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113 (1988) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 2,197—212 

THICKNESS OF A FAMILY OF SETS AND UNIFORM MEASURES 

ANTONÍN LEŠANOVSKÝ, Praha 

(Received January 2, 1986) 

Summary. Let S be a set and let w be a family of its subsets. The notion of thickness of w 
was defined in [4] using general molecular measures on S. The paper shows that thickness of w 
can be expressed in terms of only uniform measures on a modified set S. A characterization of 
families w with zero thickness is also given. 

Keywords: thickness of a family of sets, uniform measures, molecular measures. 

AMS classification: 28A10. 

A measure of thickness for families of sets has been defined in [4]. The paper [4] 
has given a geometrical justification for its name and a review in the new light of the 
results of [5] and [6] dealing with a theorem on existence of certain convex combina
tions with applications to mathematical analysis. Particular attention was paid to 
an investigation of the range of this characteristic and to the relation between its 
value and the combinatorial structure of the family of sets in question. 

These results presented in Section 1 of [4] have been proved by using measures 
of the simplest form which have been called uniform measures. This fact implied 
the problem whether, in evaluating the thickness of a family of sets, it is generally 
possible to consider uniform measures (on a given basic space) only. Section 2 of [4] 
has shown that it is not so. 

Nevertheless, the uniform measures are extremely objective and easy to describe. 
For example, a measure A is used to construct convex combinations ]TA(s) xs of 
certain elements xs of a linear space in order to approximate a given element. If A 
is a uniform measure then this approximation is the arithmetic mean 

- ( * . + ... + xя). 

Thus, it has been useful to find a condition, dealing with the basic space and with the 
family of its substes, under which the restriction discussed above is justified. 

This paper presents a way of modification of a given basic space S and a given 
family w of its subsets, and proves that the thicknesses of the original and modified 
families of sets coincide. The modified basic space S and the modified family w of 
sets fulfil the condition mentioned above. Thus, the thickness of an arbitrary family 
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of sets can be evaluated by considering uniform measures (defined on a modified 
basic space) only. This fact is used in Section 4 of the present paper, where the case 
of families of thickness zero is investigated. Theorem 4 proves that thickness of 
a family w is zero if and only if there exists a sequence X = {xq

i
q
x>

=1 c S such that 
the intersections ffic\ X are of density zero in X uniformly for all We w, i.e. 

lim sup - card (Wn {xq
yk

q=1) = 0 . 
fc-*oo Wew k 

This notion of density of a subset was used e.g. by Halmos in [1]. 
Readers interested in the connection of the subject of this paper with the inversion 

of the order of limit operations are referred to [3], [6], and [7]. The papers [2], 
[8], [9], and [10] contain applications of these ideas to game theory. There is, 
however, a more extensive literature on this topic. 

1. DEFINITIONS 

To each set S we assign a set P(S) the elements of which are functions X defined 
on S possessing the following properties: 

(1) X(s) = 0 for each seS , 

(2) the set N(X) = {s;se S, X(s) > 0} is finite , 

(3) I ^ ) = l . 
seS 

Given a X e P(S) it is possible to define a non-negative measure on the cr-algebra 
exp S in such a way that the value of this measure for each M c S i s 

£A(s). 
seM 

Since no misunderstanding can arise we use the same symbol for X e P(S) and for 
the corresponding measure, and we do not distinguish between X taken as a function 
on S and as a measure on exp S. 

Let w be a nonvoid family of subsets of S, i.e. | + w c exp S. We define the 
thickness e(w, S) of the family w of subsets of the basic space S by the formula 

(4) e(w, S) = inf sup X(W) . 
XeP(S) Wew 

We observe immediately that the quantity e(w, S) is non-negative and that 

X(W)= X ^(5) f o r a 1 1 ^ P ( S ) and Wew, 
seWnN(X) 

so that 
card {X(W); We w} = card { £ X(s); T c N(X)} = 2"rdNW < oo . 

seT 
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Thus, supremum may be replaced by maximum in (4), i.e. 

e(w, S) = inf max X(W) . 
XeP(S) Wew 

It is useful to show that e(w, S) depends on both w and S. If e(w, S) > 0, w c 
<= exp S, S a S' and S 4= S' then there exist s0eS' - S and X0 e P(S') such that 

(5) X0(s0) = 1 , 

(6) X0(s) = 0 for each seS' - {s0} . 

