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Casopis pro péstovini matematiky, ro&. 111 (1986), Praha

ON QUASI-JETS

ANTON DEKRET, Zvolen
(Received August 23, 1983)

The concept of a quasi-jet of order two was introduced by Pradines, [3]. In the
present paper, using the canonical structure properties of the r-sector spaces T,M =
= T...TM and T,N, see [4], we formulate the definition and the basic properties

r-times
of quasi-jets of order r. This notion is a generalisation of the one of the jet and it
seems to be a useful tool for studying several geometrical objects (for example con-
nections) on T,M. Our considerations are in the category C*.

1. Throughout this paper we will use the short notation () for a fibre bundle
n: Y>> M, and py: TM — M or TF: TM — TN will denote the tangent bundle of
a manifold M or the tangent mapping of a differentiable map f: M — N, respectively.

We first recall some properties of vector bundles. Those which are generally known
we introduce without proof.

Lemma 1. Tf: TM — TN is a vector bundle morphism (shortly a v.b.m.).

Lemma 2. Let q: E » M be a vector bundle. Then pg is a v.b.m. from (Tq) to (q).

Lemma 3. Let ¢: E, - E, be a v.b.m. from q,: E; > M, to q,: E, - M. Then
Ty is a v.b.m. from (Tq,) to (Tg,).

Lemma 4. Let q;: E; » M;, i = 1,2, be two vector bundles. If y: TE, —» TE,
is both a v.b.m. from (pg,) to (pg,) over the underlying base map Y,: E; - E,
and a v.b.m. from (Tq,) to (Tq,) over the underlying base map y,: TM; - TM,
then Y, and Y, are v.b. morphisms.

Proof. Let u,, u, € (E,),. By Lemma 2 there exist ii,, i, in the same fibre of (Tg,)
such that pg (i) = u;, i = 1,2, pg (i, + t,ii,) = tyuy + tu,. Then Y (tju, +
+ tauy) = pg, - Yty + tily) = tpg, Y(iy) + t2Pg,  Yil5) =ty (uy) + 15 Y5(uz)
If vy, v, € (TM,),, then by Lemma 1 there exist 7, 7, in the same fibre of (pg,) such
that Tq,(3;) = v;, i = 1,2. Then Y,(t,v, + t,0,) = Tq, . Y(t,5; + t,0,) = t,Tq, .
W(By) + 1,Tq, (D) = t, Y3(v,) + 12 Y(v;). Q.E.D.
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Let g: E — M be a vector bundle and let VE, denote the set of all tangent vectors v
on E such that pg(v) = 0e E, T,(v) = 0e TM (vertical vectors at 0 ¢ E). Let us
recall the canonical identification E = VE, « TE which gives the canonical embed-
ding Vo: E — TE, Vy(a) = jo(t > ta), t € R. If (x, y*) or (x%, y*, dx', dy*) is a chart
on E or TE, respectively, then
(1 Volx', y) = (x4, 0,0, y7) .

This immediately yields:

Lemma 5. Let q: E - M be a vector bundle. Then Vy: E — TE is both a v.b.m.
from (q) to (pg) and a v.b.m. from (q) to (Tq).

Lemma 6. Let ¢:E, » E, be a v.b.m. of vector bundles q,: E, - M, and
q,: E, > M,. Then the diagram

El ¢ EZ
TE,— ' _,TE,

commutes.

Proof. Let ae(E;),. Then To.Vy(a) = To(js(ta)) = j, ¢(ta). On the other
hand, V, ¢(a) = jo(t ¢(a)) = jo o(ta).

Lemma 7. Let q;: E; > M;, i = 1,2, be two vector bundles. Let y: TE, - TE,
be both a v.b.m. from (pg,) to (pg,) and a v.b.m. from (Tq,) to (Tq,). Then
W(Vo(EY)) < Vo(E,).

