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Časopis pro pěstování matematiky, roč. 111 (1986), Praha 

ON QUASI-JETS 

ANTON DEKRET, Zvolen 

(Received August 23, 1983) 

The concept of a quasi-jet of order two was introduced by Pradines, [3]. In the 
present paper, using the canonical structure properties of the r-sector spaces TrM = 
= T... TM and TrN, see [4], we formulate the definition and the basic properties 

.--times 

of quasi-jets of order r. This notion is a generalisation of the one of the jet and it 
seems to be a useful tool for studying several geometrical objects (for example con­
nections) on TrM. Our considerations are in the category C0 0. 

1. Throughout this paper we will use the short notation (n) for a fibre bundle 
n: Y-> M, and pM: TM -> M or TF: TM -> TN will denote the tangent bundle of 
a manifold M or the tangent mapping of a differentiable mapf: M -> N, respectively. 

We first recall some properties of vector bundles. Those which are generally known 
we introduce without proof. 

Lemma 1. Tf: TM -> TN is a vector bundle morphism (shortly a v.b.m.). 

Lemma 2. Let q: E -> M be a vector bundle. Then pE is a v.b.m. from (Tq) to (q). 

Lemma 3. Let <p: Ex -> E2 be a v.b.m. from qx: Ex -> M x to q2: E2 -> M. Then 
Tq> is a v.b.m. from (Tqt) to (Tq2). 

Lemma 4. Let qt: Et -> Mi9 i = 1, 2, be two vector bundles. If i/>: TEt -> TE2 

is both a v.b.m. from (pEi) to (pEz) over the underlying base map \j/x:El -> E2 

and a v.b.m. from (Tqt) to (Tq2) over the underlying base map \j/2: TMt -> TM2 

then \\f1 and \\i2 are v.b. morphisms. 

Proof. Let ul9 u2 e (Et)x. By Lemma 2 there exist ui9 u2 in the same fibre of (Tqt) 
such that pEl(

ui) = ub i = 1, 2, PEx(hux + hu
2) = hui + hu2- Then ^ ( M i + 

+ hu
2) = PE2 • ^(hut + t2u2) = txpE2. ^(uj) + t2pEl. \l/{u2) = f ^ i K ) + h ^2(

UT) 
If vl9 v2 e (TMX)X9 then by Lemma 1 there exist vl9 v2 in the same fibre of (pEl) such 
that Tqx(vt) = vi9 i = 1, 2. Then \l/2(t1v1 + t2v2) = Tq2 . \//(t1vl + t2v2) = ttTq2 . 
. ^(vx) + t2Tq2 . il/(v2) = tt il/2(Vl) + t2 il/(v2). Q.E.D. 
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Let q: E -> M be a vector bundle and let VE0 denote the set of all tangent vectors v 
on E such that pE(v) = 0 e E, Tq(v) = 0 e TM (vertical vectors at 0 e E). Let us 
recall the canonical identification E = V£0 c TE which gives the canonical embed­
ding V0: E -> TE, V0(a) = jl

0(t s-» to), t e R. If (x£, y*) or (x\ yx, dxl, dyx) is a chart 
on E or T£, respectively, then 

(1) K0(x', ya) = (x\ 0, 0, / ) . 

This immediately yields: 

Lemma 5. Let q: E -> M be a vector bundle. Then V0: E -> TE is both a v.b.m. 
from (q) to (pE) and a v.b.m. from (q) to (Tq). 

Lemma 6. Let (p:Et -» E2 be a v.b.m. of vector bundles qi:Fi -» M< and 
q2:E2 -> M2. Then the diagram 

commutes. 

Proof. Let ae(E1)x. Then Tq> . V0(a) = Tcp(j0(ta)) = jl
0 <p(ta). On the other 

hand, V0 (p(a) = jl
0(t <p(a)) = j 0 y(ta). 

Lemma 7. Let qt: Et -> Mh i = 1, 2, be two vector bundles. Let i//: TEt -> TE2 

be both a v.b.m. from (pE) to (pEl) and a v.b.m. from (Fqi) to (Tq2). Then 
+(V0(EX)) cz V0(E2). 

Proof. We need to show Tq2.\j/ . V0(Et) = 0 = pEl . \j/ . V0(Fi). By Lemma 4, 
the underlying basic maps of ij/, both i/^: Et -> E2 and \j/2: TMt -> TM2, are v.b. 
morphisms. If h e V0(Fi) then P£l(h) = °» ^ I C O = °- Consequently Tq2.\l/. 
. V0(h) = il/2 . Tq,(h) = 0, P£2 . i// . V0(/i) = ^i . pEl(h) = 0. 