Further, the relations s0 $ Wand X0(W) = 0 are true for each We w. Thus, we have 

0 = e(w, S') = max X0(W) = 0 , 
Wew 

i.e. 

e(w, S) 4= e(w, S') . 

We have just proved 

Lemma 1. If the set S — (J W is not empty then e(w, S) = 0. 
Wew 

Definition. A measure X e P(S) is said to be uniform if 

/ ^ T i f seN(X), 
(7) l({5}) = ^cardN(A)-

0 otherwise, 

i.e., if it is generated by a function X e P(S) such that its values at each element of 
its support N(X) are the same; due to (3) this common value must equal the reciprocal 
value of the cardinality of N(X). The set of all uniform measures defined on exp S 
is denoted by U(S). 

It is easy to see that 

X(W) = C a r d [ ^ n 5 A ) ] for all XeU(S) and Wew, V ; cardN(A) V } 

and that 

(8) e(w, S) = inf max X(W) . 
XeU(S) Wew 

Section 2 of the paper [4] shows that there are a set 5 and a family w of its subsets 
such that the strict inequality holds in (8). On the other hand, it is true that for some 
couples (S, w) the equality 

(9) e(w, S) = inf max X(W) 
XeU(S) Wew 

is valid. Such a situation is considered in the next section and a modification (S, w) 
of (S, w) described in Section 3 is based on it. 
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2. A CASE THAT THE EQUALITY (9) HOLDS 

Let Q(S) denote the set of such X e P(S) that the values of X(s), for each se S, are 
rational numbers. It is easy to find that 

(10) U(S) a Q(S) c P(S) 

is true. 

Lemma 2. The equality 

(11) e(w,S) = inf maxJl(jV) 
XeQ(S) Wew 

holds for each set S and for each family w of its subsets. 

Proof. The relation (10) implies 

(12) e(w, S) = inf max X(W) . 
AeQ(S) Wew 

On the other hand, let e be an arbitrary positive real number. Take a l e P(S) such 
that 

(13) max X(W) < e(w, S) + £e . 

Wew 

If X e P(S) - Q(S) we shall find a \i e Q(S) such that 

max pi(W) < e(w, S) + e . 
Wew 

We put m = card N(X), denote the elements of the set N(X) by sl9..., sm, and choose 
a rational number rt in the interval [A(sf); X(s) + <p\2m) for each i = 1, ..., m — 1, 
where <p = min {e; X(sm)}. Further, we put 

fx(s) = rt for i = 1, . . . , m — 1 , 
m - l 

/4>m) = 1 - Z rt, 
i = i 

and 

JU(S) = 0 for seS - N(X) . 

We observe that \i e P(S), N(ji) = N(X), fi(sm) fg X(sm), and that fi(s) is a rational 
number, for each se S. Thus, ^ e Q(S). Let FFbe an arbitrary element of the family w. 
We have 

tiw) = I rt?) < t k»«) + z1-! = (̂WO + *s, 
seW i=l L 2WJ 

so that by the relation (13) 
steW 

max ^(fV) < max X(W) + ie < e(w, S) + є , 
TҒєw Wєw 
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Taking the infimum over \i e Q(S) and comparing this with (12) we complete the 
proof of the lemma. 

Theorem 1. Given a set S and a family w of its subsets, we put 

ws = {W; We w, seW] for each s e S . 

Let the set 

Ms = [ n W] n [ n (S - W)\ n [ (J W] 
Wews Wew-wa Wew 

be either empty or infinite for each seS. Then the equality (9) holds. 

