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JETS IN DIFFERENTIAL SPACES

WroDZIMIERZ WALISZEWSKI, £6dz
(Received October 24, 1983)

1. INTRODUCTION

One of the most fundamental concepts of global analysis and differential geo-
metry is the concept of a jet introduced in 1951 by C. Ehresmann [1]. In 1967 R.
Sikorski [5] introduced the concept of a differential space (d.s.) as a generalization
of a C*-differentiable manifold. A big part of the foundations of differential geometry
may be delivered in terms of d.s. Independently, S. Mac Lane [3] introduced the
same concept of d.s. in his lectures on modern theoretical mechanics. The concept
of a jet in the category of d.s. seems to be interesting. A methodologically new
approach to the foundations of differential geometry presented by 1. Koldf in [2]
may be then extended to the category of d.s. In the present paper we introduce the
concept of a jet and the differential structure of all jets of order k from a d.s. M to
a d.s. N, and establish the basic properties of these concepts. The main part of the
paper was presented at Czechoslovak Conference on Differential Geometry and its
Applications at Poprad.

If M is a d.s., so PointsM and F(M) denote the set of all points of M and the dif-
ferential structure of M, respectively. Following Sikorski [5] for any set C of real
functions defined on a set S and for any set A < S, the set of all functions f: 4 - R
such that for every p € 4 there exist « € C and a neighbourhood B (in the weakest
topology on S for which all functions of C are continuous) of p fulfilling the con-
dition g | AnB=u , A n B, is denoted by C,. C, is called the set of all locally
C-functions on A. So, F(M), is the set of all locally F(M)-functions on A. Then,
(4, F(M)4) is a d.s., being a differential subspace of M. This d.s. will be denoted
by M,. So, we have PointsM = A and F(M,) = F(M),. The weakest topology
on PointsM for which all functions of F(M) are continuous will be denoted by topM.
Then we have topM, = topM | A = {A n B; BetopM}. The union of all sets
F(M,), where pe A e topM, will be denoted by F(M, p). If f smoothly maps the
d.s. M into ad.s. N, i.e. if f maps PointsM into PointsN and for any 8 € F(N) we have
B - f € F(M), then we write f: M — N. The tangent bundle (see [4]) to the d.s. M
is denoted by TM. A mapping from PointsM to PointsTN is called a vector field
on M tangent to N. For any vector field V on a subspace of M and for any f € F(NB),
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where B e topN, we set (8,8) (p) = V(p) (B), because V(p) is a tangent vector to N
at a point p of the set B. In particular, for any f € F(N) we have the function 9,/
defined on a subspace of M. A vector field is said to be smooth on M iff the mapping
V: M — TN is smooth or, evidently, for any B e F(N) the function 0, belongs to
F(M). If pe F(Ng), Be topN and V is smooth, so d, € F(M,), where A is open
in M. A vector field X on M tangent to M and satisfying the condition: X(p) is
a vector of T,M for any p in M is briefly called a vector field on M. The set of all
smooth vector fields on M is denoted by Z'(M).

2. CONCEPT OF JET

Consider the set (MN) of all pairs (p, f), where p € PointsM and f smoothly maps
a differential subspace of M, such that the set of all its points is an open neigh-
bourhood of p, into the d.s. N. We shall say that (p, f) is equivalent to (p,, f,) of

order ka (p’f) Ek(phfl), iff

(i) (p,f), (1, f1) € (MN), p = p, and f(p) = f1(p),
(ii) for any d.s. L, any smooth vector fields X1, ..., X, € Z(M), any B e F(N),
any smooth mapping ¢: L— M and any t € PointsL such that (p(t) = p we have

(2.1) axl...axr(ﬂ ofo(P)(t)= 6xl...axr(ﬁ oflo(P)(t) for r =< k.

It is easy to see that =, is an equivalence in (MN). Every coset of =, will be called
a jet of order k from M into N. The jet containing the pair (p, f) will be denoted
by jkf or by j* f(p). The set of all jets of order k from M into N will be denoted by
J(M, N). We have then JM, N) = {jsf; (p,f) € (MN)}. From (i) it follows that
for any jet u e J*(M, N) there is a single p such that u = jif, and a single g such
that ¢ = f(p), where (p, f) € (MN). The points p and g will be denoted by ap and by,
respectively. So, we have

(2.2) a:J{(M,N) - PointsM and b:J*(M, N) - PointsN .