Proof. We need to show Tq, .y . Vo(E,) = 0 = pg, . ¥ . Vo(E,). By Lemma 4,
the underlying basic maps of ¥, both y,: E;, —» E, and ¥,: TM; - TM,, are v.b.
morphisms. If he Vo(E;) then pg(h) =0, Tq,(h) = 0. Consequently Tg,.V .
Vo(h) = Wy . Tgy(h) = 0, pg, . ¥ Vo(h) = ¥y . p,(h) = 0.

Lemma 8. Let q:E—> Y, q;: E— Y; q: Y—> M be vector bundles. Let q, be
a v.b.m. from (q,) to (q). Then the canonical embedding Vy: E — TE, determined
by q,, preserves the ﬁbres from (q,) into (Tg,).

Proof. Let a,beE, q,(a) = q;(b). Then Tg,V,(a) = Tq,(jta) —]Oqz(ta) =
= j(0192(a)) = jo(tq2b) = jod2(tb) = Ta,(jotb) = Ta,Vs(b).

Remark 1. In general, V3 is not a v.b.m. from (q,) to (Tg,).

2. Quasijets. Let T be the tangent functor. By iteration we get TM: = T... TM
N, et
k-times

and T,f: = T(... Tf): T,M — T;N. Denote by p}': T(T;— M) - T;_;M the tangent
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bundle projection pr,_ . Then T, jpj : T, M - T,_M is a vector bundle. Hence
on T,M the following canonical vector bundle structures exist: (To-1pY), ..o (TPM),

(pY), see [4].

Lemma 9. The tangent bundle projection p',-": T(TE_IM) - T,_ M is a v.b.m.
from (To,pt) to (Ty—oypt), k=1, ..., 0 — L.

Proof. Because (T;_,_,py), k =1,...,i — 1, is a vector bundle structure on
T;- M, therefore, by Lemma 2, p¥ is a v.b.m. from T(T,_,_,p}) = T_.p¥'

( -k- 1Pk)

Corollary 1. As p;.is a v.b.m. from (Ti—pY) to (Ti— - 1p,() then, by Lemma 3,
T,_.p is a v.b.m. from (T,_;p¥) to (T,—\~,p¥), where k = 1, ...,i — 1,i = 2.

Corollary 2. For s > i, T,_,_p;: T,_ M — T,_,M is smooth. Then, by Lemma
3, \T,—i—1) pi = T,_p; is a v.b.m. from (p) to (p¥_,). Therefore, by Lemma 3,
T,_.p; is a v.b.m. from (T,_pY) into (T,_p,_,), i <s < r.

Definition 1. Let M, N be smooth manifolds. A quasijet of order r with the
source x € M and the target ye N is a map ¢:(T,M), — (T,N), which is a v.b.m.
from (T,_,pi"), to (T,_.py), for every k = 1, ..., r. The set of all quasijets of order r
with the source x € M and the target y eN wzll be denoted by QJ (M, N),. Then
QJ'(M, N) will mean the set of all quasijets from M to N.

Proposition 1. Let ¢ € QJ%(M, N),. Then the basic underlying map ¢;: (T,- M), -
— (T,_1N), of the v.b. morphism ¢ from (T,_p¥), into (T,-.p}), is a quasijet of
order r — 1, i.e. ¢;€ QJ"™' /M, N),.

X

Proof. It is necessary to prove that ¢, is a v.b.m. from (T, -, px )x t0 (To— 14D} )y
fork = 1,...,r — 1. By Corollary 1, T,_;p;is a v.b.m. from (T,_,p}") into (T,_4—1p}')
fork = 1,...,i — 1and by Corollary 2, T,_;p; is a v.b.m. from (T, _,py") to (T, —xPr—1)
fori <k g r. Let uy, u, be from the same fibre of (T,-;_,p;), k < i — 1, or of
(T,_ypM.,), i<k—1=<r—1 Then there exist i@y, i, e(T,_xps) such that
T,_.pii;) = u;, j = 1,2. Then @ftyu, + tyu,) = T,_;p} . @tyit; + t2i;) =
= t,T,_p} . 0y + ,T,_p} . 0) =ty @uy) + t; 9(u;). Q.E.D.

