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Časopis pro pěstování matematiky, roč. 110 (1985), Praha 

JETS IN DIFFERENTIAL SPACES 

WLODZIMIERZ WALISZEWSKI, Lodz 

(Received October 24, 1983) 

1. INTRODUCTION 

One of the most fundamental concepts of global analysis and differential geo
metry is the concept of a jet introduced in 1951 by C Ehresmann [ l ] . In 1967 R. 
Sikorski [5] introduced the concept of a differential space (d.s.) as a generalization 
of a C^-differentiable manifold. A big part of the foundations of differential geometry 
may be delivered in terms of d.s. Independently, S. Mac Lane [3] introduced the 
same concept of d.s. in his lectures on modern theoretical mechanics. The concept 
of a jet in the category of d.s. seems to be interesting. A methodologically new 
approach to the foundations of differential geometry presented by I. Kolaf in [2] 
may be then extended to the category of d.s. In the present paper we introduce the 
concept of a jet and the differential structure of all jets of order k from a d.s. M to 
a d.s. N, and establish the basic properties of these concepts. The main part of the 
paper was presented at Czechoslovak Conference on Differential Geometry and its 
Applications at Poprad. 

If M is a d.s., so PointsM and F(M) denote the set of all points of M and the dif
ferential structure of M, respectively. Following Sikorski [5] for any set C of real 
functions defined on a set S and for any set A <= S, the set of all functions fi: A -> R 
such that for every p e A there exist cue C and a neighbourhood B (in the weakest 
topology on S for which all functions of C are continuous) of p fulfilling the con
dition p\AnB = a\AnB, is denoted by CA. CA is called the set of all locally 
C-functions on A. So, F(M)A is the set of all locally F(M)-functions on A. Then, 
(A, F(M)A) is a d.s., being a differential subspace of M. This d.s. will be denoted 
by MA. So, we have PointsMA = A and F(MA) = F(M)A. The weakest topology 
on PointsM for which all functions of F(M) are continuous will be denoted by topM. 
Then we have topMA = topM | A = {A n B; BetopM}. The union of all sets 
F(MA), where pe Ae topM, will be denoted by F(M, P). If / smoothly maps the 
d.s. M into a d.s. N, i.e. if/maps PointsM into PointsN and for any f$ e F(N) we have 
Pofe F(M), then we write / : M -> N. The tangent bundle (see [4]) to the d.s. M 
is denoted by TM. A mapping from PointsM to PointsTN is called a vector field 
on M tangent to N. For any vector field Von a subspace of M and for any ft e F(NB), 
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where B e topN, we set (dv0) (p) = V(p) (/?), because V(p) is a tangent vector to N 
at a point p of the set B. In particular, for any /? e F(N) we have the function dvfi 
defined on a subspace of M. A vector field is said to be smooth on M iff the mapping 
V: M -> TN is smooth or, evidently, for any p e F(N) the function dvfi belongs to 
F(M). If P e F(NB), B e topN and V is smooth, so dvfi e F(MA), where A is open 
in M. A vector field X on M tangent to M and satisfying the condition: X(p) is 
a vector of TpM for any p in M is briefly called a vector field on M. The set of all 
smooth vector fields on M is denoted by &(M). 

2. CONCEPT OF JET 

Consider the set (MN) of all pairs (p,f), where p e PointsM a n d / smoothly maps 
a differential subspace of M, such that the set of all its points is an open neigh
bourhood of p, into the d.s. N. We shall say that (p,f) is equivalent to (px,fx) of 
order fc, (p,f) = k(pl,fl), iff 

(i) (p,f), (pl,f1)e(MN), p = Pi and / (p ) = fx(p), 

(ii) for any d.s. L, any smooth vector fields Xu ...,Xke 3£(M), any fieF(N), 
any smooth mapping cp: L-> M and any f e PointsL such that ^(r) = p we have 

(2.1) dXi...dXr(Pofo(p)(t) = eXi...eXr(Poflo(P)(t) for r = fc. 