Lemma 8. Let q±:E -> Y, q2:E -+ Y\ q:Y-> M be vector bundles. Let q2 be 
a v.b.m. from (qx) to (q). Then the canonical embedding V0: E -> TE, determined 
by ql9 preserves the fibres from (q2) into (Tq2). 

Proof. Let a,beE, q2(a) = q2(b). Then Tq2V
l
0(a) = Tq2(j0ta) = jl

0q2(ta) = 
= I(o'q2(<0) = I^q2b) = f0q2(tb) = Tq2(j

l
0tb) = Tq2V'0(b). 

Remark 1. In general, V0 is not a v.b.m. from (q2) to (Tq2). 

2. Quasijets. Let Tbe the tangent functor. By iteration we get TkM: = T ...TM 
/c-times 

and TJ: = T(... Tf): TkM -> TkN. Denote by pf: T(ry_,M) -> 7}_.M the tangent 
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bundle projection p r , _ l M - Then Tr_jpf: TrM -> Tr-_M is a vector bundle. Hence 
on TrM the following canonical vector bundle structures exist: (Tr_ x pf ) , . . . , (Tp™_ t ) , 
(pf), see [4]. 

Lemma 9. The tangent bundle projection pf: TyTt-_M) -> T^.jM /s a v.b.m. 
from (Tt-kp^) to ( T ^ ^ . p f ) , fc = 1, ..., i - 1. 

Proof. Because (Ti-k-_p™), fc = 1, . . . , i — 1, is a vector bundle structure on 
T ^ M , therefore, by Lemma 2, p f is a v.b.m. from ^ T ^ ^ . ^ f ) = T<_fcpf to 
(Ti-k-^y 

Corollary 1. As pi: is a v.b.m. from (T,;_fcpf) l0 (Ti-k-_p™) then, by Lemma 3, 
Tr-iP*f is a v.b.m. from (Tr-Xpf) to (Tr_k-_p%), where fc = 1,..., i - 1, i __ 2. 

Corollary 2. For s > i, Ts-t-_Pi: TS_XM -+ TS-2M is smooth. Then, by Lemma 
3, T\Ts-i-_)pi = Ts-iPi is a v.b.m. from (pf) to (pf_x). Therefore, by Lemma 3, 
Tr-iPt is a v.b.m. from (Tr-Sp™) into (T.-.p^^), i < s __ r. 

Definition 1. Let M,N be smooth manifolds. A quasijet of order r with the 
source xeM and the target y eN is a map <p: (TrM)x -> (TrN)y which is a v.b.m. 
from (Tr-kpk)x to (Tr_kpk)yfor every fc = 1, ..., r. The set of all quasijets of order r 
with the source xeM and the target yeN will be denoted by QJx(M,N)r Then 
QJr(M, N) will mean the set of all quasijets from M to N. 

Proposition 1. Let (p e QJX(M, N)y. Then the basic underlying map (pt: (Tr-_M)X -» 
-> (Tr-_N)y of the v.b. morphism cp from (Tr_ipf)x into (Tr-iP^)y is a quasijet of 
order r - \, i.e. (pte QJr"1jM,N)y. 

Proof. It is necessary to prove that <pt is a v.b.m. from (Tr-i-kp¥)x to (Tr-t-kp
N)y 

for fc = 1, . . . , r - 1. By Corollary 1, Tr_ tpt is a v.b.m. from (Tr_fcpf) into (Tr_fc_ xpf) 
for fc = 1, ..., i - 1 and by Corollary 2, Tr_ tpt is a v.b.m. from (Tr-kp™) to (Tr_fcpf__) 
for i < k __\r. Let u_, u_ be from the same fibre of (Tr^.j-_p^), k __ i — 1, or of 
(Tr-kpk-i), i _ k - l _ r - l . Then there exist u_,u2e(Tr-kpk) such that 
Tr-iPi(uj) = uj, j = 1, 2. Then (p{t_u_ + t2u2) = Tr-iP

N . <p(t_u_ + t2u2) = 
= t_Tr-iP

N . <p{u_) + t2Tr-iP
N . < u 2 ) = t_ Vi(Ul) + f2 cpi(u2). Q.E.D. 

The map x,-: QJr(M, N) -> QJ r X(M, N), where xt((p) = <p{ is the underlying basic 
map of the v.b.m. cp: (Tr-iP*f) -* (Tr_fpf)y, will be called the i-basic projection. 