The map x;: QJ'(M N) — QJ " '(M, N), where »(¢p) = ¢, is the underlying basic
map of the v.b.m. ¢: (T,_;p}) - (T,-.pY),» will be called the i-basic projection.

Coordinates on QJ"(M, N). Let (x') or (y*) be a chart on M or on N, respectively.
Then (x;,..,) or (,,..s,)» Where & € {0, 1}, is the induced chart on T,M or on T,N,
respectively. For example, (xbo, X}o, Xb1, Xi) is a chart on T,M. Smce a quasijet
of the first order is a linear map from T, M into T,N therefore (x', a3, y*) is a local
charton QJ'(M, N). Let us suppose that we know the coordinate formulas for quasijets
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of order r — 1. Then by Proposition 1, for ¢ € QJ"(M, N) it is sufficient to determine
the form of the function y§_; = ¢%_(x! ). However, by Definition 1, ¢ _4(i,....,)
is a sector r-form and, by Whitte [4], its coordinate form is :
@) Yia= X ailuila..ox,
(71...7K)ES

where S denotes the set of all admissible decompositions of e = (1, ...,1) on y; =
= (efy..cr€r)yees Yo = (€5, ..., €}), e €{0, 1} such that

)y +.cotm=(el, +...+¢€l,..,ep +...+€f)=¢,

(i) if i <j then degy; < degy;, where the number deg(ey,...,¢,) is defined

in the following way: if &, = ... = ¢, = 0 and & = 1 then deg (e, cer &) = 8.
Consequently, ¢ € QJ(M, N) has the coordinate form
3 Vot = L @RI x
(P13ee037%)

where y; + ... + % = (&, ..., &) and degy; < degy; if i <.
For example, in the case when ¢ € QJ%(M, N) we have:

a __ _alo_i a __ _a01_i — 2(10)(01 all
Yio = 6; Xi10, Yo1 = a; xOl’ Vi1 = a X )x x +a xu.

It implies a chart (x', a;'°, a3°', af'!, a}{*@°"Y) on QJ*(M, N).

By the standard procedure, one can show that QJ"(M, N) is a differentiable mani-
fold and x;: QJ(M,N) —» QJ""Y(M,N), i = 1,...,r, is a fibre bundle structure.
In coordinates, if ¢ = (a’*;;>) then just the coordinates of ¢ for which y; =
=0l ...vi=0,..., y}) for all j, are also the coordinates of x;p.

Now we describe the other canonical submersion from QJ’(M , N) onto
QJ""'(M, N). On T, M there exist k vector bundle structures: (T;—;p}), i = 1, ..., k.
Let Vg;': TM — T(T,M) denote the embedding determined by the vector bundle
structure (T - ,-p?‘).

Lemma 10. VgY is a v.b.m. from (Ti—;p}) to (Ti—jssp)), j = 1,..., k.

Proof. Let (xzl ) be the induced chart on T,M. Then the induced chart on
Ty+1M can be wntten in the form (x{, ..o, X!, 1), i.€. the fibres of T{T;M) are
determined by x“ 5o = const ie. x! . are the variables on fibres of T\T,;M).
In general, the coordinates x, e for which ¢; = 1, are variables on fibres of

(Tx-;p,)- By (1), the equations of ¥4} can be written in the form:

(4) fn...¢¢=l...¢k0 =0 ’ xn...c;=0...zkl =0 ’

xl[...!(=l...lk1 = xu...:.'=l...¢k’

Xegtg=0.0tx0 = Xeg...tq=0...5 *

It is clear that if X,,_,,-o..., = CODSt then X, , o . . = const, ie. V), preserves

fibres from (T;—;p;) to (Tx-;+1p;). The lmeanty of Vet (Tiespl) ~ (Ticjs1p)
follows from (4) for ¢; = 1.
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For every k < r — 1 we have the embeddings T,_,_Vi: T,-. ;M - T,M, i =
= 1, ..., k. Hence, in this way, we get 1 + ... + r — 1 vertical embeddings from
T,—, to T,M. Denote (T,_,—,Vix) ™' T,y 1 Vi (T,-1M) - T,—, the map inverse
to T,_y—Vor'

Proposition 2. Let ¢ € QJY(M, N),. Let i < k < r. Then the map

Of = (Thk=1Vor) " 0. T4y Var: (T,-1M), = (T,_;N), is a quasijet of order
r—1.