Let pe JM,N), veJX(N, P), bu = av, u = jif = j5 f; and v = jig = j g,
(2, 1), (p1, f1) € (MN) and (g, 9), (41, 91) € (NP). So, for any d.s. L, any ¢: L - M
and te PointsL such that ¢(t) = p and for any ye F(P) and X, ..., X, € Z(M)
we have (2.1), where f = y . g,. Setting in (2.1) f- ¢ instead of ¢, and y, g, g,
instead of B, f, fy, respectively, we get

(9x1...axr(yogofo (p)(t) = 6,“ ..-axr(‘y 0o g4 ofo (P)(t).

Hence 8y, ... 9x,(yogofo@)(t) = 0x, ... 0x, (Yo g1 o f1 0 @) (t) for r < k. Thus,
J¥(g of) = jy(g1 o f1)- Therefore, we have a correct definition of the composition
v . u of jets u and v such that by = av, as follows:

v.u=jigof), n=jif, v=Jjig, p=an, q=bv.
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Let us denote the set of all pairs (u,v)e J¥(M,N) x JXN, P), av = by, by
J{(M, N) x JN, P). We then have the mapping

(1, V) v M, N) x J(N, P) » J{(M, P).

3. THE DIFFERENTIAL SPACE J"(M, N)

(3.1) &: PointsL— JY(M, N)

will be called a field of (M, N)-jets of order k on L. Assume that we have smooth
mappings

(3.2) a0oé:L>M and bo(:L-> N.

Let us take any fe F(N), any X,,...,X, € Z(L) and any Y,,..., Y, € Z(M). For
any t € PointsL we have

(3.3 &(t) = jegw i, where f:U,—> N,

U, is an open differential subspace of M around the point aé(t). From the definition
of jets it follows that for | < k we have correct definitions of functions £(8, X4, ..., X))
and ¢(B; Yy, ..., Y;) by the formulas

By X g5 oes X)) (1) = 0x, ... Oxi(Bofroaoc)(1),
EB, Yy, .., 1)) (1) = Oy, ... 0pi(B o f2) (a E(2))

for t € PointsL. The set of all mappings (3.1) such that the mappings (3.2) are smooth
and the condition

(*) for any X4, ..., X, < Z(L), any Yy, ..., Y, € Z(M) and any B € F(N) the functions
&B, Xy, ..., X;) and &(B; Y;5..., Y;) belong to F(L) for I < k

is satisfied, will be denoted by (MN)* L. The smallest differential structure on
J(M, N) containing all y: J(M, N) — R such that y o ¢ € F(L) for any £ e (MN)® L
and any d.s. Lwill be called the differer.tial structure of the d.s. J(M, N) and denoted
then by F(JXM, N)).

Proposition. For any d.s. M and N there are smooth mappings
(3.4) a:JM,N)> M and b:JM,N)-N.
For any smooth mapping
(3:3) g:N-P
we have a smooth mapping

(3.6) j*g:N > JYN, P), where j*'9(q) =jig for qe PointsL.
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Setting gi(1) = ji(g o f), where p = jf f:U — N, U being an open differential
subspace of M around p, we obtain the smooth mapping

(3.7 gs: JX(M,N) - JXM, P).
The correspondence g+ gy defines a covariant functor from the full category

of d.s. into it self.
For any d.s. N and any diffeomorphism

(3.8) h:P-> M
we have the diffeomorphism
(3.9 h*: JM, N) - JX(P,N)

defined by the formulas h*(u) = j(f o h) (h~*(p)), u = jif. The correspondence
h > h* gives a contravariant functor from the category Dtjf(d s.)of alld.s. together
with all diffeomorphisms between d.s. into the same category.

Proof. The smothness of the mappings (3.4) follows from the smoothness of (3.2) for
any d.s. Land any ¢ e (MN)® L. To prove that (3.6) is smooth we check that j*g e
e (NP)® N. To this aim take any pe F(P) and any X, ..., X, € Z(N). We have

J*g(B, X1, ... X)) () = 0y, ... 0x(Bogoaojiqg)(t) = oy, ... 0x (B o9) (1)

and
9B Xy ..., X)) (t) = 0x, ... 0x,(B - 9) (aj*9(1)) = 0x, ... 0x,(B-9)(t)

for any point t of N. This yields that j*¢(B, X, ..., X;) and j*g(B; X, ..., X;) belong
to F(N) for I < k. Let us take any y: JXN, P) — R such that for each d.s. Land any
¢ e(NP)® Lwe have y o & € F(L). We then get y o j*g € F(N).

