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INTRODUCTION 

Dynamical systems which exhibit a complicated "chaotic" behavior of trajectories 
' quite often can be successfully studied as a special case of stochastic processes. The 

idea of this approach is the following. Consider a discrete time dynamical system 
{Sn} where S is a transformation of a a-finite measure space (X, I, /J) into itself. 
The trajectories of this system are the sequences 

x,S(x),S2(x) = S(S(x)),... 

for x e X. We define an operator P from l}(X) into itself by setting 

(o.i) pf = %' feL^x) 

where d^/d/x denotes the Radon-Nikodym derivative of the countably additive 
function 

(0.2) fif(A)= f /dAi, Ael. 

The operator P has a simple probabilistic interpretation. Namely, if x is a random 
variable with the probability density function/, then the variable S(x) has the proba
bility density function Pf. Thus the sequence {Pnf} describes the evolution of the 
density / in time and {Pn} may be considered as a special case of Markov-Hopf 
process (see [2] and [3]). 

The main advantage of studying P instead of the original transformation S is 
that P is always a bounded linear operator on l)(X). Thus in examining the behavior 
of {Pn} as n -> oo it is possible to apply the powerful tools of linear functional analy
sis. However, this application is seldom straightforward. In order to understand this 
difficulty consider a classical example of the ^-transformation Sfi(x) = /?x(mod 1) 
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of the unit interval [0, 1] into itself (/? > 1, real). In this case P has especially simple 
form, namely 

,''w-$'G+?)+M^7)w*) 

where m is the largest integer smaller than /? and 1[0 ^_ni] denotes the characteristic 
function of the interval [0, fi — m]. The operator Pfi maps L*[0, 1] into itself but it 
is neither compact nor weakly compact nor even quasi-compact so that the recent 
general methods of the spectral theory of positive operators [11] are not applicable. 
Thus in studying the behavior of {Pj|} it was necessary to use the specific properties 
of the transformation Sfi. (See [1, 8, 12].) 

The same kind of problem appears in studying more complicated transformations. 
Thus it seems to be necessary to develop a special technique well adjusted to the 
Markov operators given by formulas (0.1) and (0.2). The purpose of the present 
paper is to show this is possible. We shall prove namely that the iterates of the 
operator P have the following interesting property: if for every/that is normalized 
(ll/fli,1 = 1) a nd nonnegative, the sequence {Pnf} converges to a weakly compact 
set, then there is a finite dimensional subspace of L1 to which {Pnf} converges for 
every feL1 and {P"f} is asymptotically periodic. For our original system {Sn} this 
means that, under some moderate assumption concerning P, the system is "statis
tically periodic". 

The proof is based on two ideas. First we shall use the technique of orthogonal 
projections in L2 due to V. A. Rochlin [10]. Then we shall follow the proof of an 
asymptotic decomposition theorem valid (with stronger assumptions) for all Markov 
operators [6]. 

The paper is organized as follows. In Section 1 we state our main result. In Section 
2 we mention some possible applications and relationships to the results of G. Keller 
[5] and M. Misiurewicz [9]. Sections 3 —6 are devoted to the proof. 

1. ASYMPTOTIC PROPERTIES OF P 

Let (X, I", fi) be a <r-finite measure space. A linear operator P: L1 -> L1 will be called 
a Markov operator if it satisfies the following two conditions 

(a) P / ^ 0 for f^O, feL1; 

(b) Ilp/Il = ||/|| for / £ 0 , feL1 

where ||*|| is an abbreviation for ||*||Li- From (a) and (b) it is easy to derive that P 
also satisfies 

(c) | P / | | g ||/|| for feL1. 