It is easy to see that =k is an equivalence in (MN). Every coset of =k will be called 
a jet of order fc from M into N. The jet containing the pair (p,f) will be denoted 
by jk

pf or by jhf(p). The set of all jets of order fc from M into N will be denoted by 
J*(M,N). We have then J*(M,N) = {jk

pf; (p,f)e(MN)}. From (i) it follows that 
for any jet \i e J*(M, N) there is a single p such that JLL = jkf, and a single q such 
that 4 = f(p)> where (P , /) e (MN). The points p and q will be denoted by ap. and b//,. 
respectively. So, we have 

(2.2) a: J*(M, N) -> PointsM and b: J*(M, N) -> PointsN . 

Let / ie J ' (M,N) , v e J*(N, P), bp = av, n = jk
pf = j^A and v = jkg = j\xgu 

(P,f), (Pi,fi) e (MN) and (q, ^) , (qx, gx) e (NP). So, for any d.s. L, any cp: L-+ M 
and tePointsL such that (p(f) = p and for any yeF(P) and Xu ...,Xke%(M) 
we have (2.1), where jS = y o gv Setting in (2.1) / D cp instead of cp, and y, g, gx 

instead of P,f,fu respectively, we get 

dXi ••• dXr(y ogofocp) (t) = eXi... eXr(y 0 gx of 0 9) (r) . 

Hence eXi... aXr(v °9 °f °<?) (0 = djr, ••• 5xr(y ° ^1 ° / i ° <p) (0 f ° r r = fc- T h u s
5 

Ip(^ ° / ) —Jpfoi °/i)- T h e r e f o r e J we have a correct definition of the composition 
v . ix of jets jti and v such that b\i = av, as follows: 

v-ti=jk
p(g of), n=jkf, y=j\g, p = aii, q = bv. 
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Let us denote the set of all pairs (fi, v) e Jk(M, N) x J*(N, P), av = bfi, by 
J*(M, N) x J*(N, P). We then have the mapping 

(//, v) i-> v . //: J*(M, N) x J*(N, P) -> J*(M, P) . 

3. THE DIFFERENTIAL SPACE J"(M, N) 

(3.1) £: PointsL -> J*(M, N) 

will be called a field of (M, N)-jets of order k on L. Assume that we have smooth 
mappings 

(3.2) a 0 £ : L - > M and & o £ : L - > N . 

Let us take any p e F(N), any Xu ...,Xketf(L) and any Yl5..., Yke %(M). For 
any t e PointsL we have 

(33) £ (0= jW" where f,-Ut-*N, 
Ut is an open differential subspace of M around the point a£(t). From the definition 
of jets it follows that for / _̂  k we have correct definitions of functions £(/?, Xu ..., Xt) 
and £(/?; Yu ..., Yt) by the formulas 

Zip, x, xt) (t) = dXl... exl(p./,.«.{)(«), 

tffi, Yu ..., Y,) (0 = dTl ... dYlp of) (a «(*)) 
for t e PointsL. The set of all mappings (3.1) such that the mappings (3.2) are smooth 
and the condition 

(*) for any Xu...,Xke %(L), any Yu ...,Yke %(M) and any ft e F(N) the functions 
Z(ft,Xu ...,Xt) and f(0; Yu ..., Yt) belong to F(L) for / = k 

is satisfied, will be denoted by (MN)(fc) L. The smallest differential structure on 
J*(M, N) containing all y: Jk(M, N) -> R such that y o { e F(L) for any { e (MN)<*> L 
and any d.s. Lwill be called the differential structure of the d.s. Jk(M, N) and denoted 
then by F(Jk(M, N)). 

Proposition. For any d.s. M and N there are smooth mappings 

(3.4) a:J*(M,N)->M and b: J*(M,N) -> N . 

For any smooth mapping 

(3.5) a:N->P 

we have a smooth mapping 

(3.6) jkg:N-+Jk(N,P), where jkg(q) = jk
qg for qe PointsL. 

243 



Setting g*(fi) = jk
p(g of), where fi = jkf f: U -> N, U being an open differential 

subspace of M around p, we obtain the smooth mapping 

(3.7) g*:J\M,N)->J\M,P). 

The correspondence g\->g* defines a covariant functor from the full category 
of d.s. into it self. 

