
Časopis pro pěstování matematiky

Yurij Alekseevich Mitropol'ski; V. L. Kulik
Investigation of invariant manifolds of dynamic systems by means of quadratic forms

Časopis pro pěstování matematiky, Vol. 111 (1986), No. 1, 70--77

Persistent URL: http://dml.cz/dmlcz/118266

Terms of use:
© Institute of Mathematics AS CR, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118266
http://project.dml.cz


Casopis p ro pestovani ma tema t iky , roc. I l l (1986), Praha 

INVESTIGATION OF INVARIANT MANIFOLDS OF DYNAMIC 
SYSTEMS BY MEANS OF QUADRATIC FORMS 

Yu. A. MITROPOLSKY, V. L. KULIK, Kiev 

Dedicated to Professor Jaroslav Kurzweil on the occasion of his sixtieth birthday 

(Received June 19, 1985) 

This paper deals with some results concerning the theory of bounded invariant 
manifolds of dynamic systems which have been recently obtained. 

First we will consider the linear system of differential equations 

(1) x = A(t) x 

with continuous and bounded on the whole axis R = ] — oo, oo[ matrix of coef
ficients A(t), x = dxjdt, x e Rr. We use the following notations: C°(R) is the space 
of continuous (vector or matrix) functions F(t) bounded on the whole axis R: C1(^)) 
is the subspace in C°(R) of functions F(t) possessing continuous derivatives; Q\(A) 
is the fundamental matrix of the system (1) with QX

X(A) = In, In being the n-dimen-
n 

sional unit matrix: <x, y} = £ x ^ is the scalar product in Rn, <x, x> = |x| |2 : A* is 
i = l 

the transposed matrix to A. 
Let there exist a quadratic form V(t, x) = <S(f) x, x), S = 5* e C\R) such that 

its derivative V along the solutions of the system (1) is negative definite, 

(2) V{t, x) = <(£(*) + S(t) A(t) + A*(t) S{t)) x,x>^ - \\x\\2 , 

and det S(t) 4= 0, t e R. Then the system (l) is exponentially dichotomous on the 
whole axis R. There is a possibility that the determinant of the matrix S(i) vanishes 
at some moments t = tl9..., tk. It is proved that k ^ n, where n is the dimension 
of the system (1). The condition of non-degeneracy of the matrix S(t) can be substi
tuted by an equivalent condition that there exists an other symmetric matrix S^t) e 
€ CX(R) satisfying the condition 

(3) <(&£) - St(t) A*(t) - A(t) St(t)) x,x}^- \\x\\2 . 

The following statement has been proved. 

Theorem 1. The existence of an n-dimensional symmetric matrix S1(f) e CX(R) 
satisfying the condition (3) is a necessary and sufficient condition for the system 
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of equations x = A{i) x + f(i) to have a unique solution bounded on the whole 
axis R for every vector function f(i) e C°(R). 

Note that the determinant of the matrix S1(t) at some moments of time can vanish 
and then the inhomogeneous system will have not one but a family of bounded on R 
solutions. 

Theorem 2. Let the matrix S^t) = S*(t) e CX(R) satisfying the condition (3) 
exist and let its determinant vanish at some moments tu ..., tk. Then the system 
(1) is exponentially dichotomous on the semi-axes R+, R„ and the dimension of 
the subspace E of all solutions bounded on the whole axis R is given by the formula 
dim E = n~(T2) — n - ^ ) , where Tl9 T2 are fixed moments of time such that 
T± < tt < T2, i = l , . . .5 k; n~(T) is the number of negative eigenvalues of the 
matrix S(T). 

In the case of weak regularity of the system (1) on R the problem of its decomposi
tion by means of Lyapunov Transform as well as the integral representation of solu
tions bounded on R were studied. All these results were used for investigating linear 
extensions of dynamic systems on a torus. 

(4)' q> = a(cp), x — A{cp) x . 

Such systems of differential equations appear when studying nonlinear multifrequency 
oscillations. Here cp = (cpu ..., (pm)9 x = {xu ..., xn): a(cp), A(cp) are continuous 
vector — and matrix — functions, respectively, which are 27r-periodic with respect 
to each variable q>r 

a(cp) is such that the Cauchy problem <p\t=0 = (p0, cp = a(<p) has a unique solution 
(pt((Po) continuously depending on q>0. We use the following notations: C0^^ is the 
space of continuous (vector or matrix) functions F((p) which are 2n periodic with 
respect to each variable cpj9 j = 1, . . . , m, i.e., they are given on the m-dimensional 
torus Tm, C\Tm) is the subspace of functions F(cp) in ^{T^ such that the function 
F((pt[cp0)) is continuously differentiate with respect to t for all t e R, cp0 e Tm, 
dF((pt((p))ldt\t=0 = F(cp) e C°(Tm), ^ ( ^o ) is a fundamental matrix of the system 
x = A((pt((p0)) x. 

