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THICKNESS OF A FAMILY OF SETS AND UNIFORM MEASURES

ANTONIN LESANOVSKY, Praha
(Received January 2, 1986)

Summary. Let S be a set and let w be a family of its subsets. The notion of thickness of w
was defined in [4] using general molecular measures on S. The paper shows that thickness of w
can be expressed in terms of only uniform measures on a modified set S. A characterization of
families w with zero thickness is also given.

Keywords: thickness of a family of sets, uniform measures, molecular measures.

AMS classification: 28A10.

A measure of thickness for families of sets has been defined in [4]. The paper [4]
has given a geometrical justification for its name and a review in the new light of the
results of [5] and [6] dealing with a theorem on existence of certain convex combina-
tions with applications to mathematical analysis. Particular attention was paid to
an investigation of the range of this characteristic and to the relation between its
value and the combinatorial structure of the family of sets in question.

These results presented in Section 1 of [4] have been proved by using measures
of the simplest form which have been called uniform measures. This fact implied
the problem whether, in evaluating the thickness of a family of sets, it is generally
possible to consider uniform measures (on a given basic space) only. Section 2 of [4]
has shown that it is not so.

Nevertheless, the uniform measures are extremely objective and easy to describe.
For example, a measure A is used to construct convex combinations Zl(s) x; of
certain elements x, of a linear space in order to approximate a given element. If 1
is a uniform measure then this approximation is the arithmetic mean

l(x1 + oo+ X,) .
n

Thus, it has been useful to find a condition, dealing with the basic space and with the
family of its substes, under which the restriction discussed above is justified.

This paper presents a way of modification of a given basic space S and a given
family w of its subsets, and proves that the thicknesses of the original and modified
families of sets coincide. The modified basic space § and the modified family W of
sets fulfil the condition mentioned above. Thus, the thickness of an arbitrary family
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of sets can be evaluated by considering uniform measures (deﬁned on a modified
basic space) only. This fact is used in Section 4 of the present paper, where the case
of families of thickness zero is investigated. Theorem 4 proves that thickness of
a family w is zero if and only if there exists a sequence X = {x,'™., < § such that
the intersections Wn X are of density zero in X uniformly for all We w, i.e.

lim sup 1 card (W {xk_) =0.
k= Wew k
This notion of density of a subset was used e.g. by Halmos in [1].

Readers interested in the connection of the subject of this paper with the inversion
of the order of limit operations are referred to [3], [6], and [7]. The papers [2],
[8], [9], and [10] contain applications of these ideas to game theory. There is,
however, a more extensive literature on this topic.

1. DEFINITIONS

To each set S we assign a set P(S) the elements of which are functions A defined
on S possessing the following properties:

6] As) =0 foreach seS,
(2) the set N(1) = {s;s€ S, A(s) > 0} is finite,

©) TAs)=1.
seS
Given a A e P(S) it is possible to define a non-negative measure on the o-algebra
exp S in such a way that the value of this measure for each M < S is
2 As) -
seM
Since no misunderstanding can arise we use the same symbol for A € P(S) and for
the corresponding measure, and we do not distinguish between A taken as a function
on S and as a measure on exp S.
Let w be a nonvoid family of subsets of S, i.e. @ &= w = exp S. We define the
thickness e(w, S) of the family w of subsets of the basic space S by the formula
4 e(w, S) = inf sup A(W).

AeP(S) Wew

We observe immediately that the quantity e(w, S) is non-negative and that

AW)= Y As) forall 1eP(S) and Wew,

seWnN(2)
so that

card {A(W); Wew} < card { ¥ A(s); T < N(A)} < 2°""P < o,
seT
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Thus, supremum may be replaced by maximum in (4), i.e.

e(w, S) = inf max A(W).

AeP(S) Wew

It is useful to show that e(w, S) depends on both w and S. If e(w, S) > 0, w =
cexpS, Sc S and S + S then there exist s, € S" — S and A, € P(S’) such that

%) Ao(so) =1,

(6) Ao(s) =0 foreach seS' — {so}.