To prove that for any smooth mapping (3.5) the mapping (3.7) is smooth take
y: J{M, P) - R such that for any d.s. Land any n e (MP)® Lwe have y - # € F(L).
Wesety, = 709y Let £ € (MN)® Land n = gy o ¢ Then,forany X, ..., X; € Z(L),
any Y,..., ,e Z(M), Be F(P), | £ k and « = fog we have successively (3.3),
n(t) = 9x(8(1)) = Jaz(9 o 1) (B, X1, -, X1) (1) = 0x, ... 0x,(Bo (9 o f) o aon) (1) =
= Ox, ... Ox(% o froao&)(t) = &(a, Xy, ..., X;) (¢) and n(B; Yl, u ) () =0y, ...

30+ (5 1)) 010 = 0, 3yfa 1) (020) = Sl Yo, T) () for v
€ PointsL. Hence y(B, Xy, ..., X,) = &«, X4, ..., X;) e F(L) and 5(B; Yy, ..., Y) =
= &(2; Yy, ..., Y;) € F(L). Moreover, we have a n(t) = ag4(&(t)) = a&(t)and bn(r) =
= bjse)(9 o f2) = 9(fi(a &) = g(b &(1)) = (g9 o b o &) (¢) for te PointsL. Hence it
follows that aon: L— M and bon: L— P. These relations yieldne (MP)® [,
Therefore y, o ¢ = y o g€ F(L). Thus, y, € F(J(M, N)).

Now, let us take a diffeomorphism (3.8) and y: J(P, N) — R such that y o 7 € F(L)
for each d.s. Land any ne (PN)® L. Sety, = yo h*. Let e (MN)® L, X, ..., X, €
eZ(L), Yy,..., b, e Z(P), pe F(N) and t € PointsL. Setting

(3.10) n=nh*¢
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we get  n(t) = j*(f, o h) (h="(a&(t))), where &(f) = Jaew o an(t) = h™'(a&(t)),
(hoaon)(t) = (aod)(t), n(B,Xy.... X)) (1) = Ox, ... 0x,(Bofiohoaon)(t) =
=0x, - Ox(Bofioascé)(r)=&B, Xy, ..., X)) (1) and n(B; Yy, ..., Y)(1) =
=y, .- Op(Bofioh)(a n(t)) = dy, ... Oy, (Bofroh)(h™'(a &(1))) =

=0y, ... 0y (Bof) (a &(r)) = E(B; Vis ..., V) (1), where V; = hyo Yo h™' e Z(M),
i =1,..., k. Hence it follows that for | < k, n(f, X,,....,X,) = &B, Xy, ... X)) €
e F(L) and n(B; Y, ..., Y)) = &B; Vi, ..., Vi) e F(L). Moreover, we notice that
b h*(u) = bp for pe J{M, N). So, for n given by (3.10) we have bon= bo¢.
Therefore, n € (MP)® L. Thus, y o h* o ¢ = yo e F(L). Hence the mapping (3.9)
is smooth. It is easy to check that the mapping h™'*: JXP, N) —» JX(M, N) is the
inverse mapping to (3.9). Therefore (3.9) is a diffeomorphism. This completes the
proof.

4. THE CASE WHEN DIFFERENTIAL SPACES ARE
DIFFERENTIABLE MANIFOLDS

For any h = (hl,...,hm), where h,, ..., h, are non-negative integers, we set

s m

|h| =hy 4+ ... 4+ h,and h! = h!... h,!. The set of all systems u of the form

(4.1) ((w's .., u™), (uis|h| < k, j £ n)),
where u', u] are reals, will be denoted by Ef, . The set EX , is in a natural way an

<m +n (k .:nm>>-dimensiona] Euclidean space. Let M and N be differential spaces.

We will examine in this section the d.s. M and N under the hypothesis that they are
differentiable manifolds of dimensions m and n, respectively. Let x and y be any
charts of M and N, respectively. For any 0 in JX(M, N) such that af and b6 belong
to the domains D, and D, of charts x and y, respectively, we set

(4.2) yOx = (x(ab), (% ... 3% (y7 o f) (a0); |H] < k, j < n)),

where 0 = j* f(ab), f: U — N, U being an open differential subspace of M around
the point af. Here x,(p) («) = d,(x o x~') (x(p)) for a € F(M,), A is an open neigh-
bourhood of p contained in D, 62 stands for the h;-times repeated operation d,,
which corresponds to the vector field x; when h; > 0, and 8% = id when h; = 0.
The formula (4.2) defines then the mapping y . x of the form

(4.3) a '[D,]nb7'[D,]30+ ybx .