A measurable transformation S: X -+ X is called nonsingular if fi(S~1(A)) = 0 
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whenever fi(A) = 0. Given a nonsingular transformation S we define the correspon
ding operator P by the condition 

(1.1) f p / d / * = f fd/i for AeZ, feL1 

JA JS-HA) 

which is equivalent to (0.1), (0.2). Due to the nonsingularity of S the operator P is 
well defined; it is called the Frobenius-Perron operator corresponding to S. From 
condition (1.1) it follows that P satisfies conditions (a) and (b) and therefore represents 
a special kind of a Markov operator. 

We denote by D = D (X, I, n) the set of all normalized nonnegative elements of 
L\i.e. 

D = {fel}:f^0, ||/|| = 1}. 

The elements of D will be called densities. A Markov operator P is called strongly 
(weakly) constrictive if there exists a strongly (weakly) compact set F c L1 such that 

(1.2) lim d(Pnf, F) = 0 for feD. 
n-Kx> 

In condition (1.2), d(g, F) denotes the distance from g to F, that is, the infimum 
of \\g - A|| for h e F. 

The following theorem summarizes the main properties of weakly constrictive 
Frobenius-Perron operators. 

Theorem 1.1. Let (X, I, pt) be a a-finite measure space, S: X -> X a non-singular 
transformation and P the corresponding Frobenius-Perron operator. If P is weakly 
constrictive, then there exists a sequence of densities gu ..., gr e L1 and a sequence 
of functionals Xx, ...,Xrel}* such that 

(1-3) l i m | | P " ( / - £ ^ ( / ) < 7 * ) l = 0 for feL1 

n-+co i = 1 

and 

(!-4) Pgi = gxU) 

where a is a permutation of integers 1, ..., r. 
Conditions (1.3) and (1.4) immediately imply that Pw/may be written in the form 

(!-5) Pnf=i*/f)9^i} + Rnf 

where a" denotes the n-th iterate of the permutation a and the remainder Rnf con
verges in norm to zero as n -> oo. The summation term in (1.5) is periodic in n 
with a period which does not exceed r!. Thus from Theorem 1.1 we have immediately 
the following 

Corollary 1.1. / / P is a weakly constrictive Frobenius-Perron operator, then for 
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very feL1 the sequence {Pnf} is asymptotically periodic (i.e. {Pnf} is the sum of 
a periodic sequence and a sequence which converges to zero). 

Furthermore, it follows from (1.5) that 

d(PJ, F) ^ \\Rnf\\ for fe D 

where F is the set of all sums of the form 

i cidi 

where the \Ct\ do not exceed the norms of Xt. The set F is evidently compact (and 
is even finite dimensional), and Theorem 1.1 implies 

Corollary 1.2. If a Frobenius-Perron operator P is weakly constrictive, then P 
is also strongly constrictive. 

For strongly constrictive Markov operators a result analogous to Theorem 1.1 
was recently proved [6]. Thus theoretically we may reverse our argument first proving 
Corollary 1.2 and then the decomposition result stated in Theorem 1.1. However, 
because of the lack of strong limits of {Pnf} in the case when P is assumed to be 
weakly constrictive, this reverse argument cannot easily proceed. 

2. COMMENTS AND APPLICATIONS 

The structure of Pnf described by Corollary 1.1 has been discovered in a few 
special cases. G. Keller considered piecewise expanding transformations on the unit 
interval [5] and on the square [4]. He pointed out that by the use of the classical 
spectral theorem of Ionescu-Tulcea and Marinescu it is possible to obtain a decom
position formula for P y that is close to our formula (1.5). In both cases the main idea 
is to observe that P shrinks the variation of the functions, that is, there is a constant 
K i> 0 such that 

(2.1) lim sup (Var Pnf) <K 
«->oo 

for every/e D of bounded variation. Thus {Pnf} converges, f o r / e D, to the strongly 
compact set 

F = {g e D: Var g S K} 

and the decomposition formula (1.5) follows immediately from Theorem 1.1 as well 
as from the analogous theorem for strongly constrictive Markov operators proved 
in [6]. In order to apply the Ionescu-Tulcea-Marinescu theorem it is necessary to 
use a slightly more sophisticated inequality than (2.1), namely, for some m, K, 
and C < 1, 