Further, the relations s, ¢ W and AO(W) = 0 are true for each We w. Thus, we have
0<ew,S)< Ivl;'lax (W) = 0,.

ie.
e(w, S) + e(w, S').
We have just proved

Lemma 1. If the set S — \) W is not empty then e(w, S) = 0.
Wew

Definition. A measure A € P(S) is said to be uniform if

1 .
7 (1)) = (wangy "N

0 otherwise,

i.e., if it is generated by a function A € P(S) such that its values at each element of
its support N(1) are the same; due to (3) this common value must equal the reciprocal
value of the cardinality of N(1). The set of all uniform measures defined on exp S
is denoted by U(S).

It is easy to see that

MW) = M forall AeU(S) and Wew,
card N(1)

and that
(®) e(w, S) < inf max A(W).
AeU(S) Wew

Section 2 of the paper [4] shows that there are a set S and a family w of its subsets
such that the strict inequality holds in (8) On the other hand, it is true that for some
couples (S, w) the equality
) e(w, S) = inf max A(W)

' AeU(S) Wew
is valid. Such a situation is considered in the next section and a modification (3, W)
of (S, w) described in Section 3 is based on it.
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2. A CASE THAT THE EQUALITY (9) HOLDS

Let Q(S) denote the set of such 1 € P(S) that the values of A(s), for each s € S, are
rational numbers. It is easy to find that
(10) Uu(s) = Q(s) = B(s)

is true.

Lemma 2. The equality .
(11) e(w, S) = inf max A(W)

AeQ(S) Wew

holds for each set S and for each family w of its subsets.

Proof. The relation (10) implies
(12) e(w, S) £ inf max A(W).

AeQ(S) Wew

On the other hand, let ¢ be an arbitrary positive real number. Take a 4 € P(S) such
that

(13) max A(W) < e(w, S) + 3¢
Wew
If e P(S) — Q(S) we shall find a p e Q(S) such that
max (W) < e(w, S) + ¢.
Wew
We put m = card N(2), denote the elements of the set N(1) by sy, ..., 5,,, and choose

a rational number r; in the interval [A(s;); A(s;) + ¢[2m) foreachi=1,...,m — 1,
where ¢ = min {e; A(s,,)}. Further, we put

u(s) =r; for i=1,..,m—1,

m—1
ﬂ(sm) =1- 'Zl L
and
u(s) =0 for seS — N(2).

We observe that ue P(S), N(i) = N(4), p(sm) < A(s,), and that p(s) is a rational
number, for each s € S. Thus, p € Q(S). Let W be an arbitrary element of the family w.
We have

H0) =2a) < 5 [16) + -] 00 + 30,

sieW
so that by the relation (13)

max p(W) < max (W) + 3¢ < e(w,S) + ¢.
Wew Wew
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Taking the infimum over pe Q(S) and comparing this with (12) we complete the
proof of the lemma.

Theorem 1. Given a set S and a family w of its subsets, we put

wy = {W; Wew, se W} foreach seS.
Let the set

M,=[NW]n[ N (S—W)]n[uk;in]

Wews Wew—wy

be either empty or infinite for each s € S. Then the equality (9) holds.

Proof. By (8) and Lemma 2, we need to prove that for each 1 e Q(S) there exists
a p e U(S) such that

(14) max p(W) < max A(W).
Wew Wew

Let us start with the case that there exists an s, € S such that the set M is empty.

In this case, we have soe S — (J W and put g = Ay, where 1, was defined by (5)
Wew

and (6).Itis obvious that A, € Q(S) N U(S). Moreover, we know the proof of Lemma 1
that 0 = max 4o(W) < max A(W) for each A € Q(S).

Wew Wew
On the other hand, let the set M, be infinite for each s € S. Denote the elements

of N(4) by sy, ..., S,,. The values of A(s;) for i = 1, ..., m are rational numbers. We
may express them as fractions

Ms)=2F for i=1,...,m,
y
where x; for i = 1, ..., m, and y are positive integers, and

(15) y =.§1x,-.