Proof. To prove it we must show that ¢! is a v.b.m. from (V,_j_lp}') to
(T,-j-1p))sj =1,...,r — 1. Let j £ k. By Lemma 10, V5, is a v.b.m. from (T;_;p;)
t0 Ti—j+1Pj»J = 1, ..., k. Then by Lemma 3, T,_,_, Vg, is a v.b.m. from (T, _;_p;)

to (T,-,p;)- By Lemma 7, ¢ . T, _, lVOk( r—j- 1Pj)‘: T - 1V0,,(T, -j- 1Pj) There-
fore ¢; is a v.b.m. from (T, - ;- lpj)mto(T, j- 1P,) Letr > j > k. Since T;_,_ V¥
Tj-yM - T;M is smooth, then T(T;_,_ 1V0,,) is a v.b.m. from (p}f ) to (p“,)
Hence T,_;—, Vor is a v.b.m. from (T,—;-p}") to (T, ;- ,p} ) and thus ¢; is a v.b.m.
from (T -j=1P;j ) to (Tr 1- Jpj)

By the equations (4), it is clear that the induced coordinates of ¢, are just the
coordinates of ¢ = (a““ ") for which y; = (¢f ...¢l =0.. 6‘k+1 =0...¢}) or
y;=(¢ef...e} =1...¢],; = 1... &) forevery j. Therefore the map 3,: QJ’(M, N) -
- QJ""Y(M,N), xk(qo) = go,i, is a submersion. For instance, in the case r = 2,

®1(x, a210, ai°t, a2, aaiz](m)(m) ¥) = (%, a*1, 7).

Let a: QJ(M,N) - M be the source projection. Then a local cross-section
of (a)y: M > U —» QJ'(M, N) determines a map y: (T,U) - T,N, ¥(u) = y(a(u)) (u)
Let x € U. Denote T¥(x) := T¥|cr,, .-

Lemma 11. Let y: M o U — (a) be a local cross-section. Then for every x e U,
Tlf(x)e QI Y(M,N) and %} . TYx) = Y(x), i =1,.

Proof. By Lemma 1, T{ is a v.b.m. from [p,% ) to (p,+1) Asisav. b m. from
(T,-pY) to (T,—pY) for k = 1,...,r, therefore, by Lemma 3, TY is a v.b.m. from
(Ty=i+1P7) to (Tr_x+1pPt)- It means that Ty x)e QJ." (M, N). By Lemma 6, the
diagram .

(T,-pY) (Tr-pY)
lViU lVi
T(T,-:p}) T(T,-.p?)

is commutative. It implies ¥(T, ) = ¢, i = 1,...,r
Using (3) it is easy to verify the converse of Lemma 11:

Lemma 12, If Ae QI*Y(M,N), and #jA = ...= %A= %4, then - there
exists a local cross-section Y of (a) such that A = T(x).
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Relations to the theory of jets. The basicideas of jets were introduced by Ehresmann,
[1]. They can be reformulated to a form suitable for our purpose, see [3]. Let U
be a neighbourhood of x € M. Let f: U — N be a smooth map. Then Tf(x) is a 1-jet
with the source x and the target y = f(x). Generally, T, f(x) = T(... Tf )cr,m),.
is a holonomic r-jet with the source x and the target y. We use the notation j,f
for T, f(x) and J'(M, N) for the set of all holonomic r-jets. Let a: J'(M,N) - M
or b: J'(M,N) > N be the source or the target projection. A local cross-section
Y: U - (a) gives a map §: TU — TN, §(h) = y(alu)) (u). Then T{(x) = T¥|rom.:
(TyM), - T,N is a non-holonomic 2-jet denoted by j¥. IF y(x) = T,(by) then ji¥
is said to be semiholonomic. Let J%(M, N) or J%(M, N) be respectively the set of
all non-holonomic or semiholonomic 2-jets from M to N. Denote by zn?: J%(M, N) -
— J(M, N) the canonical submersion n{(j}¥) = ¥(x). By induction, let J*~*(M, N)
or J*~}(M, N) be respectively the set of all non-holonomic or semiholonomic (r - 1)-
jets and let n723: J"~ (M, N) —» J*~%(M, N) be the canonical projection. Let : U —
— J"~!(M,N) be a cross-section of the source submersion a:J*"'(M,N) - M.
Then T¥(x) = TY|r.m.: (TLM), = T,N, where §(h) = ¥(a(h))(h), is a non-
holonomic r-jet. If the values of Y are semiholonomic (r — 1)-jets and ¥(x) =
= T(WZ3¥|r._on, then jiy is a semiholonomic (r — I)-jet. It is obvious that
r-jets are quasijets of order r and the canonical projection =] _, is identical with the
above defined submersion x,.

