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časopis pro pěstování matematiky, rol. 110 (1985), Praha 

SOME REMARKS ON A RECENT THIRD ORDER 
NONLINEAR OSCILLATION RESULT 

G. G. HAMEDANI, Milwaukee 

(Received October 11, 1983) 

In a recent paper [2], Mehri considers the problem of oscillation of the solutions 
of the nonlinear third order differential equation 

(1) x" '+/(f,x) = 0, 

wheref(f, x) is a continuous function of the variables t _ t0 and |x| < oo, satisfying 
the following sign and monotonicity conditions: 

(2) xf(t, x) > 0 , x 4= 0 for all t = t0 , 

(3) \f(t, Xl)\ = \f(u x2)\ if \xt\ = |x2 | , xxx2 = 0 . 

Mehri shows ([2], Theorem 1) that for equation (l) to be oscillatory (i.e., all non-
trivial solutions of (1) to be oscillatory) it is necessary that conditions 

= 00 (4) T t2\f(t, C)\ dr = oo , p / ( r , Ct2)\ dr = 

be satisfied for any number C 4= 0. 
Then he gives the following theorem ([2], Theorem 2) about the sufficiency con

dition for equation (1) to be oscillatory. 

Theorem M. If the condition 

(5) f "|/(r, C)\ dr = co 

is satisfied for every constant C 4= 0, then (1) is oscillatory. 
Mehri also gives the following corollary for the special case of (1), namely 

(6) x'" + a(t)f(x) = 0. 

Corollary M. Let a(t) ^ 0,/(x) be continuous functions satisfying the conditions 

(7) xf(x) > 0 , x * 0 
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| / (*i) | ^ | / (x2) | when |x, | = | x 2 | , x t x 2 £ 0 , 
and 

(8) sup | / (x) | < oo . 

Then (6) is oscillatory if and only if 

(9) 

Лoo 

a(t) át = = 00 . 

The argument given in the second part of the proof of Theorem M is incorrect 
and the falsity of Theorem M and Corollary M can be shown by the following 
examples. 

Example 1. f(t, x) = x 3 e 2 f , t = 0,* |JC| < oo. 

x 3 , |x| = 1 

E x a m p l e 2. Let fi(x) = 
2 -

- 2 - 1 
x 

X > 1 

X < - 1 , 

a(t) = e 2 ř foг t = 0 and f(t, x) = a(ř)/,(x) . 

R e m a r k s . 

(i) f(t, x) in Example 1 (or Example 2) satisfies the conditions (2) —(5), and x(t) = 
= e" r is a bounded nonoscillatory solution of (1). Hence Theorems 2 and 3 of [2] 
are false*); and condition (4) (though a necessary condition), is not a sufficient 
condition. 

(ii) f(t, x) in Example 2 satisfies (7) — (9), and x(t) = e~r is a bounded nonoscillatory 
solution of (6). Hence the sufficiency part of Corollary M is false and the necessary 
part follows from Theorem 1 of [2] which does not require (8). 

(iii) For f(t, x) in Example 2 we have: 

(a) for each 6 > 0, 

(10) I Лoo 

inf f(t, x) dí 
J .5<.|x|<oo 

= 00 

(b) f(t, x) is strongly lower semi-continuous from the left for x > 0, upper 

semi-continuous from the right for x < 0, smooth at infinity and also 

*) Theorem 3 of [2]. If for any nonzero constant C we can find constants X 4= 0 and M > 0, 
depending on C, such that the inequality |f(t, C)| > M\f(ty Xt2)\ is satisfied for t sufficiently large, 
then for every solution of equation (1) to be oscillary condition (5) is necessary and sufficient. 
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(11) 

and 

(12) 

(13) 

j(t, x) df = oo for each x ={- 0 , 

(c) 

\f(t, x)\ ^ 1 for all t and all |x| ^ 1 ; 

l iminf |/,(x) | > 0 , 
l ^ l - Q O 

(d) 

(14) И m 
M - 0 0 

£/.(«*: ) du = oo. 

Therefore various sufficiency conditions similar to those given in Theorem 1 and 
Corollaries 2 and 3 of [3] for second order nonlinear equations will not be adequate 
for (1) or (6). 
(iv) The following result in the frame-work of [2] is possible. 

Under conditions (2), (3) and (5) every solution x of (1) is oscillatory or such 
that 

lim x(t) = lim x'(t) = lim x"(t) = 0 monotonically . 
t~* 00 t->CO t~* 00 

Proof . Assume the contrary and let x(t) be a nonoscillatory solution which may 
be assumed to be positive for t ^ t0. Then x!"(t) < 0; hence x"(t) is non-increasing 
and x'(t) is concave and consequently x"(t) > 0 for t ^ t0 > 0. Now, if x'(t) > 0 
for t ^ t0, then x(t) is non-decreasing and 

x"(t) = x"(t0) - f / ( s ,x ( s ) )ds ;S x"(f0) ~ tlf(s,x(t0))ds . 
J fo J to 

This implies lim x"(t) = — oo which is a contradiction. If x'(t) < 0 for t ^ t0> 
t-*oo 

then x(t) is non-increasing. Here we consider two cases: 

Case 1. lim x(t) = a > 0. Then x(t) ^ a for t ^ tt. From the identity 
f-+oo 

r. x"(t,) - x'(tt) = t x"(t) - x'(t) + | sf(s, x(s))ds , 

it follows that 

. hx"{tx)- Au). r* ,A 
A = _±—\JJ. i-i/ *£ / (s,a) ds , 

ř l Jři 
which is a contradiction. 

Case 2. lim x(t) = 0. From the fact that x(t) > 0, x"(t) > 0 for t ^ f0 it follows 

239 



that x'(t) is non-decreasing and lim x'(t) = P where - c o < ] 5 ^ 0. This implies 
f-»oo 

that x'(t) g p or fall t ^ f0, and hence x(t0) = x(t) — P(t — t0) which is impossible 

for p < 0. Therefore lim x'(t) = 0. Now x'(t) < 0, x'"(0 < 0 for t ^ t0 imply that 
r-*oo 

jc"(r) is non-increasing and lim x"(t) = y where 0 ^ y < cc. This implies that 
. • - • C O 

x'(t0) = x'(t) - y(t - t0) for t = t0 

which again is impossible for y > 0, and hence y = 0. 

(v) Conclusions of (iv) hold for equation (6) under (7) and (9). 
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