(2.2) Var Pmf ^ C Va r / + K||/ | | for fe L1 . 
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Another case for which an asymptotic decomposition like (1.5) was found is a class 
of piecewise smooth transformations with negative Schwarzian derivative. This class 
is a natural generalization of the family of mappings 

S/x) = 4yx(l - x) where 0 ^ y S 1 

of the unit interval [0, l ] into itself. M. Misiurewicz has shown [9] that there exists 
an uncountable set f c [0,1] such that for every yeT the Frobenius-Perron 
operator Py corresponding to Sy is (using our terminology) weakly constrictive. 
He also constructed the basis gl9..., gr of the limiting finite dimensional space. 

Our Theorem 1.1 suggests that the asymptotic periodicity found by G. Keller 
and M. Misiurewicz is not an exceptional property of special families of transforma
tions of the unit interval into itself but is rather a general rule. 

3. CONSTRUCTION OF A LIMITING SET Q 

In this and in the following two sections we will assume that the measure pi is 
finite and that PI — 1. It follows from (1.1) that the last assumption is equivalent 
to the fact that the measure \i is invariant, i.e. 

fi{S-1(A)) = fi(A) for Ael. 

Since \i is finite, every square integrable function on X is also integrable and thus 
Pf is well defined for every fel3(X). Now introduce the Koopmann operator U 
on L2 by setting 

Uf(x)=f(S(x)) for xeX and fell. 

It is well known that U is an isometry on L2. In fact the following relationships 
hold: 

(3.2) <Uf9Ug> = <J,g>= ! fg dfi for f,geL\ 

(3-3) <f,Ug> = <Pf,g} for f,geL2 

and in particular 

(3.4) | |P/| |L2 ^ I|/||L2 and \\Uf\\L2 = \\f\\L2 for / e l 2 . 

These properties imply 

Lemma 3.1. For every integer n the operator PnUn is the identity on L2 and 
nn = UnPn is the orthogonal projection of L2 onto Qn = Un(L2). 

Since the subspaces Qn form a decreasing sequence, Lemma 3.1 it in turn yields 

Lemma 3.2. For every fe L2 the limit 
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nj = lim VP-f 
H-+00 

2 exists and n^ is the orthogonal projection of Is onto 
00 00 

Q = f]Q„=f]V(L2). 
« = 0 n=0 

The most important property of Q is that in studying the asymptotic properties 
of {Pnf} we may restrict ourselves to fe Q. 

Proposition 3.1. For every fe L2, 

lim \\Pnf - Pn{nJ)\L2 = 0 . 
n-*co 

Proof. Write fn = nnf and /«, = n^f We have 

P"/B = PnUnPnf = p y 

and consequently 

The last term converges to zero by Lemma 3.2. 
To conclude this section observe that Q is invariant under P. In fact since PU is 

the identity we have 

P(Q„) = PC7"(L2) = U"~\L2) = Q„_! 

and finally, since {Q„} is a decreasing sequence, 

n = 0 n = l n = l 

4. PROPERTIES OF THE SET Q 

The purpose of this section is to prove that Q is a finite dimensional space. The 
idea of the proof lies in using some special properties of functions from Q listed in 
Lemmas 4.1 — 4.7. 

Lemma 4.1. Iff and g belong to Q and g is bounded, then the product fg also 
belongs to Q. 

Proof. For every fixed integer n the functions/ and g are elements of Qn and can 
be written in the form 

/ = L S " , g = k o Sn 

where h9 kel3 and fe is bounded. Thus fg = (hk) o Sn with (hk) e L2 which shows 
that fg e Qn. Since n was arbitrary this completes the proof. 

Let 1A denote the characteristic function of the set A. 



Lemma 4.2. If fe Q then lf-^A) e Qfor every Borel set A c R. 