Proof. By (8) and Lemma 2, we need to prove that for each X e Q(S) there exists 
a \x e U(S) such that 

(14) max p(W) = max X(W) . 
Wew Wew 

Let us start with the case that there exists an s0 e S such that the set MSQ is empty. 
In this case, we have s0 e S — (J W and put \i — X0, where X0 was defined by (5) 

Wew 

and (6). It is obvious that X0 e Q(S) n U(S). Moreover, we know the proof of Lemma 1 
that 0 = max X0(W) = max X(W) for each X e Q(S). 

Wew Wew 

On the other hand, let the set Ms be infinite for each s e S. Denote the elements 
of N(X) by sl9..., sm. The values of X(s() for i = 1, . . . , m are rational numbers. We 
may express them as fractions 

A(sf) = — for i = 1, . . . , m , 
y 

where xt for i = 1,..., m, and y are positive integers, and 

m 

(15) ? = ! > . . 
» = 1 

The sets Ms. are assumed to be infinite so that it is possible to take xt elements 
s(i, 1), s(i, 2),..., s(i, xf) of the set MSi, for i = 1, . . . , m, in such a way that the set 

21 = {s(i,j); i = 1, . . . ,m, j = 1, . . . ,x,} 

contains exactly y elements. Further, we put N(ji) = 2t and 

n(s) = - for se^t, 
y 

fi(s) = 0 otherwise . 

We find that X K S ) = 1. Thus, fisU(S). Finally, take an arbitrary W0 e w. Let 
seS 

I = {i; i e { l ; . . . ; m } , s,.e JV0}, 

201 



i.e. 

W0nN(X) = {Si; iel} . 

We have W0 e wSi for each i e J, so that 

s(i,j)eW0, if iel and ; = 1, . . . , x i 5 

and W0 e w — ws. for each i 6 {1; ...; m} — J, so that 

s(i , j)^PV0 , if i e { l ; . . . ; m } - J , y = l, . . . , x . . 

Thus, 

> W = I Ks) = E I - = E^) = ̂ o ) . 
seTYonN(^) i e / y = i y ' e l 

This immediately implies the equality 

max }i(W) = max X(W) , 
Wew Wew 

so that the validity of the inequality (14) is proved. 

3. GENERAL CASE 

Let N be the set of all positive integers and let 

(16) S = S x N, 

(17) w = {Wx N; Wew} , 

and 

w(Stn) = {ffi; We w, (s, n) e W} for each (s, n)e S . 

Given (s0, n0) e S we have 

{(s0,n); n e J V J c l f if few ( S G i B o ) , 

and 

{(s0,n); n G i V } c J - l r if W$wiso,no), 

so that the set 

[ n fl>]n[ n (S-J?)]n[U^] 
^ e *( so ,n 0 ) ^ e w - w ( S o , n 0 ) ^ e * 

is either empty or infinite, i.e. the couple (S, w) fulfils the assumption of Theorem 1. 
Thus, we have 

(18) e(w, S) = inf max k(W). 
XeU(S) Wew 

Lemma 3. Let She a set and let w be a family of its subsets. Then 
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(19) e(w, S) = e(w, S), 

where S and w are defined by (16) and (17). 

Proof. We shall show that for each A e P(S) there exists a / i e P(S) such that the 
equality 

(20) fi(W) = X(W x N) 

holds for each We w, and vice versa. Let A e P(S) be given. Then the function \i 
defined on S by the formula 

00 

\i(s) = Y, ^((s, n)) for each s e S 
n = l 

is an element of P(S) and fulfils (20). On the other hand, if \i e P(S) then take 

A((s, 1)) = \i(s) for each se S, 

X((s, n)) = 0 for each se S and n e N — {1} . 

We observe that A e P(S) and that (20) is valid. 
By the definition of the family w, there is a one-to-one correspondence between w 

and w such that Wew corresponds to the set W x N e w. This fact and the equality 
(20) imply (19). 