For any d.s. N and any diffeomorphism 

(3.8) h: P -> M 

we have the diffeomorphism 

(3.9) h*: J\M, N) -> J*(P, N) 

defined by the formulas h*(ju) = j\fo h)(h~i(p)), \i = jk
pf. The correspondence 

h h-* h* gives a contravariant functor from the category Diff(d.s.) of all d.s. together 
with all diffeomorphisms between d.s. into the same category. 

Proof. The smothness of the mappings (3.4) follows from the smoothness of (3.2) for 
any d.s. Land any £ e (MN)(k) L. To prove that (3.6) is smooth we check that jkg e 
e(NP)(k)N. To this aim take any p e F(P) and any Xu ...,Xk e &(N). We have 

jkg(P, Xu ...,Xt) (t) = dXi... dXl(p ogoa ojkg) (t) = dXl ... dXi(P o g) (t) 
and 

jkg(P; Xu...,Xt) (t) = dXi... dXt(fi o g) (ajkg(t)) = dXi... dXl(P 0 g) (t) 

for any point t of N. This yields that jkg(P,Xu ...,Xz) and jkg(P; Xu ...,Xt) belong 
to F(N) for / ^ k. Let us take any y: J\N, P) -> R such that for each d.s. Land any 
£ e (NPfk) L we have y 0 £ e F(L). We then get y 0 j

kg e F(N). 
To prove that for any smooth mapping (3.5) the mapping (3.7) is smooth take 

y: J\M, P) -> R such that for any d.s. Land any n e (MP)(k) L we have y 0 n e F(L). 
Wesety! = y o ^ , Let <!; e (MN)(k) L and ^ = g*o£ Then, for any X u ...,Xk e &(L)9 

any Yu ..., Yke%(M), pe F(P), I = k and a = P 0 g we have successively (3.3), 
r\(t) = g*(Z(t)) = jU(t)(9 o/r), rj(p, Xu..., Xt) (t) = dXl... dXl(P o (g oft) Qaon)(t) = 
= dXi ... dXi(* of o a o t)(t) = S(*,X19 . . . ,XZ)(0 and n(p; Yu ..., Yt)(t) = dYi ... 
... dYl{P o (g of)) (a n(t)) = dYi... dYl(* oft) (a Z(t)) = {(«; Yu ..., Yt) (t) for t e 
ePointsL. Hence n(P,Xu ...,XZ) = £(*9XU ...,Xt)eF(L) and n(P; Yu..., Yt) = 
= £(cc; Yu ..., Yt)e F(L). Moreover, we have a n(t) = agj^(if) = a^(r)and bn(t) = 
= kiU(t)(9 -ft) = 9(ft(<* f(0)) = 0(b {(0) = (9 o b o 0 (t) for t e PointsL. Hence it 
follows that a on: L-+ M and b on: L-> P. These relations yield n e (MP)(fc) L. 
Therefore y ^ ^ y o ^ e F(L). Thus, y{ e F(j\M, N)). 

Now, let us take a diffeomorphism (3.8) and y: J\P, N) -* R such that y 0 n e F(L) 
for each d.s. Land any n e (PN)(k) L. Set yx = y 0 h*. Let { e (MN)(&) L,Xu...,Xke 
e &(L), Yu...,Yke %(P), p e F(N) and t e PointsL. Setting 

(3.10) n = ft* 0 f 
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є 

we get tl(t)=jk(ftoh)(h-1(ai;(t)))9 where Z(t) = jk,{t)ft9 an(t) = h'^a^t)), 
(h o a o n)(t) = (a o £)(*), n(/]9Xl9 ...9Xt)(t) = dXi ... dXl(P oft o h o a o n) (t) = 
= 3xl...dxi(Poftoao£)(t) = £(p9Xl9...9Xi)(t) and n(P; Yl9 ...9 Yt) (t) = 
= dYl... dYl(p of o h)(a n(t)) = dYl ...dY}(f} oft o h)(h-\a Z(t))) = 
= dVl ... dVl(P 0f) (a £(t)) = {(/?; Vl9...9Vt) (t)9 where V, = h* o 7, o / T ' e iT(M), 
i = 1, ..., k. Hence it follows that for / g k, n(P9 Xl9...9 Xt) = {(ft Xl9...9 Xt) e 

F(L) and n(P; Yu ..., Y,) = £(# V1?..., Vz)eF(L). Moreover, we notice that 
bh%u) = bfi for neJk(M9N). So, for f/ given by (3.10) we have bon= b 0 £. 
Therefore, f; e (MP)(fe> L. Thus, y 0 /i* 0 c = 7 o n e F(L). Hence the mapping (3.9) 
is smooth. It is easy to check that the mapping /T 1*: Jfc(P, N) -> Jk(M9 N) is the 
inverse mapping to (3.9). Therefore (3.9) is a diffeomorphism. This completes the 
proof. 

