf in S?PT So $) is dense in Sepy. 

Definition 3. Let p, q e N, p ^ q. Let Cy
pq be the space of continuous linear opera­

tors T:Sepy-* Seqy such that T(Tpf) = TP T(f) for any p e R, fe sepy. The elements 
of Cy

pq are called convolution operators. 
For Te Cy

pq and m GN we define DmT: Sepy -» Seq+mp by Dm T(f) = Dm(T(f)). 
Evidently DmTeCy

pq+m. Conversely, if TeCy
0q then for any feSe0y, there exists 

a unique 5(f) e Se0y such that T(f) = Dq(S(f)). Since the topology of Sepy is copied 
from Seoy through the oprator Dq we have that S: Se0y -> JSf 0y is continuous. Further, 
S is linear and T^S = STP for any fie R, so we have the following lemma: 

Lemma 2. Lef geiV. T/ien for any Te C0q there exists a unique Se C00 such 
that DqS = T. 

Lemma 3. Given Te Cy
pq and oceR there exists jS e R such that T(&py) c Se\y. 

Proof. Suppose the opposite, then there is a sequence {f„}neN in Se*py such that 
supp T(fn)n (-oo, - n ) * 0 . Let fc = ( n l l / . y - 1 / . . Then lim ^ = 0 in Sepy 

/ | -*O0 

and lim T(gn) = 0 in J$? qy which is impossible since Seqy is a strict inductive limit so 
H-+00 

there is )3 e R such that lim T(gn) = 0 in JSfgy which contradicts that supp T(gn) n 
n-»oo 

n(-oo, -n) 4= 0. 

Lemma 4. Lef Te C£g p,qeN> p <^ q. Then T(S>) cz S and T: 9 -> g is con­
tinuous. 

Proof. 1) Let Te Cy
00 and cpe3>. Take a e JR such that supp q> u supp T(cp) u 

u supp T(D<p) cz [a, oo). 
Consider the function 

J —00 

0 otherwise. 

Since G„yT(D(p)e L2(R), T(Dcp) is locally integrable, and g(x) is well defined. 
Further, g is absolutely continuous and Dg = T(D<p) (the distributional derivative). 
On the other hand lim w[T__1/ncp - <p] = Dcp in & and hence in if0y. Thus 

71-+00 

l i m n ^ ^ T ^ ) ] - T(p)] = T(D<p). Since j?0y is a strict inductive limit, there 
f!->00 

exists d e R such that the last limit exists in S?%r We can assume without loss of 
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generality that a. — d. Thus 

e_,[n(T_1/BT(<p)-T(<?>))] = e_vT(D<?)) in L\R). 

It follows that 

g(x) = f T(Dq>) Ay = lim f n[r_1/fl T(<p) - T(q>)] = 
J-ao " " ^ J - a o 

px + 1 /n 
= lim n T(<p) (>>) dy = T(q>) (x) almost everywhere . 

n-co Jx 

We deduce that T(q>) is continuous (it can be represented by a continuous function), 
similarly T(Dq>), so g(x) is everywhere differentiate, and its classical derivative 
satisfies 

Dg(x) = D(T(q>))(x)=T(Dq>)(x). 

Inductively we prove that T(q>) e S, and the classical derivative Dn T(q>) (x) equals 
T(Dnq>) (x) for any xeR. 

2) Now we prove that T: _? -> $ is continuous: Let K a R be a compact set. 
Let a e K such that K cz [a, oo). By Lemma 3, T(&*0y) cz <£%y for some p e R. 

So there exists C > 0 such that | |e_y T(f)|2 Ay = C | |e_yf|2 dy for any fe Sea
0y. 

J P J R 

Hence if M cz _R is a compact set and q> e @K = {i// e @ : supp ij/ e K} then 

sup|T(<p)(x)| = sup [X\T(Dq>)\dy = snpfT\ey\
2dy\/2f[)e.yT(Dq>)\2dy) _5 

xehf xeMjp xeM \J p ) \J p J 

^Cf([ \e-yDq>\2 dy\ ^ C» sup |D q>(x)\ . 

Thus T: Q)K -> $ is continuous and the lemma is proved for C00. 

3) For Te C^ we have that T = DqS where S e C£0, so we can apply 1 and 2 
to S. Finally, since J£?0y cz S£py continuously we have Cy

pq cz C0g and the proof is 
complete. 

Let TeC7
pr By the previous lemma T:Q}-*£ is a continuous linear operator 

commuting with translations. Then there exists a unique distribution MT satisfying 
T(q>) = uT* q> for any q> e @ (see [6] p. 158). Further, if meN, Dm T(q>) = 
= Dm(T(q>)) = Dm(MT * q>) = (DmuT) * <p. So MD-T = £>mMT. 