1]

The sets M, are assumed to be infinite so that it is possible to take x; elements
s(i, 1), s(i, 2), ..., s(i, x;) of the set M, for i = 1, ..., m, in such a way that the set

A={s(i,j)si=1...mj=1..,x}
contains exactly y elements. Further, we put N(x) = 2% and

uls) =

u(s) = 0 otherwise .

for se¥,

< =

We find that Y u(s) = 1. Thus, ue U(S). Finally, take an arbitrary W, e w. Let

3cS

I={i;ie{l;..;m}, s;e Wy},
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WoNN(A) = {s;; iel}.
We have W, € w,, for each i eI, so that
s(i,j)e Wy, if iel and j=1,..,x;,
and Wy ew — w,, for each ie{1;...;m} — I, so that
s(i, )¢ Wo, if ie{l;..sm}—1I, j=1,..,x,.
Thus,

W)= ¥ )=

1
seWonN(p) iel j=1Y)

= gil(s,-) = AW,) .

This immediately implies the equality

max p(W) = max A(W),
Wew Wew

$o that the validity of the inequality (14) is proved.

3. GENERAL CASE

Let N be the set of all positive integers and let

(16) S=SxN,
(17) w={Wx N; Wew},
and

Weemy = {W; We W, (s,n)e W} foreach (s,n)eSl.
Given (s, no) € S we have ‘
{(so’ n); n EN} cW if We w(so,no) s
and
{(so, n); n eN} cS—-Ww if W¢ Wiso.m0) »
so that the set

[0 WMol 0 (§=-Mln[yW]

Wew(so,n0) WeWw —¥(so,n0)

is either empty or infinite, i.e. the couple (S, W) fulfils the assumption of Theorem 1.

Thus, we have
(18) e(w, §) = inf max A(W).
AeU(S) Wew

Lemma 3. Let S be a set and let w be a family of its subsets. Then
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(19) e(w, S) = e(w, ),
where § and W are defined by (16) and (17).
Proof. We shall show that for each 1 e P(S) there exists a u € P(S) such that the
equality
(20) W(W) = AW % N)

holds for each Wew, and vice versa. Let AeP(§) be given. Then the function u
defined on S by the formula

u(s) =”§ll((s, n)) foreach seS

is an element of P(S) and fulfils (20). On the other hand, if u € P(S) then take
M(s, 1)) = p(s) foreach seS,
M(s,n)) =0 foreach seS and neN — {1}.

We observe that A e P(S) and that (20) is valid.

By the definition of the family W, there is a one-to-one correspondence between w
and w such that We w corresponds to the set W x N e w. This fact and the equality
(20) imply (19).

The following theorem is an immediate consequence of Lemma 3 and of the
relation (18).

Theorem 2. Let S be a set and w a family of its subsets. Then
(21) e(w, S) = inf max A(W).
AeU(S) Wew

We conclude that, when evaluating the quantity e(w, S), it is possible to consider
the couple (S, W) instead of (S, w) and to investigate uniform measures on exp S
only. The couple (§, W) is a little bit more complicated than (S, w). This is, however,
more than recompensated by the fact that the values of uniform measures can be
expressed in terms of cardinalities of certain finite subsets of the basic space S. To
demonstrate this we present an analogue of Lemma 2.2 of the paper [4].

Theorem 3. Let w e [0; 1]. Then e(w, S) = w if and only if the following two
conditions are fulfilled:
1) for each & > 0, there exists a finite nonvoid set F, = S such that

(22) card(Wn F,) < (w + €).card F,, foreach WeWw.
2) for each finite set G < §, there exists We W such that

(23) card (Wn G) 2 w.card G.
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4. FAMILIES OF THICKNESS ZERO

We observe in Theorem 3 that in the case w = 0 it is sufficient to consider the first
condition only. In other words, if e(w, S) = 0 then Theorem 3 guarantees the existence
of a finite nonvoid set F, = S, for each ¢ > 0, possessing the property

card(Wn F,) <e.card F, foreach Wew.

No information concerning the relation of the sets F, for different positive real
numbers ¢ has been given. A heuristic idea suggests that if ¢ is getting smaller then
the number of elements of the corresponding F, is increasing. (We omit the trivial

case that S — () W = 0, of course.) It is, however, not obvious whether a set F,.
Wew

contains all (or many) elements of the set F, for ¢ > &’ > 0, or whether e.g. F,
and F,. are disjoint.