The following theorem is an immediate consequence of Lemma 3 and of the 
relation (18). 

Theorem 2. Let S be a set and w a family of its subsets. Then 

(21) e(w, S) = inf max X(W) . 
XeU(S) Wew 

We conclude that, when evaluating the quantity e(w, S), it is possible to consider 
the couple (S, w) instead of (S, w) and to investigate uniform measures on exp S 
only. The couple (_?, w) is a little bit more complicated than (S, w). This is, however, 
more than recompensated by the fact that the values of uniform measures can be 
expressed in terms of cardinalities of certain finite subsets of the basic space S. To 
demonstrate this we present an analogue of Lemma 2.2 of the paper [4]. 

Theorem 3. Let co e [0; 1]. Then e(w, S) = co if and only if the following two 
conditions are fulfilled: 
1) for each e > 0, there exists a finite nonvoid set FE a S such that 

(22) card (Wo FE) < (co + e) . card FE, for each We w . 

2) for each finite set G c S, there exists We w such that 

(23) card (FVn G) = co . card G . 
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4. FAMILIES OF THICKNESS ZERO 

We observe in Theorem 3 that in the case co = 0 it is sufficient to consider the first 
condition only. In other words, if e(w, S) = 0 then Theorem 3 guarantees the existence 
of a finite nonvoid set F. c= S9 for each e > 0, possessing the property 

card (Wn Fe) < e . card Fe for each We w . 

No information concerning the relation of the sets FE for different positive real 
numbers e has been given. A heuristic idea suggests that if e is getting smaller then 
the number of elements of the corresponding Fe is increasing. (We omit the trivial 
case that S — \J W 4= 0, of course.) It is, however, not obvious whether a set FE> 

Wew 

contains all (or many) elements of the set FE for e > e' > 0, or whether e.g. F£ 

and FEf are disjoint. 
We are going to show that the sets Fe, for e decreasing, can be constructed by 

gradually adding certain elements of the basic space S. The sequence, say {xq}q=i c= 
c= S, arising by this procedure possesses the property that the measures Xk e U(S) 
determined for each fc e N by their supports N(Xk) = {.xx;...; xk} fulfil 

(24) lim max Xk(W) = 0 . 
fc-+oo Wew 

Let us remark that, in general, it is not possible to find {xq)q=1 in such a way 
that the sequence 

(25) { max Xk(W)}k=ko is decreasing , 
Wew 

for a suitably chosen positive integer fc0. Indeed, we shall prove that (25) implies the 
existence of a k1eN such that each We w contains not more than kx elements of 
the sequence {xq}™=l. Further, we shall study the example considered in Section 2 
of the paper [4], which possesses the property e(w, S) = 0. We shall show that 
for each sequence {xq}q°=l c S there exists a We w containing arbitrarily many 
elements of {xg}*=1. 

Lemma 4. Let {xq}™=l <=. S. Then (25) holds with a k0eN (Xk is determined by 
Xk e U(S) and N(Xk) = {xx;...; xk}) if and only if 

(26) sup card (Wn {xq}^=l) < oo . 
Wew 

Proof. We observe that 

*-•»(*>= rrrcard (*n W«=}) = 
fc + 1 

(27) = - - — [card (Wn {xt}*q=l) + x(xk+u W)\ = 
fC ~r* -«-
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= ±-[kXk(w) + x(xk+1,Щ 
fc + 1 

X(xk+1, Щ = ( | 

holds for each k e N and We w, where 

tl, if xk+1eW, 

\0 otherwise. 