The mapping (4.3) is a chart of the manifold of all Ehresmann’s k-jets from M into N
(cf. [1]). Now, we evaluate the value (y.x)™" («) of the inverse mapping to (4.2)
at a point u of the form (4.1).

Let 0 = (y.x)™! (u). So, we have y0x = u. Hence we get
(4.4) x(a0) = (u',...,u™) ‘and 0% .. oMy o f)(a0) = u, .-
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Thus, 8}t...00(y of ox"')(ab) = uj , , where ; denotes the partial dif-
ferentiation with respect to the i-th variable. Let us set

4.5) x/(p,u) = lhlz§k% uj(x'(p) — u")" ... (x"(p) — w™)m
and

(4.6) x(p,u) = (x'(p, u),...,x"(p,u)) for peD, and uekE},.
From (4 4), (4 5) and (4.6) we get
4.7) (v-x)"t(w) ="y~ o x(v, w) (x~1(u', ..., um).

In Ehresmann’s theory, the differentiable manifold of all jets of order k of map-
pings from M into N has the atlas generated by all maps of the form y . x, where x

is any chart of M and y is any chart of N. We will prove the basic theorem about
compatibility.

Theorem. If d.s. M and N are differentiable manifolds, then the d.s. J{(M, N)
coincides with the differentiable manifold of all Ehresmann’s jets of order k of
mappings from M into N.

Before proving the above theorem we prove three lemmas.

Lemma 1. If M and N are differentiable manifolds of dimensions m and n,
respectively, then the set of all Ehresmann’s jets of order k from M into N is equal
to J{(M, N).

Proof. It suffices to prove that, under the assumption of (i), the condition (ii) is

equivalent to

(ii") for any chart x of M around p and any chart y of N around f(p), if hy + ..
we.+ h, Lk, thenforj <n

(4.8) At .. om(y o f o x™ V) (x(p)) = ... k(¥ o fy o x™Y) (x(p)) -

Assuming (ii) let us take charts x and y as in (ii’), Mp_as Land id as ¢ in (ii).
Diminishing, if necessary, the domain D, of functions y’ to a neighbourhood of f(p)
we can take some functions f/ € F(N) such that g/ is equal to y/ in a neighbourhood
of f(p). We have then by (ii)

Oy o foxTY) (x(p)) = 0k ... ak(y o f) (p) =
= a::i cee a::(p‘iofo (p) (p) = 6:: .ee 6::([?" ofl ) (p) (p) =
=a...om(Vof)(p) =0t ...0m(¥ of o x"Y)(p).

Let us assume (ii’). For any ¢: L—» M, X € Z(M), t € PointsL and « € F(M, ¢(t))
we have
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x(@o @) (1) = X(1) (2 - @) = @u(X(1)) (2) = 0u(X()) (x') x:(0(1)) () =
= X(0) (x" = ) (9x2) (#()) = x(x" > ) () ((0:2) - ) (1) -

Thus, assuming without loss of generality that (p[PointsL] < D, we get
(4.9)  0x(eo ) = dx(x' o ) (0,2) o for aeF(M,), where AisopeninM .
Applying (4.9) I-times, I < k, we obtain the equality

1
6,(‘ coe aX,(“ o (p) = ;y;““"(ax“ s axira) o Q,

where yj**" is a smooth function. Assume (p, f) =, (p;,f1). Let f € F(N) and let ¢
be a point of Lsuch that ¢(f) = p. By (4.8), we then have

0x, - 0x(Bofo®)(2) =r=il 7 (1) Oy o- 0x, (B o ) (P) =
=§175“""'(I) Oiy - 0 (Bof o x™1) (x(p)) =

=r;zly;x----'r(t) Oty v 0B o f1 o x™1) (x(9) = O, s Ox (B o f1 0 0) (1)

So, the condition (ii) is satisfied. This completes the proof of Lemma.

Lemma 2. If x and y are charts on differentiable manifolds M and N, respectively,
Lisad.s., ¢ e (MN)® L, and for any t € PointsL(3.3) holds, then the set é‘l[Dy_x] €
€ topLand for j < nand any hy,..., h, such that h, + ... + h,, £ k, m = dimM,
the function
(4.10) t it Loty o fy) (a (1))
belongs to F(L),-

!{Dy,x]"