Coordinates on QJr(M, N). Let (x*) or (>>a) be a chart on M or on N, respectively. 
Then (x£l# £r) or (y£1...£r), where £f e {0, 1}, is the induced chart on TrM or on TrN, 
respectively. For example, (xl

00, x\0, xl
ol, x\_) is a chart on T2M. Since a quasijet 

of the first order is a linear map from TXM into 7],N therefore (xl, laa
i, y*) is a local 

chart on QJ1(M, N). Let us suppose that we know the coordinate formulas for quasijets 
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of order r - 1. Then by Proposition 1, for <p e QJr(M9 N) it is sufficient to determine 
the form of the function y\wl = (pai...i(xl

Et_Er). However, by Definition 1, <p\...\(xx
Ei...Er) 

is a sector r-form and, by Whitte [4], its coordinate form is 

(-) tf...i= I -c:rt; •••*£• 
(yi...yk)eS 

where S denotes the set of all admissible decompositions of e = (1 , . . . , 1) on yt = 
= (e\9..., el)9..., yk = (e\9..., e% eu

s e {0,1} such that 

(i) 7i + ... + 7k - («i, + ... + «5,...,«r + — + *r) = e> 
(ii) if j < I then degy,- < degy,., where the number d e g ^ , ...,er) is defined 

in the following way: if ex = ... = es_x = 0 and es = 1 then deg(e1, ...,er) = s. 
Consequently, <p e QJr(M9 N) has the coordinate form 

(3) yl..lr= E < ' . : « • • • < 
( y i » . . » V k ) 

where yY + ... + yk = (e-, ...,£r) and degyf < degy,. if i < j . 
For example, in the case when <p e QJ2(M9 N) we have: 

a _ n*10 i <z _ -91 i _ «(10)(01) i / , nctll i 
ylO — "I * 1 0 y yOl — a i X 0 1 > yll — "»7 * 1 0 * 0 1 + " i ^ l l • 

It implies a chart (*', flJ
10, af\ a't

n
9 a%10)(01)) on QJ2(M9N). 

By the standard procedure, one can show that QJr(M9 N) is a differentiable mani­
fold and xt: QJr(M9N) -* QJ'-^M, JV), i = 1, ...,r, is a fibre bundle structure. 
In coordinates, if <p = (â .V.Vj'*) then just the coordinates of cp for which yy- = 
= (yJ

l9..., yj = 0,..., yj
r) for ally, are also the coordinates of xt<p. 

Now we describe the other canonical submersion from QJr(M9 N) onto 
QJr'l(M9 N). On TkM there exist fc vector bundle structures: (7i_;pf), i = 1,..., fc. 
Let V™: TkM -> -T(7iM) denote the embedding determined by the vector bundle 
structure ( r ^ ^ ) . 

Lemma 10. Vj% is a v.b.m. from\ (Tk-jpf) to (Tk„J+1pf)9j = 1,..., fc. 

Proof. Let (xJt...Bfc) be the induced chart on TkM. Then the induced chart on 
Tk+1M can be written in the form (x21#..efc0, x[t_Efcl), i.e. the fibres of T(TkM) are 
determined by x«1#..efc0 = const, i.e. xl

eit%Ekl are the variables on fibres of T\TkM). 
In general, the coordinates xi

Ei_Ek+i, for which ej = 1, are variables on fibres of 
(Tk-jPj)- By (*)> * e equations of V™ can be written in the form: 

V\) *«i...«i = l...ek0 ~ 0 > ^ei...ei = 0...ekl = ®> 

Xsi...ei = l...ekl
 = *ei...ei=1...2ic > 

Xei...ei--0...efcO ~ ^ei...ei = 0...ek • 

It is clear that if x,....,,=(,....„ = const then x,4...,y=0. ct+i = cons t> j . e . ^ p r e s e r v e s 

fibres from (Tk-jPj) to (r4_,+ 1-,) . The linearity of V^:(Tk.jPf)-*(Tk-J+tPj) 
follows from (4) for Sj = 1. 
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For every k _£ r — 1 we have the embeddings rr_t_1V(5t: Tr.tM -> TrM, i — 
= 1,..., k. Hence, in this way, we get 1 + ... + r — 1 vertical embeddings from 
Tr_. to TrM. Denote (T^.XK)'1- Tr.k.tV^(Tr.lM) -+ Tr.t the map inverse 
to Tr.k.tV^. 