Let the relation (25) be true, let k e N be such that fc = fc0 and let Wk e w fulfil 

Xk(Wk) = maxXk(W). 
t^ew 

If x(xk+i, Wit) = L we have by (25) and (27) 

Xk(\Vk) > mzxXk+t(W) = A4+•.(#*) = 

= 7-̂ -7 [fc U&k) + W\ = W • 
fc + 1 

Thus, we find that 
(28) X(* t +i,«y = °-
Further, if We w fulfil 

Ak(#) < max Xk(W) 
tPew 

we obtain 

card (Wn {xq\
k

qml) + 1 = card (VVk n {x^qs=1) , 

so that by (27) 

(29) Xk+i(W) = - 1 - [card (ffk n {x^ = 1 ) + X(x k + 1, JVk)] = Xk + i(Wk) . 

fc + 1 

The relations (27), (28), and (29) imply 

max card (jVn {xq)
kt\) = (fc + 1) . max Xk+i(W) = 

= fc . max Ak(JV) = max card (Wn {xq}q= t) , 

for each fc e N such that fc = fc0, i.e. 

(30) max card (Wn {xq^
k

q=i) = max card (Wn {xq}
k

q°=i) = fc0 < co 

holds for each fceJV, fc = fc0. The assertion (26) is an immediate consequence 
of (30). 

On the other hand, let (26) be fulfilled. We denote 

ki = sup card (Wn {xq}q=i) . 
JPew 
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We find that supremum may be replaced by maximum so that there exists a set 
W0ew containing k1 elements of the sequence {xq)™ l9 say xqil)9..., xqikl)9 whe re 
4(1) < q(2) < ... < q(kt). We put 

K = q(fei) • 

For each We w and fc e N such that fc ^ fc0 we have 

and 

so that 

^ ( l ? ) = i c a r d ( l ? n { V ^ 1 ) ^ T ' 
fc fc 

1 1 fc 
4 ( # o ) = 7 card (W0 n {xq

n
q=1) = - ca rd { x , ( 1 ) ; . . . ; xqikl)] = -± , 

fc fc fc 

(31) maxA f c(W) = -^ 
fl^W fc 

holds for each fc e N such that fc ^ fc0. The equality (31) proves (25). 

Example . Let S and w be given as follows: 

S = N, 

(32) w = {W; Wcz S, m i n JV = card IV} . 

If the sequence {x q ^ = 1 cz 5 is such that 

sup card (Wn {xqq=1) 

is finite (say equal to fc) then, using the explicit expression 

xq = (sq9 nq) , for q e N, 

and (17), (32), we immediately conclude that not more than fc elements of {x^*= 1 

can be such that their first component sq fulfils sq > tc. We put 

Wi = {(s, n); s = /, neN} for each i = 1, . . . , tc . 

We find that W{e w for each i — 1, . . . , tc9 and 

c a r d [ ( U ^ ) ^ W " = i ] = OT-
» = 1 

Thus, there exists an i0 e { 1 ; . . . ; Jc] such that 

card(FV / on{x^«L1)= co . 

We conclude that, in this example, the relation (25) is not true for any sequence 

W,"i <=s. 
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It remains to present a construction of a sequence {xq)™=l such that (24) is valid, 
for any given couple (S9 w). 

Definition. Let A and B be finite subsets of S. We assume that the elements of A 
and B are numbered in a fixed way by indexes 1,2,..., card A9 and 1,2,..., card B9 

respectively, i.e. 

-4 = \Xll • • • ; XcardAj > 

B = {yi;...;ycard*} • 
Using the expression 

xi = (si9 nt) , 

y» = (tl9 mt.) , 

where si9 t{ e S and ni9 mt e N9 we have 

-4 = \(sl9 nx);...; (scardA, «cardA)/ > 

and similarly 

B = {(ti9 m x ) ; . . . ; (fcardB, mcardB)} . 

We assume that the elements of the sets A and B are numbered in such a way that 
the sequence {n^"^ and {m^" r

1
B are non-decreasing. We define an operation * 

by the formula 

A*B = {(si9 l ) ; . . . ; ( s c a r d A , card A); (r1 ?cardA + 1) ; . . . 

•••; ('cardB, card A + card B)} . 