Proof. For every fixed integer n we may wr i te / in the fo rm/ = h o S". Thus 

which shows that lf-i(A) e Qn. Since n was arbitrary this completes the proof. 
Given a function/: X -> R and a set J c ffl we define/j(x) = / (x) when/(x) e A 

and /j(x) = 0 otherwise. Notice fjx). = / ( x ) i / - i ( d ) ( x ) . 
Lemmas 4.1 and 4.2 immediately imply 

Lemma 4.3. Iff e Q then fAeQ for every Borel set A a R. 

Lemma 4.4. Let f be an element in Q, let A a R be a Borel set, and let n be an 
integer. Then for (almost) every xeX either PnfA(x) e A or PnfA(x) = 0. 

Proof. Since fA e Q we have UnPnfA = fA or 

(PnfA)oSn=fA. 

Thus for (almost) every xeX either 

(PnfA)(S»(x))eA or (P»fA) (S%x)) = 0 . 

Since Sn is measure preserving and \i is finite, almost every element in X is of the 
form S\x) for some xeX. The proof is completed. 

Now denote by C the set of all characteristic functions which belong to Q. It is 
easy to see that the supports of the elements of C form an algebra. In fact, since 
UnPnl = 1 we have nJL = I and lxe C. Furthermore, from Lemma 4.1 it follows 
that for every pair 1A, ls e C the product 1A • 1B = lAnB belongs to C. Finally from 
the linearity of n^ it follows that lx — 1A = IX^A belongs to C whenever 1A e C. 

The following two lemmas show some more sophisticated properties of C. 

Lemma 4.5. If lAeC then PnlA e C for every integer n. 

Proof. Since PnQ c Q it is enough to prove that PnlA is a characteristic function. 

This follows immediately from Lemma 4.4 if we choose A = {1}. 

Lemma 4.6. / / lAi, lAl e C and sets At and A2 are essentially disjoint, then the 

supports of PnlAl and PnlAl are also disjoint for each n = 1, 2, — 

Proof. Fix n and write 1B. = PnIAi. Since lAl + lAl ^ / , we have 

lBi + h2 = PVM + 1A2) ^PI = I 

which implies that Bt and B2 are (essentially) disjoint. 
Observe that so far we have not used our main assumption that P is weakly con

strictive. Using this fact we prove the following 
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Lemma 4.7. The set C is finite. 

Proof. Assume that lAl9..., lAr are different from zero elements of C and have 
mutually disjoint supports. Consider the densities 

KAt) 

Since P is weakly constrictive the sequence {P"/,-} converges as n -* co to a weakly 
compact set F. Choose an e e (0, 1). Since F is weakly compact there is a 8 > 0 
such that 

(4.1) f \g\ dn ^ 1 - e 

for every g eF and for every set B satisfying fi(B) ^ <5. Furthermore, since {Pnfi} 
converge to F there exists an integer m and functions gu ..., gre F such that 

(4.2) lP"/ i-f lf i |Li<«-
We claim that 
(4.3) ^(supp Pmft) >8 for i = 1, ..., r . 

If not, then setting Bt = supp Pm/f and using (4.1) we obtain (for some integer i) 

\\Pmft - 9ih ^ [ \Pmfi - 9t\ d/£ ^ f PVid^i - f gtdfi ^ 1 - (1 - e) = e 

which contradicts (4.2). Thus (4.3) is proved. By Lemma 4.6 the sets Bt are mutually 
disjoint and the number r must be smaller than ti{X)\d. Thus the largest number of 
elements of C with mutually disjoint supports is bounded. Since the supports of 
elements of C form an algebra, this completes the proof. 

From now we shall denote the minimal elements of C by 

(4.4) / * ; . . . , ^ . 