Proposition 2. Let cp e QJX(M, N)y. Let i ^ k < r. Then the map 
(^(r.-fc^Vo^-^^ is a quasijet of order 
r - 1. 

Proof. To prove it we must show that cpl
k is a v.b.m. from (V,.-.,-!^) to 

(l^^j.xp^J = 1,..., r — 1. Letf = k. By Lemma 10, Vo'fc is a v.b.m. from (Tk-jPj) 
to Tk-j+1pj,j = 1,._., fc. Then by Lemma 3, jT̂ fc-iVofc is a v.b.m. from (Tr-j-iPj) 
to (Tr-jPj). By Lemma 7, cp . Tr.k^V^(Tr^lPJ) cz r . ^ ^ V ^ T , . . ^ ^ ; ) . There-
fore <pl is a v.b.m. from (Tr-j-tpf) into (T,..,.- -p?). Let r > 7 > fc. Since 7}_fc_1V0

ff: 
Tj.xM -+ TjM is smooth, then r ^ . ^ V S J f ) is a v.b.m. from (pf) to (Pf+_). 
Hence Tr-k-tV™ is a v.b.m. from (Tr^j^tpf) to ( T ; . , . . ^ ^ t) and thus (p[ is a v.b.m. 
f rom(r r _ i _ l P j

M ) to(7; . w p ; ) . 
By the equations (4), it is clear that the induced coordinates of <pl

k are just the 
coordinates of cp = (a^'j'J*) for which y) = (e{ ... e{ = 0 ... eJ

k+l = 0 ... ej
r) or 

yj = (e( ... e{ = 1 ... £j(+1 = 1 ... e/) for everyf. Therefore the map x :̂ Q Jr(M, N) -> 
-» QJr_1(M, N), Xfc(<p) = (?>fc, is a submersion. For instance, in the case r = 2, 
x}(*', _;10, _j 0 1 , a.11, < 0 ) ( 0 1 ) , / ) = (*', a?11, y). 

Let a: QJr(M, N) -> M be the source projection. Then a local cross-section 
of (a) \p:M => U -+ Q Jr(M, N) determines a map \p: (TrU) -• TrN, i?(w) = *%(")) (") 
Let x e l / . Denote T\p(x) := T\p\(Tr+iM)x. 

Lemma 11. Let \p: M ZD U -> (a) be a local cross-section. Then for every xeU, 
T$(x) e QJX

+1(M, N) and 4 . T${x) = \p(x), i = 1,..., r. 

Proof. By Lemma 1, Tip is a v.b.m. from j^+_) to (pr + i). As \p is a v.b.m. from 
(T^Pfc7) to (Tr-kpk) for fc = 1,..., r, therefore, by Lemma 3, Tip is a v.b.m. from 
(Tr-u+iPk) t 0 (^r-fc+irf). It means that T\pKx)e QJr

x
+1(M,N). By Lemma 6, the 

diagram 

(_;_*?) —Kr--«rf) 
V' Ш V' 

nr r_ i Pf)—^-^7(7,.^) 

is commutative. It implies xr(T, ^) = i?, f = 1,..., r. 
Using (3) it -is easy to verify the converse of Lemma 11: 

Lemma 12. If A e QJr+1(M,N)y and x)A = ... = xr

rA = xr + 1A, then there 
exists a local cross~section \p of (a) such that A = T\p(x). 
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Relations to the theory of jets. The basic ideas of jets were introduced by Ehresmann, 
[1]. They can be reformulated to a form suitable for our purpose, see [3]. Let U 
be a neighbourhood of x e M. Let f: U -> N be a smooth map. Then Tf(x) is a 1-jet 
with the source x and the target y =f(x). Generally, Trf(x) = T(. . . Tf\TrM)x 

is a holonomic r-jet with the source x and the target y. We use the notation jxf 
for Trf(x) and Jr(M,N) for the set of all holonomic r-jets. Let a: J\M,N) -> M 
or b: JX(M, N) -> N be the source or the target projection. A local cross-section 
\l/: U -> (a) gives a map $: TU -> TN, ^(h) = <AKM)) (M)- T h e n T$(x) = T l̂(r2Af)jc-
(T2M)X -• T2N is a non-holonomic 2-jet denoted by f[i//. IF i/r(x) = Tx(fci//) thenjii/r 
is said to be semiholonomic. Let J2(M, N) or J2(M, N) be respectively the set of 
all non-holonomic or semiholonomic 2-jets from M to N. Denote by n\: J2(M, N) -» 
-> Jl(M, N) the canonical submersion n\(jx\j/) = \l/(x). By induction, let Jr~x(M, N) 
or Jr~ l(M, N) be respectively the set of all non-holonomic or semiholonomic (r — 1)-
jets and let nr