Further, we put 

A1* = A * 0 = {(sl9 1) ; . . . ; (scardyl, card A)} , 

A1'* = .4 * 4 ( l"-1)* for each i eiV - {1} , 

and 

A(1) = A1* , 

^ ( 0 _ ^ » * _ A(.i~l)* _ 

= {(«i, (i - 1) card A + 1) ; . . . ; (scardX, i card A)} 

for each i e N — {1} . 

Lemma 5. Let A9B9 C be finite subsets of S and let i9j eN. The operation * 
possesses the following properties: 
a) A * B is a finite subset of S; 
b) card (A * B) = card A + card B; 
c) (A*B)*C = A*(B* C); 
d) 4 1 * c A * B; 
e) (A * B)1* = A*B; 
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f) // i <; card .A and if B = {(s, n); (s, n)e A1*, n < i) then 
A1* = B*(Al* - B); 

g) A1* = U A™; 
d--l 

h) A(i) n AU) = 0 if i * 7; 
i) card {(s, n); (s, n) e A1*, n = /} = 1. 

Lemma 6. Let rj9 / ie L7(S) and Zcf i eN. I/ 

NOi)=[N(*/)]'* 
rhen 

li{W) = >/(W) /or each We w . 

Proof. Given a JVe w, we know that W = W x N, where Wis an element of w. 
Thus, a couple (s, n) e S is an element of W regardless of the value of its second 
component n. The set N(t\) differs from \N(f])\U) for j e N only by the values of the 
second component of the couples involved. We have 

card [Wn N(*/)] = card {Wn [N(t])~\U)} for each jeN. 

Finally, by Lemma 5 we obtain 

i 

card [Wn N(u)] = £ card {Wn [N(tjj]U)} = 1. card [Wn N(rj)] , 
J = i 

so that 

H(W) = _ i. card [Wn Nfy)] = rj(W) . 
1 . card N(?/) 

Lemma 7. Lef r\, \i e U(S) be such that 

(33) card N(rf) ^ card N(/x) , 

and let 

(34) M c N(^) . 

Then v e C/(5) determined by its support 

(35) N(v) = N(rj) * M 

fulfils 

max v(l^) ^ max t](]V) + max ^(l^). 

fPew I^ew ^ e * 

/ / card M = card N(r/) f Jien 

(36) max v(JV) = i [ max r\(W) + max ,u(lV)] . 

Proof. Taking a We w we have 
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so that 

card [Wn N(v)] = card [ffn N(n)] + card [WnM] 

= card N(n) . max n(ffi) + card N(fi) . max ju(^) , 

v(W) g" max n(W) + max fi(W) , 

< 

In the case card M = card N(n), Lemma 5, (33), (34) and (35) imply card N(v) = 

= 2 . card N(n) = 2 . card N(fi) and (36). 

Let e(w, S) = 0 and let the sets F2-z for z є N, the existence of which is guaranteed 

by Theorem 3, be given. We denote 

Fz = F^-z for each zeN , 

and 

(37) Я . = [ E , ] 1 * , 

(38) Я 2 + 1 = [ Я 2 ] " * * [ E 2 + . ] ' • * , 

where 

(39) az = card£ z + 1 and J8Z = card Я z 

for each z є N. 

Lemma 8. Leř /l(z) є U(S) forzeN be such that N(A(z)) = Я z . Put 

(40) hi = 0.5 , 

(41) hz = max ІЇZ)(W) for each z є N - {1} . 
tҒєw 

Then 

(42) йz = -LjLl for each zeN. 

Proof. The validity of (42) for z = 1 is obvious. Ғurther, we know from (36) 
and from Lemmas 5, 6 and 7 that 

(43) hz+1 = i(hz + 2 " 2 " 1 ) for each z є N . 

The inequality (42) for each z є N — {1} is an immediate consequence of (43). 
We are now ready to prove the main result of this section. 

Theorem 4. Let S be a set and let w be a family of its subsets. Then e(w, S) = 0 
if and only if there exists such a sequence { ^ ^ = 1 c: § that Xk e U(Š) determined 
by their supports N(Åк) = [xx; ...;xfc} for кeN fulfil the relation (24), where § 
and w were defined by (16) and (17). 