Recall that the invariant torus of the perturbed system of equations <p = a(cp)9 

x = A((p) x + C(cp), C{cp) e C°(Tm) is defined by the equality x = u{q>) if u((p) e 
e C'(Tm) and the identity u((p) = A(q>) u((p) + C(q>) is valid. Let us introduce one 
of the main results. 

Theorem 3. Let there exist an n-dimensional symmetric matrix S^t) e C(Tm) 
satisfying the condition 

(5) <(S1((P) - S^cp) A*(<p) - A(cp) S^cp)) x,x>^- | x | 2 . 

Then for every vector-function C(<p) e C°(T^) the system of equations q> = a(q>), 
x = A((p) x + C(<p) has at least one invariant torus x — u((p). Moreover, i /det S(q>) 
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vanishes at some point cp0, then the system (4) has nontrivial invariant tori and 
each of them can be represented in the form 

x = u(cp) = (6) x = u(cp) = H(<p) (Ql(cp)Yf(cpx(cp)) dr, 

where f(q>) is any function in C°(Tm). Here H(<p) is a symmetric matrix function 
in C'(Tm) satisfying the identity H((pt((p)) = Qx

0((p) H((p) (Qx
0((p))* and the estimate 

\\Q'0(q>) H(cp) (Ql(cp))\\ S K exp { - y | t - r|}. 

Let us take into account the fact that the equality (6) determines a certain opera
tor 301 acting on functions f{cp) e C°(Tm). In this case there exists a matrix function 
H((p) such that the operator $W is projecting: 9W2 = $R. 

As an example let us consider the system of three equations 

cpx = 1 + hx sin cpt + h2 sin mcp2 , 

cp2 = yjl + h3 cos cp1 + h4 sin ncp2 , 

x = (h5 cos (pt + h6 sin 2(p2) x + c{cpu cp2) . 

The problem consists in finding the values of parameters h( i = 1, ..., 6 for which 
this system has an invariant torus x = u((pu q>2) e C'(T2) for each function c((px, cp2) e 
e C°(T2). Choosing the scalar function cos cpl as S^cp) we obtain the following suf
ficient condition: 

hth5 > 0 , min {\ht\9 2\h5\} ^ 1 + \h2\ + 2\h6\ . 

Possibilities of integral representations of invariant tori of perturbed systems were 
studied. If turned out that under the conditions of Theorem 3 there exists an n-
dimensional matrix C((p) e C'(Tm) such that the function 

satisfies the estimate 

(8) | |G0(T, 9)|| ^ Kexp { - 7 | T | } , K9 y - const > 0 , xeR. 

This is sufficient for representing the invariant torus of the system q> = a(cp), x = 
= A(q>) x + C(cp) by the equality 

/•oo 

x = G0(T, (?) C(<p£q>)) dr 
J —oo 

The function (7) satisfying the estimate (8) is usually called the Green function of the 
problem of invariant tori for the system (4). 

Sometimes we need only that instead of estimate (8) the function (7) satisfy 
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a weaker condition 

(9) 
/*00 

| |G0(T, (p)\\ dt g K = const < oo 
J — 00 

The problem is: can the estimate (8) be obtained from (9) even for an other function 
Go(T> <p)? Note that the assumption of existence of the matrix C{cp) e C°(Tm), guaran
teeing uniform convergence and boundedness of the integral 

r |G 0 (T, <P)\\2 dr, 
J — 00 

implies existence of the matrix 

St((p) = 2 /T G0(T, (?) CJ(T, «P) dr - f G0(T, <p) G*(r, 9) dr") , 

which satisfies the condition (5) of Theorem 3. Therefore there exists a matrix 
C(cp) e C'(T„?) which, generally speaking, differs from the previous one, such that the 
estimate (8) is fulfilled. Note that the constants K, y in the estimate (8) can be 
expressed in terms of matrices S^cp), A((p). 

It follows from (5) that small perturbations of the matrix A(cp) do not substantially 
affect the existence of the Green function. If «S1(<p) e C 1 ^ ) , then the same conclusions 
would hold for the vector-function a(cp), since in this case St((p) = (dS((p)jd(p) a((p). 
In this connection the problem appears of an approximation of functions F{cp) e 
E C'(Tm) by functions F((p) e C 1 ^ ) so that simultaneously its derivative F(cp) is 
approximated: lim(||F(<p) - Fn((p)\\ + \\P(q>) - Fn((p)\\) = 0. The affirmative solu-

H-+00 

tion of this problem is known provided a(cp) e C'(Tm) and F(cp) e CLjP(Fm). Recently 
the possibility of such an approximation has been proved provided lim c~~ V ( a I a) • 

a-++0 

. fi(F ; cr) = 0 where ju(a ; cr), /i(F ; o) — are moduli of continuity of the functions 
a((p), F(q>). 