4. THE CASE WHEN DIFFERENTIAL SPACES ARE 
DIFFERENTIABLE MANIFOLDS 

For any h = (hl9..., hm)9 where hl9...9hm are non-negative integers, we set 
\h\ = hi + ... + hm and h! = hx! ... hm\. The set of all systems u of the form 

(4.1) ((u1
9...9u

m)9(ui;\h\ £k9j£n))9 

where u\ uJ
h are reals, will be denoted by Ek

mn. The set Emn is in a natural way an 

m + n I \ j-dimensional Euclidean space. Let M and N be differential spaces. 

We will examine in this section the d.s. M and N under the hypothesis that they are 
differentiable manifolds of dimensions m and n9 respectively. Let x and y be any 
charts of M and N, respectively. For any 0 in Jk(M9 N) such that aO and b0 belong 
to the domains Dx and Dy of charts x and y, respectively, we set 

(4.2) y6x = (x(aO), (dh\ ... dh
Z(yJ of) (a6); \h\ = k, j = n)), 

where 0 = jkf(a0)9 f:U -> N, U being an open differential subspace of M around 
the point a9. Here xt(p) (<x) = dt(oi o x'1) (x(p)) for a e F(MA)9 A is an open neigh
bourhood of p contained in Dx9 dh

x\ stands for the hrtimes repeated operation dx. 
which corresponds to the vector field xt when ht > 0, and dh

x\ = id when ht = 0. 
The formula (4.2) defines then the mapping y . x of the form 

(4.3) a - 1 [Ac] n b-^D^BO^yOx. 

The mapping (4.3) is a chart of the manifold of all Ehresmann's k-jets from M into N 
(cf. [1]). Now, we evaluate the value (y. x)'1 (u) of the inverse mapping to (4.2) 
at a point u of the form (4.1). 

Let 0 = (y. x ) " 1 (u). So, we have y6x = u. Hence we get 

(4.4) x(a9) = (u\ ..., O ' and dh\ ... dh
xZ(yJ of) (06) = <„.»„,. 
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Thus, d\l ...dh
m

nt(yJofoX-l)(a9) = uJ
hl_hm, where 3- denotes the partial dif

ferentiation with respect to the i-th variable. Let us set 

(4.5) x\p, u) = £ I u^x^p) - u1)*' ... (x™(p) - um)h" 
\h\^kh\ 

and 

(4.6) x(p, u) = (x*(p, u),..., xm(p, u)) for p e Dx and u e £*,,„. 

From (4 4), (4 5) and (4.6) we get 

(4.7) (y . x ) " 1 (tt) = / ( y " 1 o *(-, u)) (x" V > . . . , tt")) . 

In Ehresmann/s theory, the differentiable manifold of all jets of order fc of map
pings from M into N has the atlas generated by all maps of the form y . x, where x 
is any chart of M and y is any chart of N. We will prove the basic theorem about 
compatibility. 

Theorem. If d.s. M and N are differentiable manifolds, then the d.s. Jk(M,N) 
coincides with the differentiable manifold of all Ehresmann's jets of order k of 
mappings from M into N. 

Before proving the above theorem we prove three lemmas. 

Lemma 1. If M and N are differentiable manifolds of dimensions m and n, 
respectively, then the set of all Ehresmann'sjets of order kfrom M into N is equal 
to Jk(M, N). 

Proof. It suffices to prove that, under the assumption of (i), the condition (ii) is 
equivalent to 

(ii') for any chart x of M around p and any chart y of N aroundf(P), if hi + . . . 
... -f- hm ^ fc, then for j ^ n 

(4.8) a»«...ajrv„/»x-')(x(P)) = ^...d"-(y'o/. 0x-1)(x(P)). 