We are going to show that the sets F,, for ¢ decreasing, can be constructed by
gradually adding certain elements of the basic space S. The sequence, say {x,}:>, =
< §, arising by this procedure possesses the property that the measures 1, € U(S)
determined for each k € N by their supports N(2,) = {x;;...; x,} fulfil
(29) lim max A, (W) = 0.

k= Wew

Let us remark that, in general, it is not possible to find {x,}:>; in such a way

that the sequence

(25) { max A,(W)};>,, is decreasing,
Wew

for a suitably chosen positive integer k. Indeed, we shall prove that (25) implies the
existence of a k; € N such that each We W contains not more than k; elements of
the sequence {x,}5% . Further, we shall study the example considered in Section 2
of the paper [4], which possesses the property e(w, S) = 0. We shall show that
for each sequence {x,}7., = § there exists a We W containing arbitrarily many
elements of {x,}5,.

Lemma 4. Let {x,}2., = 8. Then (25) holds with a ko & N (4, is determined by
A €U(S) and N(A) = {xy; ...; x:}) if and only if

(26) sup card (Wn {x,}2,) < .

Proof. We observe that

1
Aer (W) = P 1card (Wa {x ki) =
(1) = o [eard (7 (i) + e W] =
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= —--—1_;—1 [k lk(W) + X(xk+1a W)]

holds for each k € N and We w, where
1, if x4,eW,
0 otherwise.

A Xir 1, W) = <

Let the relation (25) be true, let k € N be such that k = k, and let W, € w fulfil
lk(ﬁlk) = max }',\( W) .
Wew

If x(xc+1, Wi) = 1, we have by (25) and (27)

W) > waz( Merra(W) 2 4 (W) 2

2 [k AGR) + ()] = ().

Thus, we find that

(28) X(xk+ 15 Wk) =0.
Further, if We w fulfil

A(W) < max 4(W)
Wew
we obtain
card (W {x}5=,) + 1 < card (W, n {x}5=1),
so that by (27)

(29)  As(W) = L

k+1
The relations (27), (28), and (29) imply

[card (Wi 0 {x,}g=1) + x(Xes 1 W)] = Asa (W) -
max card (Wn {x}5%]) = (k + 1) . max A, ,(W) =
Wew Wew
= k. max A,(W) = max card (Wn {x,}5_,),
Wew Wew

for each k € N such that k = k, i.e.

(30) max card (Wn {x,}i=,) = max card (W {x}52,) S ky <

holds for each keN, k = k,. The assertion (26) is an immediate consequence

of (30).
On the other hand, let (26) be fulfilled. We denote

ky = sup card (Wn {x,}5%,) .
Wew
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We find that supremum may be replaced by maximum so that there exists a set
W, € W containing k, elements of the sequence {xq tag1s SBY Xq(1)s ++es Xqeky)» where
q(1) < q(2) < ... < q(ky). We put

= q(k,) .
For each We w and k € N such that k = k, we have

lk(W) - card (W {x}hoy) <

and
B DR o 2
M(W,) = p card (W n {x,'%-4) 2 p card {Xg(1)s -+ o3 Xguepy} = e
so that
(31) max A, (W) = Ky
. =

Wew

holds for each k € N such that k > k,. The equality (31) proves (25).

Example. Let S and w be given as follows:
S=N,
(32) w={W,Wc S, minW2card W}.
If the sequence {x,':>; = S is such that

sup card (Wn {x,' 2

q q=1
Wew

is finite (say equal to 12) then, using the explicit expression
x, = (spng), for geN,

and (17), (32), we immediately conclude that not more than k elements of {x,}%
can be such that their first component s, fulfils s, > k. We put

q'q=1

W;={(s,n); s=1i, neN} foreach i=1,... k.
We find that W,e w for each i = 1, ..., k, and
&
card [(U W) n {x}21] = .
i=1
Thus, there exists an ig € {1;...; k} such that
card (W;y n {x}2,) = .

We conclude that, in this example, the relation (25) is not true for any sequence

{xq}q 1 < g
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It remains to present a construction of a sequence {x,}>.; such that (24) is valid,
for any given couple (S, w).

Definition. Let A and B be finite subsets of S. We assume that the elements of A
and B are numbered in a fixed way by indexes 1, 2, ...,card 4, and 1, 2, ..., card B,
respectively, i.e.