If in addition to the condition (5) we require the existence of an n-dimensional 
matrix S(cp) = £*((?) e C'(Tm) satisfying the estimate. 

(10) <(S(<p) + S(q>) A{q>) + A*(q>) S(q>)) x, x> ^ - \\x\\2 , 

then the matrices S^cp), S(cp) are non-degenerate and the exponential dichotomy 
of the system x — A(cpt((p0)) x on R is uniform with respect to cp0. In this case the 
Green function (7) is unique and the matrix C(q>) e C'(T„) is a projecting matrix, 
C\(p) == C((p), satisfying the identity 

(11) C ( ^ ) ) E ^ ) C ( ^ T » , 

In this connection we have the problem of existence of an analogue of the identity 
(11) for the matrix function C(<p) in the case when the Green function (7) is not unique. 
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Theorem 4. Let the condition (5) be valid with a matrix S^cp) = S*((p) e C(Tm) 
degenerate at some points (p. Then there exist unique n-dimensional matrices C{cp)9 

C((p)e C'(Tm), C*(cp) = C(cp) satisfying the identities 

C((px(cp)) = Ql(cp) C(q>) Q°(cp) + tr0(<p) C(cp) f ° ((T0(<p))* (Tx(q>) da , 

C(cpx((p)) = Ql(q>) C{cp) (Qx
0(q>))* , T e R , 

and estimates 

\\Oo(<P) C(q>)\\ g K e x p { - y * } , t > 0 ; 

K(<p) (c(<?) - 'n)|| ^ K exp {yt} , t < 0 ; 

' | | Q S ( 9 ) % ) | ^ « e x p { - y | r | } , feff , 

with positive constants K9 y independent of t and <p. Moreover, rank C((p0) = 
= dim £((p0)9 where £((p0) is the space of bounded on R solutions of the system 
x = A(<pt(<p0)) x. 

Other problems concern decompositions of the system (4). Supposing that the 
linear system x = A(<pt(q>0)) x is exponentially dichotomous on R uniformly in q>0 

we ensure separability of two sets of solutions of this system. It is known that when 
each cp0 is fixed there exists a Lyapunov change of variables x = T^t) y which 
transforms the system x = A(q>t(<p0)) x to the corresponding decomposed form 
y = A+(t; (p0) yl9 y2 = A~(t; q>0) y2. The problem arises whether it is possible to 
choose the matrix T^Jt) in the form T(q>t(<p0)) where T(q>) e C(Tm), i.e., whether 
there exists a matrix T(cp) e C'(Tm) such that 

(12) T~\cp) A[cp) T(q>) - T " 1 ^ ) % ) = diag {A+(cp)9 A'(q>)} , 

where the matrices A+, A~ correspond to the a-dichotomy of the system x = 
= A((pt((p0)) x. This problem has a negative answer. In spite of this fact it has been 
proved that when supposing that the matrix S(<p) satisfying the condition (10) can 
be represented in the decomposed form 

(13) S(cp) = Q*(q>) diag {St(<p)9 -S2(<p)} Q(cp) , 

where Q(q>) e C'(Tm), <Sf(<p) rjh fj£> ^ /%i||2> then there exists a matrix T((p)e 
e C'(Tm) ensuring the decomposition (12). On the other hand, it has been proved 
that a non-degenerate matrix T((p) e C'(Tm) reducing the projecting matrix C((p) 
to the Jordan form T_1(<p) C(cp) T(cp) = diag{Jr, 0} ensures the decomposition 
(12). Hence we have the problem of the interconnection of the projecting matrix 
C((p) e C'(Tm) with the non-degenerate symmetric matrix S(<p) e C'fTjn). The study 
of this problem has led to the conclusion that each non-degenerate symmetric matrix 
S(cp) e C'(Tm) satisfying the condition (10) is connected with the projecting matrix 
C(cp) up to a constant factor by the inequality 

(14) <(S(9) C(cp) + C*(cp) S(cp) - S(<p)) x9 x> ^ ||x||2 . 
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It turned out that the additional supposition (13) concerning the matrix S(q>) implies 
solvability of the system of algebraic equations C((p) x = 0, C(cp) x = x, i.e., the 
possibility of reducing the matrix C{cp) to the Jordan form. Note that the inequality 
(14) can be considered as an independent one, not connected with the system (4). 
Besides, for every projecting matrix C2((p) = C(cp) e C°(Tm)IC(Tm)l there exists 
a set of matrices S(cp) e ^{T^jC^T^j satisfying the condition (14), in particular, 
S((p) = 2(C(cp) + C*(cp) — In). If we suppose that it is possible to reduce the projec
ting matrix C{cp) e C°[Tn^) to the Jordan form, then each matrix S(cp) satisfying (14) 
is reduced to the diagonal form. 