Assuming (ii) let us take charts .x and y as in (ii'), MDx as Land id as cp in (ii). 
Diminishing, if necessary, the domain Dy of functions yJ to a neighbourhood of f(p) 
we can take some functions PJ e F(N) such that pJ is equal to yJ in a neighbourhood 
of f(p). We have then by (ii) 

A1... W o / o x - ' ) ( x ( P ) ) = a j ; . . . s i : ( / o / ) ( p ) = 

= dh
x\...d

h
xi{p'ofocp){P) = ^ ; . . . ^ : ( ^ O / , ° < Z > ) ( P ) = 

= dx\... a * : ( y , / . ) (p) = # . . . £ - ( / o / t o x - 1 ) (p) . 

Let us assume (ii'). For any q>: L-> M, X e &(M), t e PointsL and a e F(M, <p(t)) 
we have 
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djfa o cp) (t) = X(t) (ococp) = cp*(X(t)) (a) = <p*(X(t)) (x>) xt(cp(t)) (a) = 

= X(t) (xl o cp) (dxta) (cp(t)) = dx(x( o cp) (t) ((dxtd) o cp) (t) . 

Thus, assuming without loss of generality that cp[PointsL\ c Dx we get 

(4.9) ^ ( a o cp) = dx(xl o cp) (dx.oi) o cp for a e F(MA) , where A is open in M , 

Applying (4.9) /-times, J ^ k, we obtain the equality 

i 

d * ... 3*,(« ocp) = YJ ?\l"Jr(dxll ... dXircc) o cp , 
r = 1 

where y\l'"tr is a smooth function. Assume (P,f) =k (Pufi). Let /? e F(N) and let t 
be a point of L such that cp(t) = p. By (4.8), we then have 

sXl- ex,(p ./ o 9) (t) = i yi'-'it) dxn... dxtr(p./) (p) = 
r = l 

= I yi'"'V(0 3i, - 3,,(jff o/o x-1) (x(p)) -= 
Г = l 

= Evi'"'v(03,,• • • s,,(/f./. ox-»)(x(P)) = a,,...aX l(/j./..<?)(*). 
r = l 

So, the condition (ii) is satisfied. This completes the proof of Lemma. 

Lemma 2. Ifx and y are charts on differentiate manifolds M andN, respectively, 
Lis a d.s., £ e (MN){k) L, and for any t e PointsL(33) holds, then the set ^~1[Dy.JC] e 

e XopLand for j g n and any hu . . . , hm such that hv + ... + hm = k, m = dimM, 
the function 
(4.10) t^dx\...dxZ(y>af)(at(i)) 

belongs to F(L\-i[Dy>xy 

Proof. Let us set 

1,(0 = dx\ ... dxZ(y* o / , ) (at(t)) , where h, + ... + hm = k , 

£(t) = jkft(a(t)), where ft: Ut -> N, Ut is a d.s. open in M such that a£(t) e Points Ut 

for rec _ 1 [D y .x ] - We have DxetopM and DyetopN. So, by (3.2) we have 
(a o cj)"1 [D J , (b o f ) " 1 [ D J G topL. Hence, by the equality Dyx = a - 1 [ D j n 

n b-'tDj we get r 1^, .*] = (« ° f)"1 [DJ n (b ° ^) _ 1 [ D J e ^ L - T a k e a n ? 
se .4 , .A = C^DyJ}. Then there exist B0,BxetopM, C0,C1etopN, cp e F(M) 
and \l/eF(N) such that a ^ ) e B l 5 b£(s)GC l5 DxuB0 = PointsM, Dy\jC0 = 
= PointsN, cp(p) = 1 for peBt, cp(p) = 0 for peB0, il/(q) = 1 for g G Cj and 
^(q) = 0 for q G C0. Now, let us set 

f ; / ^ _ J ^ M < - ) for qeDy, ßJ(ч) (0 for q e PointsN — D, , and 
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ГYp) = И l J ) X i l 

AP) \0 for 
(p) for peDx9 

p e PointsM — Dx , 

Thus, fiJ e F(N), Yte X(M)9 pJ(q) = yJ(q) for a e Cy and Yf(p) ^ xf(p) for peBt. 
We set Ai = ( a o ^ ) " 1 [ B J n ( b o ^ ) - 1 [CJ . We then have seA.etopL and 
A1 cz A. For any peB1 and any a e F(M, p) we have 

(^.••.3fc«)(p) = (5; : . . .3 ; = «)(p) . 