4= {x1; cees xcardA} s
B = {yi; . Vearan) -
Using the expression
X = (sia "i) >
yi =t my),
where s;, t;€ S and n;, m; € N, we have
A= {(sl, ny); .. (scardA’ ncnrdA)} >
and similarly
B = {(t, my); ...; (fearam: Mearap)} -

We assume that the elements of the sets A and B are numbered in such a way that

the sequence {n;'$*'$4 and {m, ;>{® are non-decreasing. We define an operation x

by the formula
A*xB = {(sl, 1);..5 (scardA.’ card A); (t,, card 4 + 1); ..
.5 (fearas> card 4 + card B)} .
Further, we put
A = A% 0 = {(51,1); -+ (Scaras card 4)} ,
A™* = A% A% Y* foreach ieN — {1},
and
AWM = Alx
AW = gix — fU-Dx

= {(sy, (i — 1)card 4 + 1);...; (Scara s> i card 4)}
foreach ieN — {1}.

Lemma 5. Let A, B, C be finite subsets of S and let i,je N. The operation *
possesses the following properties:
a) A * B is a finite subset of S;
b) card (4 * B) = card A + card B;
c) (A*B)*C:A*(B*'C);
d) A'* c 4 « B;
e) (4 B)'* = 4 B;
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f) if i < card A and if B = {(s, n); (s, n) € A**, n < i} then
A = B« (4" — B);

g) A = U A@D;
q=1
h) AP AP =0 if i+ j;
i) card {(s, n); (s,n) e A'™, n=1i} = L

Lemma 6. Let n, ue U(S) and let ie N. If

N(p) =[N()]™
then
wW(W) = n(W) foreach Wew.

Proof. Given a We w, we know that W = W x N, where W is an element of w.
Thus, a couple (s, n) e § is an element of W regardless of the value of its second
component n. The set N(r) differs from [N(1)]? for j € N only by the values of the
second component of the couples involved. We have

card [Wn N(n)] = card {Wn [N(n)]9’} foreach jeN.
Finally, by Lemma 5 we obtain
card [Wn N(p)] = ¥ card {Wn [N(n)]9} = i.card [Wn N(n)],
j=1
so that

_ 1 _ _ _
w(W) = TN i.card [Wn N(n)] = n(W).

Lemma 7. Let 1, p € U(S) be such that

(33) card N(7) = card N(y),
and let

(34) M < N(y).

Then ve U(S’) determined by its support

(35) N(») = N(p)» M
Ffulfils ‘

max v(W) < max n(W) + max u(W).
Wew Wew Wew

If card M = card N(n) then
(36) max (W) < 4[ max n(W) + max u(W)] .
Wew Wew Wew

Proof. Taking a We w we have
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card [Wn N(v)] = card [Wn N(n)] + card [Wa M] <
< card N(n) . max n(W) + card N(u) . max (W),
Wew Wew

so that
v(W) < max n(W) + max u(W).
Wew Wew
In the case card M = card N(r), Lemma 5, (33), (34) and (35) imply card N(v) =
= 2.card N(q) = 2. card N(p) and (36).

Let e(w, S) = 0 and let the sets F, -, for z € N, the existence of which is guaranteed
by Theorem 3, be given. We denote

E,=F,-.. foreach zeN,

and

(37) H, = [E/]",

(38) Hz+1 = [Hz]a'* * [Ez+ l]p‘* ’
where 7

(39) @, =card E,,, and B, = card H,

for each z e N.

Lemma 8. Let A € U(S) for z € N be such that N(A*)) = H,. Put

(40) hy = 0.5,

(41) h, = max A®(W) foreach zeN — {1}.
Wew

Then

(42) h, < Ezz—t—ll foreach zeN.

Proof. The validity of (42) for z = 1 is obvious. Further, we know from (36)
and from Lemmas 5, 6 and 7 that

(43) hoq < 3(h, + 27*71) foreach zeN.
The inequality (42) for each ze N — {1} is an immediate consequence of (43).

We are now ready to prove the main result of this section.