Using Lemmas 11 and 12 we get:

Proposition 3. Let ¢ € QJ(M, N). Then ¢ is a non-holonomic r-jet iff x1¢ = %,0,
P = X2 = H30, .., %o =...=x1p =2,

Proposition 4. A quasijet ¢ of order r is a semiholonomic r-jet iff »,¢0 = ...
=0 =% = %30 =...=x"1o.

Let us emphasize that ¢ € QJ(M, N), is a v.b.m. from (T,_;p}") x to (T,-.p}),
for every i = 1,...,r. One can study v.b. morphisms from (T,_;p}’) to (T,-,p;),
J * k. As an example of such maps we introduce the canonical involutions on T,M.
Let us recall, see [2], that the canonical involution i,: T,M — T,M has the following
coordinate form: i,(x§os X50s X615 X11) = (X60s Xb1> ¥10s X1;) Denote by is, ..., i,
the canonical involutions on T,(TM) = T3M, ..., To(T,—,M). Then T,_,i,,...
...y Ti,_4, i, are involutions on T,M. It is easy to see that T,_;i; is a v.b.m. from
(T,-;p}") to (T,—;+ 1P}~ ). Denote by I, the group of diffeomorphisms on T,M which
is generated by T,_,i,, ..., i,. I, is isomorphic with the group of all permutations
of the set {1,...,n}. Obviously gel, is a v.b.m. from (T,_,p}') to (Tp-y0)Phiny)-
It means that ¢ . g, id + g€l,, ¢ € QJ (M, N), is not a quasijet, but g~ . ¢ . g is.
Let us remark that if 4 is a semiholonomic r-jet then the quasijet B = T,_i, . 4 .
. T,—4ix need not be semiholonomic. For instance, if A = (x/, a5, aj;, ajy, y*) €
€J3(M, N) then x,(Tp; . A. Tp;) = (x', a5, b§; = a5, ) and x(Tp, . A . Tp;) =
= (x', a}, ¢fy = a};, ¥"), i.e. if a;; + a;; then 3B + %,B, B= Tp, . A . Tp,.
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Lemma 13. Let A be a semiholonomic r-jet. If T,_ji; . A. T,_;i; = A,j S r — 1,
then ’I;‘-j-lij . 7r:_1A . T;'—j—lij = ﬂ;_lA.

Proof A =j, A= TV|xm, ¥:M->IT " MN), Y(x)=mn_A As
iy A Tomjiy = (Tejiy - T T i) e = T(Tomgmady - ¥ - Tyl romnyao
therefore if T,_ji;. A.T,_ji;= A = TP|r,m, then Yx) = T,_;_i;.P¥(x).
. T,_ j—4i;. This completes our proof.

Let us recall that a semiholonomic jet A is holonomic iff all its coordinates a;, ;,
are symmetric in all subscripts.

Proposition 5. If A is a holonomic r-jet then T,_i; . A. T,_i, = A for every
k=1,...,r

Proof by induction. Because aj; = aj; then Proposition 5 is true in the case
r = 2. Let it be true for r — 1. Let A = j;f = T,f|1,m).» F* M — N. Then 4 =
= T\T,-1f)|cr,m).- By the induction assumption T,_;_yi; . T,-(f . T,—j_4i; = T,_,f
for j=1,...,r— 1 Consequently, T,_ji;.A.T—;ij = T(T,_;_i;. T,_,f.