By Lemma 4.1 their supports are disjoint. From Lemmas 4.5 and 4.6 it follows that 

(4.5) PlAl,...,PlAr 

axe also elements of C with disjoint supports. Thus the sequence (4.5) must be 
simply a permutation of (4.4) and we have 

(4-6) Wi , = Wn • 

Proposition 4.1. The space Q is r-dimensional and [AA) is a basis for Q. 

Proof. Choose fe Q. From Lemma 4.2 it follows that for every real t the function 
lf-i(ti,oo) ^ a n element of C. Since C is finite, there is at most a finite number of values 
of t (say ti9..., ts) which give distinct functions lf-^u^y Thus/is constant on every 
set 
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ri=/-%oo)\/-1(^+1,cx)) 
and so we h a v e / = 2Af/T|, for appropriate Af. Since 1T. belong to C, this completes 
the proof. 

5. ASYMPTOTIC DECOMPOSITION OF P WHEN PI = I 

From now on, our proof will be similar to the arguments in [6], so we abbreviate 
the details where possible. 

We start from a lemma which simplifies the derivation of formula (1.5). 

Lemma 5.1. Let P: L1 -> L1 be a Markov operator and let gl9..., grbe a sequence 
of linearly independent elements of L1 such that Pgt = ^a(I) where a is a permuta
tion of integers 1, ..., r. Assume that for every fe L1 and every e > 0 there exists 
an integer n and a sequence of constants cu ..., cr such that 

(5.i) ' !py - i ci9i\\ ^ E . 

Then there exists a sequence of functionals ku ..., kre L1* such that 

(5.2) lim ||P»(/ - t Hf) 9i)\\ = 0 for fe 1} . 
n-*ao i = l 

The proof of Lemma 5.1 is straightforward. For a given sequence 8„->0we choose 
the corresponding sequences c" and define A£(/) as the limit points of the sequences 
c"-n(iy The details of this construction may be found in [6]. 

Now we apply Lemma 5.1 to the functions 

Integrating (4.6) and having in mind that P preserves the integral of nonnegative 
functions we obtain fi(At) = ju(^4a(i)). From this and (4.6) it follows immediately 
that Pfi = / a ( 0 . Now let / be an arbitrary element of L1 and let e > 0. There exists 
fe L2 such that | | / - / | | g (1/2) e and consequently 

(5-4) \\Pnf - Pnf\\ ^ e/2 for n = 0, 1, ... . 

Furthermore, from Proposition 3.1 it follows that Pnf - Pn{n^f) converges to zero 
in the L2-norm and also in the L^norm since n(X) < oo. Thus 

(5-5) \\P»f - P»(nJ)\\ < ell 

for sufficiently large n, say n ^ m. Since Pm{n^J) belongs to Q it may be written in 
r 

the form £ C j/ f. From (5.4) and (5.5) it follows that 



Iff - 1 CJll < « . 
1 = 1 

which by virtue of Lemma 5.1 proves 
Proposition 5.1. There exists functionals Xu ..., kre L1* such that Pnf may be 

written in the form 

P"f = £ Hf)UW + RJ for fe L1, n = 0, 1, 2, . . . 

where fi are given by (5.3) and f/ze remainder Rn satisfies \Rnf\ ~* 0« 

6. ASYMPTOTIC DECOMPOSITION OF P : GENERAL CASE 

Thus far we have assumed that fi(X) < oo and PI = 2. In this section we shall 
show how these assumptions may be dropped. 

Let P be a Frobenius-Perron operator corresponding to a nonsingular transforma
tion S: X -> X acting on a o*-finite measure space (X, I, /x). We assume that P is 
weakly constrictive. Since X is ^-finite there exists a density f0 e L\X, I, p) such that 
/ 0 > 0 on X. Furthermore, since P is weakly constrictive, the sequence {Pnf0} is 
weakly precompact and by the mean ergodic theorem the following strong limit 
exists: 

(6.1) g = lim -"J: P% . 
n->oo n fc = 0 

The limiting function satisfies Pg = g and \g\ = 1 and consequently the measure 

KA)'[ g dju, Ael 
A 

is normalized and invariant under S. Now consider S in the space {X, Z, #). The 
Frobenius-Perron operator P corresponding to S in this new space is given by 

[(Ph)gdii=\ hgdfi for he L\X9 2, ft), i e l . 