rZ\: Jr~1(M, N) -> Jr~2(M, N) be the canonical projection. Let \j/: U -> 
-> Jr~l(M,N) be a cross-section of the source submersion a:Jr~1(M, N) -> M. 
Then T$(x) = T^|(7VM)x: (TrM)x -> TrN, where ^(h) = y}>(a(h)) (h), is a non-
holonomic r-jet. If the values of \J/ are semiholonomic (r — l)-jets and \J/(x) = 
= T(7rrI2^|(rr_lM)x then jx\f/ is a semiholonomic (r — l)-jet. It is obvious that 
r-jets are quasijets of order r and the canonical projection 7rr_i is identical with the 
above defined submersion xr. 

Using Lemmas 11 and 12 we get: 

Proposition 3. Let (p e QJr(M, N). Then (p is a non-holonomic r-jet iff x\(p = x2(p, 
x\q> = x\(p = x3(p,...,x\_x(p = ... = xrZ\(p = xr. 

Proposition 4. A quasijet (p of order r is a semiholonomic r-jet iff xtq> = ... 
... = xr(p = x\(p = x\(p = ... = xT

rZ\(p. 
Let us emphasize that (pe QJx(M,N)y is a v.b.m. from (Tr_iP{f)x to (Tr_ijp^)j; 

for every i = 1,..., r. One can study v.b. morphisms from (Tr-jpf) to (Tr_kpk), 
j 4= k. As an example of such maps we introduce the canonical involutions on TrM. 
Let us recall, see [2], that the canonical involution i2: T2M -> T2M has the following 
coordinate form: /2(x00, x|0 ,x0 1 , x[t) = (x00, x01, x;o, x[t) Denote by i3,..., ir 

the canonical involutions on T2(TM) = T3M,..., T2(Tr_2M). Then Tr_2f2,... 
..., Tfr_i, ir are involutions on TrM. It is easy to see that Tr-jij is a v.b.m. from 
(T^jpf) to (7r_y+ xpj_ t). Denote by Ir the group of diffeomorphisms on TrM which 
is generated by Tr_2f2,..., ir. Ir is isomorphic with the group of all permutations 
of the set {1,...,«}. Obviously gelr is a v.b.m. from (Tr_kpjf) to (Tr_ff(fc)p^}). 
It means that q>. g, id 4= g elr, (ps QJr(M, N), is not a quasijet, but g~x . q>. g is. 
Let us remark that if A is a semiholonomic r-jet then the quasijet B = Tr_kik . A . 
. Tr_fc/k need not be semiholonomic. For instance, if A = (xl, aa, aa

u, a
a
ijk, y

a) e 
eJ\M, N) then *i(Tp2 . A . Tp2) = (xl, a], ba

u = aa
j{, y

a) and x3(Tp2 . A . Tp2) = 
= (x*, a], cu = aaj, ya), i.e. if au * aj{ then x3B #= x2B, B = Tp2. A. Tp2. 
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Lemma 13. Let A be a semiholonomic r-jet. If Tr_jij . A . Tr-jij = A9j ^ r — 1, 
then Tr„j_xij . ̂ XA . Tr-j-tij = nr

r_xA. 

Proof A=jU/9 A = T$\{TrM)x9 il,:M -+Jr-l(M9N)9 i^(x) = nr
r^A. As 

Tr-jij . A . Tr.jij = (Tr-jij . T$ . Tr„jij)\(TrM)x = T(Tr-j-xij . <? . Tr^tij)\iTrM)x9 

therefore if Tr_,./,. . A . Tr_,./, = A = T$\{TrM)x then ifr{x) = Tr-j-tij .f(x) . 
. Tr_ i_1/ i. This completes our proof. 

Let us recall that a semiholonomic jet A is holonomic iff all its coordinates aiiAm 

are symmetric in all subscripts. 

Proposition 5. If A is a holonomic r-jet then Tr-kik . A . Tr-kik = A for every 
k=l,...,r. 