T jetilra, = T Loy, = 4, j=1,...,r — 1. It is necessary to
prove that i,. A .i, = A. Since T,f|rm). = To{T,-2f)|(r.my.» ir is the canonical
involution on T,(T,-,M) and Proposition 5 is true for r =2 then i,.4.i, =
=i,. Tz(Tr—zf) . irl(T,.M)x = Tz(’ﬂ—zf)

@, = A
Corollary 3. If A is a holonomic r-jet then g~*Ag = A for every g €l,.

Proposition 6. If A is a semiholonomic r-jet and T,_,i, . A. T,_,i, = A for every
k=1,...,r, then A is holonomic.

Proof. In local coordinates it is easy to see that Proposition 5 is true for r = 2.
Let it be true for r—1.By Lemma 13,if T,_;i; . A. T,_;i; = A,j=1,..,r — 1,
then T,_;_,i; .A.T,_;_,i;j=mn,_;A. Then, by the induction assumption,

m,_.Ais holonomlc As A is semiholonomic, it is sufficient to prove that its coordi-
nates aj, , are symmetric in all subscripts. By (2), if T,_;i; . A. T,_,i, = A then

-] i k-1 ix i — i
iy iim 15 1pX10...0 =+ X0t 1 =10...0X008=1,0...0 *+* X0..01 = @iy ipemyiten.isX10...0 *++

k=1 i) i i
oo X0 06k =10...0 * X0..0tx~1=10...0 -+ X0...01 1OT EVETy X ., € (TrM)x .

Then a;

Ieci=tigeecdir — = alu'k]k_l...l'"

Remark 2. White, [4], defined a sector r-form on M as a real function f: (T,M), — .
— R linear on (T,-,p}") for every k = 1, ..., r. Let M — M be the vector bundle
of all sector r-forms on M. In the proof of Proposition 2, it was shown that T,_,_, Vg,
is both a v.b.m. from (T,_;_,p,) to (T,-,p;) for j < k and a v.b.m. from (T,_;-,p;)
into (T,-j-1P;+,)if r > j > k. Hence if fe UM then x}f := f. T,_, Vo, € 7. 'M.
One can prove that x;: M — t"~!'M, f+> %, f, is a submersion. Let (7"M), :=
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1= {fE‘C'M; xf =O0foralli,kwhere1 < i< k<r}.By(d),iff= 3 allzl.
: (y1...79)€S
.Xx;! ... x)), where S is the set of all admissible decompositions of e = (1, ..., 1),

then f € (r’M)o iff all coordinates of f vanish with the exception of af{}%;:9- @01 =
= a;,,. Let X,,...,X, € T.M. Then there exist X e (T,M), such that p, ...
..p,_l‘p,“ Pr-1 PAX) =X, Let fe(tiM),. Set f(X,,...X,):=f(X)=
a;, . xi* ... x}r. It implies the identification ("M), = ®" T*M.

Remark 3. All notions of the theory of jets can be extended to quasijets. For
example, the composition of quasijets is immediately given by the composition of
maps; a quasijet A€ QJ;(M, N), is called invertible if there exist B e QJ}(N, M),
such that B. 4 = id'(T,M),- It is suitable to use for quasijets the notation from the
theory of jets with the capital letter Q in front of the corresponding symbol. For
instance, QTyM = QJ(R*, M); QL = Inv QJ5(R™, R™), is the set of all invertible
quasijets from R™ to R™ with the source and target 0 € R™; QH'M = Inv QJ{(R"™, M),
dim M = m. One can show that QH"M is a principal fibre bundle with the structure
group QL . Let q: Y — X be a fibre bundle. Then QJ'Y = {ue QJ (X, Y); T,q.u =
= idl(px)a(")} can be called the r-th quasijet prolongation of Y.
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