Therefore Ph = P(gh)jg and by induction 

(6.2) P"/i = - P"(%) for A e L\X, I9 fi) . 
Q 

Let £ denote the space I}(X91, fi) and let ||| • ||| be the norm in £. We have 

(6.3) |||/i|||= (\h\gdfi~ \\gh\\ for he I. 

By construction #(X) = 1 and Pi = /. We also have 
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Lemma 6.1. The operator P is weakly constrictive. 

Proof. Since P is weakly constrictive, there is a weakly compact set F such that 

lim d(P-/, F) = 0 for ||/|| = 1, / £ 0 . 
n-*ao 

Define P = {fjgifeF}. The functions//# are not defined outside of the set 

G = {x: g(x) > 0} 

but they are well defined as elements of £ since ft{X \ G) = 0. Moreover, the mapping 

f-*fjg from L\X, I, ju) into Lis bounded (and even contractive) since 

Thus P as the image of a weakly compact set by a linear bounded transformation 
is also weakly compact. Now let h be a density in £. Then hg is a density in L\X, I, fi) 
by (6.3) and Pn(hg) converges to F. Thus there exists a sequence kne F such that 

\\P\hg) - fc.1 - 0 
and consequently 

\\\P"h - k„lg\\\ ^ \\P»(gh) - k„\\ -» 0 

which completes the proof. 
From Lemma 6.1 and Proposition 5.1, Pnh may be written in the form 

(6.4) P"h = ZUh)l^) + Kh for het, 
i-l 

where ft are densities in £ with disjoint supports and |||-RW |̂|| -> 0 as n -* oo. Now 
multiplying (6.4) by # and using (6.2) we obtain 

(6.5) P"(hg) = tHh)9«Hi) + Rnh for het 
i=l 

where gt = gft and £„/i = #£„/*. 
Notice that gt are densities in l}(X, I, fi) and P#f = #a(0. At first glance it seems 

that we have reached our goal since hg are elements of I}(X, I, fi). Unfortunately, 
when G #= X the family of functions of the form/ = hg with he Lis not even a dense 
subset of I}(X, I, ft). In order to overcome this difficulty we shall use the following 
lemma concerning the density f0 (see formula (6.1)), which follows from the additive 
properties of the L^norm. (See also [6].) 

Lemma 6.2. For every e > 0 there is an integer m such that 

(6-6) f Pmf0dfi<e. 
JX\G 

We now complete the proof of Theorem 1.1. Fix an fe I)(X, I, fx) and an e > 0. 
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Since/0 > 0 in X, there is a constant c ^ 0 such that 

| / | ^ cf0 + q 

where ||g|| <£ e/4. Furthermore by Lemma 6.2 there is an integer m such that 

f Pmf0 ^ ejAc . 
JX\G 

Finally, since g > 0 in G there exists a constant c1 ^ 0 such that 

( C P " / O ) J G ^ 1 0 + « 1 

where fl^H ^ 'e/4. Taking all this into account we have 

|pmy| ^ pm|y| g ^.prn^ + pm g ^ 

^ Ci0 + <h + (cPm/o) 1XXG + Pm<z g c ^ + q3 

where ||#3|| ^ 3e/4. This allows us to write Pm/in the form 

Pm/ = hg + g4 

where ]h| g Cj and ||g4|| ^ 3e/4. Applying formula (6.5) we obtain 

1 = 1 

For sufficiently large n we have ||Pwft|| ^ e/4 and therefore 

\Pm+"f-iHh)gtn(i)\^e. 
i = l 

An application of Lemma 5.1 completes the proof. 
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