Proof by induction. Because aa
tJ = a^ then Proposition 5 is true in the case 

r = 2. Let it be true for r - 1. Let A = jrf = Trf\{TrM)x9 F: M -• N. Then A = 
= T\Tr.J)\{TrM)x. By the induction assumption Tr„j-Xij . T r _ J \ Tr-j_.xij = Tr.J 
for 7 = 1, ..., r — 1. Consequently, Tr-jij . A . Tr-jij = T(Tr_J_1/ i . Tr_1/. 

. Tr_i._1/i)|rrJVfx = T(Tritf)\{TrM)x = A9 j = 1, . . . , r - 1. It is necessary to 
prove that ir. A . ir = A. Since Trf\{TrM)x = T2(Tr_2/)|(IViVf)x, ir is the canonical 
involution on T2(Tr-2M) and Proposition 5 is true for r = 2 then ir. A . /r = 
= ir. T 2 (T r _ 2 / ) . /r|(7rM)x = T2(Tr__2f)\{TrM)x = A. 

Corollary 3. If A is a holonomic r-jet then g"1Ag = A for every g elr. 

Proposition 6. If A is a semiholonomic r-jet and Tr-kik. A . Tr-kik = A for every 
k = 1, . . . , r, then A is holonomic. 

Proof. In local coordinates it is easy to see that Proposition 5 is true for r = 2. 
Let it be true for r — 1. By Lemma 13, if Tr-jij. A . Tr-jij = A9j = 1 , . . . , r — 1, 
then Tr-j-tij .nr

r-i .A.Tr.j-tij = 7%-iA. Then, by the induction assumption, 
^r_!A is holonomic. As A is semiholonomic, it is sufficient to prove that its coordi­
nates a*lmuJr are symmetric in all subscripts. By (2), if Tr_k/k. A. Tr_kik = A then 

, , * v - i yik-i Y«k Y»V n Y»i 
fl/i...£k-i.fc...'r 10...0 • • • *0...ek-i-=10...0*0...«k-=l,0...0 • • • •*0...01 — "ii...!k-iik...ir^10...0 • • • 

••• 4k.:0£k-io...o • <..oek-,-io...o --- *o...oi ^ every x\x„^ e(TrM)x . 

Then allMik_llh„mir = = ahShjh_t...ir-

Remark 2. White, [4], defined a sector r-form on M as a real function/: (TrM)x -* 
-> .R linear on (Tr_fcpf) for every k = 1 , . . . , r. Let TrM - > M b e the vector bundle 
of all sector r-forms on M. In the proof of Proposition 2, it was shown that Tr^k-tVQk 

is both a v.b.m. from (Tr-j_tpj) to (Tr-jPj) forf 5̂  fc and a v.b.m. from (T^y-iP,) 
into (Tr_,._-/>,.+ !)if r >j > k. Hence if /er^M then **/: = / . Tr_k_1V(}Jk e < ' x M . 
One can prove that x[: T?M -» zr~1M9 f*-*x[f9 is a submersion. Let (TrM)0 : = 
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: = { / G irM; x[f = 0 for all i, k where 1 = i = k < r). By (4), i f / = £ ahZVj . 

. XyJ ... Xy-J, where S is the set of all admissible decompositions of e = (1 , . . . , 1), 
then fe(zrM)0 iff all coordinates of / vanish with the exception of a(J0-:-°)-(0-01) == 
== a,,...,,.. Let X!, ...,Xre TXM. Then there exist Xe(TrM)x such that px ... 
• ..pi-1pi+l...pr-lPr(X) = Xi. Let / G ( T ; M ) 0 . Set f(Xu ... Xr) := f(X) = 

^i,...^!1 ••• *r'r- I I implies the identification (zrM)0 = ®r T*M. 

Remark 3. All notions of the theory of jets can be extended to quasijets. For 
example, the composition of quasijets is immediately given by the composition of 
maps; a quasijet A e QJr

x(M,N)y is called invertible if there exist B e QJy(N, M)x 

such that B. A = id|(TrAf)jc. It is suitable to use for quasijets the notation from the 
theory of jets with the capital letter Q in front of the corresponding symbol. For 
instance, QTkM = QJr

0(R
k, M); QLm = Inv QJ0(R

m, Rm)0 is the set of all invertible 
quasijets from Rm to Rm with the source and target 0 e Rm; QWM = Inv Q J0(R

m, M), 
dim M = m. One can show that QWM is a principal fibre bundle with the structure 
group QLr

m. Let q: 7-> X be a fibre bundle. Then QJrY = {u e QJr(X, Y); Trq.u = 
= id|(rr^)a(u)} can be called the r-th quasijet prolongation of Y. 
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