Proof. Let us set

n(t) = okt ... oim(y o fo) (a&(t)), where hy + ...+ h, <k,

&(t) = j*f/(a(?)), where f,: U, > N, U, is a d.s. openin M such that a(t) € PointsU,
for te ¢![D,,]. We have D,etopM and D, e topN. So, by (3.2) we have
(ao&)"'[D,], (bo&)~![D,] etopL. Hence, by the equality D,, = a~![D,] n
N b~![D,] we get ¢7[D, ] =(a.&)"*[D,]n(bo&)"t[D,]etopL. Take any
s€A, A=¢71[D,,]. Then there exist By, B, € topM, C,, C, € topN, ¢ € F(M)
and Y € F(N) such that a&(s)e By, bé(s)e C;, D, U B, = PointsM, D,u C, =
= PointsN, ¢(p) = 1 for pe By, ¢(p) =0 for peB,, Y(g) =1 for ge C; and
¥(q) = 0for g € C,. Now, let us set

_ [v(@) ¥(q) for qeD,,
Fla) = {0 for qe PointsN — D,, and
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oy = {@(p)xp) for peD,,
Yo) = {0 for pe PointsM — D, .

Thus, f’ € F(N), Y;€ Z(M), p'(q) = y'(q) for g C, and Y;(p) = x(p) for pe B,.
We set A, =(a-&) ' [B]n(bo&) '[C,]. We then have se A, e topL and
A, = A. For any p € B, and any o € F(M, p) we have

(@, - ) (p) = (21 - O (p) .

In particular,

(@ P F) (@ E(0) = (@2 0 ) (@ &) for 1€ 4, .
Thus,

EB Yoo Yo ooty Yoy oo, Yu) (8) = (03, ... O3 (B7 o 1)) (a (1)) =
= (% ...d(y o f)) (a&(t)) for ted,.

From the hypothesis ¢e(MN)® L we get &(B; Yy, ..., Yy, ..., ¥, ..., Y,) € F(L).

Hence it follows that the function (4.10) belongs to F(L),. This completes the proof
of Lemma.

Lemma 3.If x and y are charts on differentiable manifolds M and N, respectively,
then (y . x)[D,.] is open in E}, , and (y . x)~! belongs to (MN)® L, where L denotes
the natural d.s. of the set (y . x)[D,..].

Proof. Let us set &(u) = (y. x)™ ' (u) and ¢(u) = a &(u) for u in L. We will check
that £ e (MN)® L. From (4.2) it follows that (y . x) [ D, ] is the set of all points u
of the form (4.1) such that (u',...,u™)ex[D.], (45 o, ..., up. )€ y[D,] and uj
are any reals, when 0 < |h] < k and j £ n. Thus, (y.x)[D,,] is open in E} .
Now, let us take f € F(N), X, ..., X, e Z(L)and Yy, ..., Y, € Z(M). By (4.7) we have
al(u) =x""(u',...,u") = (x" 1o pr)(u), where pr(u) = (u',...,u™) for any u of
he form (4.1). Further,

B Xy s X)) () = 0y, .. 0x,(Boy P ox(*,u)ox o pr)(u)
and

E(B; Yyy ..., Y)) () = Oy, ... O0g (B oyt o x(+, w)) (x (s, ..., u™))

for any point u in L. Hence it follows that &(B,X,...,X;) and &(B; Yy, ..., Y))
belong to F(L) for I < k. This completes the proof of Lemma.

Proof of Theorem. According to Lemma 1 the set of all Ehresmann’s jets from the
manifold M into the manifold N coincides with the set of all jets from M into N
treated as d.s. Let y be any real function on J¥(M, N) fulfilling the following con-
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dition: y o &€ F(L) for ¢ (MN)® L and any d.s. L. By Lemma 3 we have that
yo(y.x)"Visof class C* on (y. x) [D,.,] for all charts x and y of the manifolds M
and N, respectively. Thus, every y € F(J*(M, N)) is smooth on Ehresmann’s manifold
of all k-jets from the manifold M into the manifold N. To complete the proof we
take any smooth function y on Ehresmann’s manifold of all k-jets from M into N.
Then yo (y.x)™ ! is of class C* for any charts x and y of the manifolds M and N,
respectively. Taking any d.s. Land any ¢ e (MN)® Lwe have

y () x = (x(a &), (@ ... k(v o £) (a(0); |B] S &, j < ),

for te(y.x)[D,..], where &(1) = j*f,(a&(t)), (a&(t), f,) € (MN). Thus, by Lemma 2
we have a smooth mapping

=y é(t) x: (CV_I[D.V.X]’ F(L)C"[Dy.x]) - E:‘n.n .

Hence it follows that yo & | E7'[D, ] = 7o (y.x)"" o (y.x) o &| 71[D,..] belongs
to F(L)s-1p, .1+ S0, ¥ o & € F(L). This completes the proof of Theorem.
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