The problem of a possibility of a smooth decomposition of the system (4) into more 
than two subsystems was studied via quadratic forms. In this direction, the following 
statements have been proved: 

Theorem 5. Let there exist two n-dimensional non-degenerate matrices S((p), 
S((p) e C'iTn) such that the matrix S(cp) satisfies the conditions (10), (13) where Sx 

is an r-dimensional matrix, and S((p) satisfies the inequality 

<(S\(p) + S((p) A{cp) + A*(cp) S((p) + 2 X{cp) % ) ) x, x> ^ e||x||2 , 

e = const > 0 , 

with a certain positive scalar function A((/>) e C°(Tm) and admits a representation 
£(<?) = 5*(<p) diag {S^cp), — S2((p)} Q((p)9 Q(<p) e Ci^T^ with positive definite blocks 
St((p), i = 1, 2, S1 being an r-dimensional matrix, r < r. Then the inequality 
r — r < n — m where m is the number of variables (p ensures the existence of 
a non-degenerate matrix L(cp) e C'(Tm) such that 

(15) L- \<p) A(q>) L{cp) - IT \cp) % ) = diag {Bfa), B2(<p), B3(<p)} , 

where the matrices BUB2, B3 have the types r x r, (r — r) x (r — r), (n — r) x 
x (n — r), respectively. 

Theorem 6. Let all the conditions of Theorem 5 except the inequality r — r < 
< n — m be fulfilled and let the matrices S((p), $((p) have the block-diagonal 

form S(q>) = diag {^(cp), -S2(<p)}9 5(<p) = diag {S^cp), -S2{<p)} where S^cp), 
S±(<p) are r-dimensional, S^cp), S2(cp), S2(cp) — are positive definite and the matrix 
51(<p) has r positive eigenvalues and r — r negative ones. 

Then a non-degenerate matrix L{cp) e C'(T^) ensuring the decomposition (15) 
exists if and only if there exists an r-dimensional matrix Q((p) e C'(T„^ satisfying 
the equality Q*((p) S^cp) Q(<p) = diag {Jr, J r_P}. 

Let us present one of the main results concerning the system of differential equa
tions \J/ = a(\j/), x = Aty) x with continuous and bounded in the whole space Rm 

functions a(ij/), A(ij/). Analogously as before, the uniqueness of solution ^r(iA0) of 
the Cauchy problem ^ | r = 0

 = *Ao> ^ = a(^) *s assumed. 
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Theorem 7. For each \jt0e Rm fixed let there exist an n-dimensional symmetric 
matrix function 5^0 e C 1 ^ ) satisfying the conditions 

i) < s jo - s^0{t)A*(U^o)) - ^,tyo))^o(0)*>*> ^ -H 2 > 
2) ||S*0(f)| ^ const < oo for all \j/0 eRm,te R. 

Then: (i) If det S^Jf) =t= 0 for all teR, \l/0eRm, then for each vector-function 
f(\j/) e C°(Rm) continuous and bounded on Rm the system of equations 

(16) <£ = <#)> i = Aty)x+f(ilt)' 

has a unique invariant manifold x = u(i//) = j™^ G0(T. ^)f{^x{^)) dr. 

(ii) / / there exist t0 e R, \j/0e Rm such that det S^0(f0) = 0 then the system of 
equations (16) has a family of bounded invariant manifolds and they are repre
sented by the formula 

* = «(*)= P H(l/0(G^))*^</'#))dT+ P G0(T,*)/Okty))dT, 
J — oo J — oo 

vv/iere #(i//) is an arbitrary function in the space C°(Rm), G0(T, I//) is f/ie Green 
function. In this case for every n-dimensional symmetric definite matrix Bty) e 
e C°(Rm) there exist unique n-dimensional matrices Cyi//), H(ij/) e C°(Rm), ff* = H, 
satisfying the identities and estimates 

fl?(0) C (^ ) ) QJty) s C(*) + ffty) f ° (QJty))* B ( ^ ) ) OSty) dff , 
J T 

H(^))Sfl5(^)ff(^)(05(^))*; 

||OSWC(^)|| ^Kexp{-y*}, t^O; 

HW) (<#) - 4)|| ^ X exp {y*} , t < 0 ; 
j O ^ ) H(\l/)\\ g X exp {-y|t|} 9^ teR, K, y = const > 0 . 
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