Proof. It is easy to find that (24) implies e(w9 Š) = 0, i.e. e(w, S) = 0 according 
to Lemma 3. On the other hand, let e(w, S) = 0. Then take the set 

209 



(44) H = [)HZ, 
z=ì 

where Hz for zeN are defined by (37) and (38). We know from Lemma 5 that H 
is infinite, Hz <= Hz + l9 and that Hz is a finite subset of S for each z eN. Let xq 

denote the element (s, q)e H the second component of which equals q for each 
q eN. Its existence and uniqueness is guaranteed by Lemma 5. It remains to prove 
that this sequence {xqq=i possesses the required property (24). Take a fceN such 
that k > card Ev Then the quantity 

(45) z(k) = max {z; z e N, xk $ Hz) 

is well-defined and the support N(Xk) = [N(^)]1* of Xk can be written either in the 
form 

JV(4) = [tf z a )]**>**M, 

where y(k) e { 1 ; . . . ; card Ez(k-)+1 — 1} and M c: HzW, or 

N(At) = [ / / z ( / i ) ] ^ ) * * M , 

where M c [£z( t )+1]^<'"*. L e t ^ ^ e U(3) be such that 

(46) Nfa) = [ffz(t)]**>* , 

(47) N(txk) = f/I(4) 

in the former case, and 

(48) J % ) = [HzWY*™* , 

(49) N(nk) = [EzW+/]'->* 

in the latter. We find by (37), (38), (39) and by Lemma 5 that 

card HzW = card [tfz(t)]**>* , 

and 

card [Ezik)+iy*^* = az(fe). jSx(k) = card [ffz(Jk)]"'<k>* , 

so that 

card N(t]k) = card N(fik) 

holds in both cases. Lemmas 6, 7, and 8 imply 

m a x ^ 0 V ) < 2 h z U ) < Z ( k ) + 1 

«re* *V } ~ z U ) ~ 22<k) 

provided (46) and (47) are true. 
Similarly, if (48) and 49) are valid then 

max Xk(Y7) = hA> + 2-*)-1
 = -^-±i ; 
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we conclude that the measure Ak fulfil k J 

z( 
maxXk(W) ^ Z^k' _+ l for each (ceJV, fc > card E t , 
VFew 2 z ( f c ) 

where z(fc) is defined by (45). We find by (45) and Lemma 5 that 

lim z(fc) = oo , 
fc-->00 

i.e. 

This completes the proof of the theorem 

lim max Xk(W) й Hm Л } ľľ = 0 . 
fc-ooíYєw fc-oo 2 Z ( } 
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Souhrn 

TLOUŠŤKA RODIN MNOŽIN A ROVNOMĚRNÉ MÍRY 

ANTONÍN LEŠANOVSKÝ 

Nechť S je množina a w rodina jejích podmnožin. Pojem tloušťky rodiny w byl definován 
v článku [4] pomocí obecných molekulárních měr na S. V článku je sestrojena taková množina S, 
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že pro určení tloušťky rodiny w se stačí omezit jen na rovnoměrné molekulární míry na S. Této 
skutečnosti je využito pro charakterizaci rodin w s nulovou tloušťkou. 

Резюме 

ТОЛЩИНА СЕМЕЙСТВА МНОЖЕСТВ 

АNТОN^N Е Е ! ^ О У 8 К У 

Пусть .^-множество и и>-семейство его подмножеств. Понятие толщины семейства и> было 
введено в [4] с помощью общих молекулярных мер на 5. В статье строится такое множество 5, 
что для определения толщины семейства IV можно ограничиться равномерными молекуляр
ными мерами на 5. Этот факт используется для характеризации семейств и> с нулевой толщиной. 

Ашког'з ай&езз: МагетаНску йэ1ау С8А^ Й1па 25, 115 67 РгаЬа 1. 
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