In particular, 

(dhy\...dll(p0ft))(aZ(t)) = (dl\...d>Z(yJ\ft))(at(t)) for / e X . . 

Thus, 

t(PJ; Yl9...9 Y1? . .„ Ym,..., Ym)(t) = (d\\ ...d\Z(pJ oft))(a {(*)) = 

= ( ^ - - ^ : ( y ^ A ) ) ( ^ W ) for teA,. 

From the hypothesis £ e (MN ) ( k ) Lwe get £(PJ;Yl9 ...9Yl9 ...9Ym9 ...9Ym)eF(L). 
Hence it follows that the function (4.10) belongs to F(L)^. This completes the proof 
of Lemma. 

Lemma 3.Ifx and y are charts on differentiable manifolds M and N, respectively, 
then (y . x) [Dyx] is open in Emn and (y . x ) " 1 belongs to (MN)W L, where L denotes 
the natural d.s. of the set (y . x) [Dyx]. 

Proof. Let us set £(u) = (y . x)'1 (u) and <p(u) = a £(u) for u in L. We will check 
that £ e (MN)(fc) L. Fiom (4.2) it follows that (y . x) [Dyx] is the set of all points u 
of the form (4A) such that (u1,..., um)e x[Dx]9 (u0<>>0, ..., uo\..0)e y[Dy] and uJ

h 

are any reals, when 0 < |h | g k and j = n. Thus, (y . x) [Dyx] is open in Em\n. 
Now, let us take pe F(N)9Xl9 ...9Xke &(L) and Yl9..., Yk e &(M). By (4.7) we have 
a £(u) = x~1(u1

9..., um) = (x _ 1 o pr) (u), where pr(u) = (u1, ..., um) for any u of 
he form (4.1). Further, 

€(09Xl9 . . . , K z ) ( u ) = dXi...dXl(poy-x
 0 x ( - , u ) o X _ 1 opr) (u ) 

and 

^(p;Yl9...9Yl)(u) = dYl...8Yl(Poy-1ox('9u))(x-1(u1
9...9u

m)) 

for any point u in L. Hence it follows that £(p,Xl9 ...9X^) and £(/?; Yl9..., Yt) 
belong to F(L) for J ̂  k. This completes the proof of Lemma. 

Proof of Theorem. According to Lemma 1 the set of all Ehresmann's jets from the 
manifold M into the manifold N coincides with the set of all jets from M into N 
treated as d.s. Let y be any real function on J*(M, N) fulfilling the following con-
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dition: y o £ e F(L) for £ e (MN)(A) L and any d.s. L. By Lemma 3 we have that 
y o(y . x)~l is of class C00 on (y . x) [D ,̂.*] for all charts x and y of the manifolds M 
and N, respectively. Thus, every y e F(jk(M, N)) is smooth on Ehresmann's manifold 
of all k-jets from the manifold M into the manifold N. To complete the proof we 
take any smooth function y on Ehresmann's manifold of all k-jets from M into N. 
Then y o(y . x)~l is of class C00 for any charts x and y of the manifolds M and N> 
respectively. Taking any d.s. Land any f e (MN)(/c) Lwe have 

y i(t) x = (x(a i(t)), (d"x\ . . . fl;:(/ of,) « t ) ) ; |«| g fc, j g »)) , 

for te(y.x) [D,. J , where t(t) = / / r « t ) ) , (at(t),f,) e (MW). Thus, by Lemma 2 
we have a smooth mapping 

Hence it follows that y 0 f | ^ _ 1 [ ^ . x ] = 7 o (y . x )" 1 «, (y . x) 0 f | (T1 [/>,.»] belongs 
to F(L)^-i[Dv x-. So, y o £ e F(L). This completes the proof of Theorem. 
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