Let us show now that supp MT CZ [a, oo) for some a e R. It is sufficient to do so for 
Te C50. Let {<?„},,<=* c -^ with supp <p„ c [ - 1 , 1] and lim q>„ = d in the topology 

n-*oo 

of £_?', where <5 is the Dirac distribution. Then {q>„}neN cz &0y and there is cue R 
such that supp T(<pn) cz [a, oo) for any n eN. If \J/ e@ and supp i/f cz (— oo, a) then 

<MT, tfr> = lim <MT * q>n, ii/> = lim (T(q>n), i//} = 0 
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which proves that supp uT cz [a, oo). Since any Te Cy
pq is a derivative of some 

Se C00, the proof is complete. Given p,qeN, p = q and OLGR, let Oa
pqy be the 

space of continuous linear operators T: S?°py -> <£a
qr O

a
pqy is a Banach space with 

the usual norm 
| |T||^y= sup ||T(/)||Jy. 

I l / l l 0 -p._-

The spaces Oa
pqy have the following properties: 

1) Oa
pqy cz Op

pqy for a ^ p. The inclusion is continuous. 
2) ° m <= °o«y continuously. 
3) Dm: Oa

pqy -> 0^+ m y is an isometry. 

4) If Te Oa
pqy then the composition To Dp e Oa

0qy and .the mapping T\-> To D" is 
an isometry of Oa

pqy onto 0^y . 
Now we define the strict inductive limit 

Opqy = ind lim Op
pqy. 

0-*-ao 

By Lemma 3, Cy
pq cz Opqy, thus we can equip Cy

pq with the topology of Opqy. 

Lemma 5. If Te O00y n q j 0 a n d / e ifgy, then 

TV)e*$' and ||T(/)||Sy^ = | |T||00y ||/||0y. 

Proof. T(/) = ra T(i_a/), so 

( jje_y T(/)|- dxj/2 = e--Qje.y T(x_a/)|
2 d^'2 = 

= e ~ i m ^ 
1/2 

"" ^ ÒOy | | I ЦOy 

Theorem 2. Gwen p, qeN9 p = q, fhe mapping 

(TJ) i-> T(/) : CJ, x i^py -> <£qy is hypocontinuous . 

Proof. For q = 0. 

1) Let B be a bounded set in S£0y. Then B is bounded in some S£0v so ||/[|Sy = M 
for any f e B and some M > 0. Let Vbe a neighbourhood of zero in S£0y. For each 
6 e R let e, such that { / e JS?0y : ||/||0y < e,} cz Vn JSf0y. Let co, = {Te Og0y n 
n Q>o : ||T||g0y = ea+PlM}. Then if Teo)^ and / e 5 , we have by Lemma 5 that 
||n/)llor = ^,henceT(/)eV. 

2) Let B cz Co0 t>
e a bounded set, then B cz O 0̂y for some fieR and is bounded 

there. Let Vand {ed}d€R be as in 1. Let M > 0 such that ||T||g0y = M for any Te £. 
Then if coa = { / e i ? 0 y : ||/||oy = *«+*/M} we have \\T{f)\\*0

+/ = ea+/?, so T ( / ) e V. 
The proof for the case q = 0 is now complete. The general case is a consequence of 
1, 2 and properties 3 and 4 of 0*gy. 
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Theorem 3. £2 c= Cy
pq c £9' and each inclusion is continuous. 

Proof. Let cpeQ) andfe Se0y. It follows from the inequality ||e_yp * e_yf||L2(R) ^ 
= ||e-y9||L-(R) ||e-y/||L2(R) that the inclusion £? c Cy

00 is continuous. Let us prove 
the continuity of Cy

00 n O00y cz £2'. Take a sequence {Tn}neN converging to zero in 
Coo n ^ooy a n - B cz @ bounded. Then there exists a compact setKczR and a e _R 
such that B a £2X c jgfjy. Further, we can assume that for any cpeB the function 
<p(x) = <p(—x) is also in Q)K. Clearly {DQ :<pe B} is a bounded set in Se%y. Let 
M > 0 such that ||-9$||0y _i Af for any cp e B. The given p e B we have 

po /*o 
|<«r, <?>>| = |«r, * <K°)| ^ |"T„ * ->$| dy = |ur„ * D0| dx :g 

J -oo Ja + 0 

- ( J ° + |eyVd y y ( J ° + |e_y(«r„ * I><?)|2 dy)"* ^ C(a,P)M\\T\\"00y. 

So C00 c £2' is continuous. The rest of the proof is a simple application of properties 
2 and 3 of Opqr 

For the following results it is helpful to recall that if f,g e £2' have supports in 
[a, oo) for some ote R, then for any a e R, e_ff(f * g) = e_fff * e_ffa. In particular 
we have (e_ffMr) * cp e I?(R) for any Te C00, <pe_? and a = y. 

Lemma 6. Given 0 = /? = q integers and TE Cy
pq, then e_ffMr e 0'cfor any a > y. 

Proof. Let Te C00, for any a > y and cpeQ), the function (e_ffMr) * cp is integrable. 

Hence (e_ffMr) * cp(x) = e_ffMr * D cp(g) dy is a bounded function. This implies 
J — 00 

that any regularization (e_ffMr) * cp is rapidly decreasing at infinity. It follows that 
e_ffMr e 0'c. We have to show now that e_ffD

mMr e 0'c for any m eN, a > y and Te 
6 C00. For m = 1 we have e_y£>Mr = D(e_ffMr) — <re_ffMr which is an element 
of 0'c. We complete the proof by induction. 

Proposition 3. Let p9qeN, Te Cy
pq,fe Sepr Then T(f) = uT*f. 

Proof. It is easily seen that the mapping fn-> e_fff: Sepy -> Sf' is continuous for 
each peN and a ^ y. Let fe Sepy and {<pn}„eN converging to f in Sepy. Since e_ffMr e 
e 0'c for a > y, we have in 5?' 

e_ff T(f) = e_ff T(lim <pn) = lim e_„ T(q>n) = lim e_ff(Mr * <pn) = 
/I—>oo n-+oo 

= lim e_ffMr * c-a<pn = e_ffMr * e_fff. 
n-*oo 

Hence T(f) = uT*f. 
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Theorem 4. Given p,qeN,p ^ q,f'e Se\y and Te Cy
pq, then Se T(f) = SeuT . Sef. 

Proof. By Proposition 3, 

?{e-. T(f)) = ^(e_ f f W- * e_„/) = ^(e_„i/T) J~(e_ff/) 

or 
JžP(T(/)) (cr + it) = SCuj(a + h) Sef(a + h) 

for 0" > y. 

Definition 4. Let p, qeN, p ^ q. We denote by MJ^ the space of all functions G 
holomorphic on Re z > y such that the mapping F .—> GF: Hpy -» H9y is well defined 
and continuous. 

We notice that Se(Cy
pq) c My

pq. Conversely if G e My
pq it is easy to see that the map­

ping T(f) = Se-\G Se(f)) is in Cy
pq and SeuT = G. Thus JSPfC^) = AfJ,. From the 

properties of C0q we conclude that My
0q is the space of holomorphic functions G = 

= uqe~*uG' where a e R, G' e M£0 and F i-> G'F : if0y -• H%y is continuous. On the 
other hand, it is not difficult to prove that My

pq = uq~pMy
00. So it is enough to know 

My
00 to characterize My

pq and then Cy
pq. 

Theorem 5. A holomorphic function G in Re M > y is in My
pq if and only if G = 

= uq-pQ-*uG'for some a e R and G' is a bounded holomorphic function on Re u > y. 

Proof. If G' is holomorphic and bounded on Re w > y we clearly have that 
G' e M0 0 , moreover G' as a linear operator maps H0y into itself. Conversely let G' 
be a function with these properties. For some C e R, C~ lG' has a norm 1 (as an auto­
morphism of H0y). Since/(M) = M" 1 is a function in H0y we have 

IIC-G'u-IIS^Uu-1^. 

We deduce that KC'1 G'f i / " 1 ] ^ _5 flw'loy for any n e N . We claim that 
| C _ 1 G'(u)\ g 1 for Re u > y. Suppose the opposite so IC"1 G'(a0 + ix0)\ > M > 1 
for some a0 > y, T0, M e R. Then for some e > 0, |G'(<70 + 1*)) > M whenever 
T e (T0 - e, T0 + e). 

Hence 

i (c- .G T „-.,;, 6 (p
c-G;"rv)|2"4" * «• r-i^r • 

which is a contradiction. Thus \G'(G + ii)| < C for a > y. The rest of the proof 
follows from the comment after Definition 4. 

Remark. We have considered all the distributions / with supp / c [a, oo) for 
some cce R and e_ y / e Se' where y > 0 is a real number. Actually for such / there 
exists a continuous slowly increasing function g such that e_y / = Dp#. Let / e # 
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be 1 in a neighborhood of [a, oo) and supp / c [/?, oo) where ft < a. It is easy to 
prove that 

f=i»i?M 
n=l 

where each l„ is a linear combination of derivatives of /. Thus / e £epb for any S > y. 

We define £ey = ind lim £e py, and notice that £ey = ind lim if~/\ 
P-+00 

Theorem 6. The largest space of distributions T for which the convolution /i-> 
i-> T * / : £ey -» JSfy is continuous, is precisely Cy = fl Cp, where Cp = (J CJ,. 

pe/V 4 > p 

Proof. Let T: JSfy -> ify be a continuous linear operator such that TPT = TT^ 
for every p e R. Given p e N, the operator T: J*f ~y

p -> if y is continuous and linear. 
If we denote Bp the unit ball in £epy

p, we have that T(Bp) is a bounded set in jSf r 

Hence there exists qeN such that T(Bp) is a bounded set in j£f ~/. (See 5). Thus T: 
J&fp/ -> if"/ is continuous and that proves that Te Cy

pq. It follows that 7'e Cy. 
That every element of Cy defines a convolution operator for £ey is trivial. 
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