Theorem 4. Let S be a set and let w be a family of its subsets. Then e(w, S) = 0
if and only if there exists such a sequence {x,'>., < § that 4, € U(S) determined
by their supports N() = {x,;...; .} for ke N fulfil the relation (24), where S
and W were defined by (16) and (17).

Proof. It is easy to find that (24) implies (W, S) = 0, i.e. e(w, S) = 0 according
to Lemma 3. On the other hand, let e(w, S) = 0. Then take the set
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(44) H=UH,,

z=1
where H, for z € N are defined by (37) and (38). We know from Lemma 5 that H
is infinite, H, = H,,,, and that H, is a finite subset of § for each ze N. Let X,
denote the element (s, g) € H the second component of which equals g for each
q € N. Its existence and uniqueness is guaranteed by Lemma 5. It remains to prove

1

that this sequence {x,' %, possesses the required property (24). Take a k € N such
that k > card E,. Then the quantity

(45) z(k) = max {z;zeN, x, ¢ H,}

is well-defined and the support N(4;) = [N(4)]'* of 4, can be written either in the
form

N(%) = [Hz(k)]ﬂk)* * M,
where y(k) € {1;...;card E )4, — 1} and M = H,,, or
N()“k) = [Hz(k)]a'(k)* * M,

where M c [E,y+,]7%%. Let n,, u, € U(S) be such that

(46) N(ne) = [H.]"™*,

(47) N(w) = H.

in the former case, and

(48) v N(m) = [How]™*%,

(49) N(ud) = [E-py 411" :

in the latter. We find by (37), (38), (39) and by Lemma 5 that

card H,, < card [Hz(k)]’(i"* ,
and

card [E 4+ 1172%% = o,y - By = card [H gy =%,
so that

card N(n,) = card N(,)

holds in both cases. Lemmas 6, 7, and 8 imply
= z(k) + 1
< <20 T
max (W) = 2h. = =5
provided (46) and (47) are true.
Similarly, if (48) and 49) are valid then

" O -1 < 2(k) + 2
‘;af‘ MW(W) < hQ>+2 = PO
EwW N
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we conclude that the measure 4, fulfil

max 4 (W) < (k): foreach keN, k>cardE,,
Wew
where z(k) is defined by (45). We find by (45) and Lemma 5 that
lim z(k) =
k—

i.e.

z(k) + 1 _

lim max A4, (W) < l im ==

k= Wew

This completes the proof of the theorem.

References

[1] P. R. Halmos: Lectures on ergodic theory. The Mathematical Society of Japan, Tokyo
(1956).

[2] J. Kindler: Some consequences of a double limit condition. Game Theory and Math.
Economics (1981), 73— 82.

[3] G. Kothe: Topological vector spaces. Grunidlehren der Math. Wissenschaften, Band 159,
Springer-Verlag, Berlin (1983).

[4] A. LeSanovsky and V. Ptdk: A measure of thickness for families of sets. Discrete Mathe-
matics 58 (1986), 35—44.

[5] V. Pték: A combinatorial theorem on systems of inequalities and its application to analysis,
Czechoslovak Math. J. 84 (1959), 629— 630.

[6] V. Ptik: A combinatorial lemma on the existerice of convex means and its application to
weak compactress. Amer. Math. Soc. Proc. Symposium in Pure Mathematics 7 (1963),
437—450.

[7] V. Ptdk: An extension theorem for separately continuous functions and its application to
functional analysis. Czechoslovak Math. J. 89 (1964), 562—581.

[8] V. Ptdk: An exter.sion theorem for separately continuous functions and its application to
furctional analysis and game theory. Proc. Coll. Convexity, Copenhagen 1965 (1967),

242—243.

[9]1 N. J. Young: On Ptik's double limit theorems. Proc. Edinburgh Math. Soc. 17 (1971),
193—200.

[10] N. J. Young: Admixtures of two-person games. Proc. London Math. Scc. 25 (1972),
736—1750.

Souhrn

TLOUSTKA RODIN MNOZIN A ROVNOMERNE MIRY

ANTONIN LESANOVSKY

Necht S je mnoZina a w rodina jejich podmnozin. Pojem tloustky rodiny w byl definovin
v ¢ldr.ku [4] pomoci obecnych molekuldrnich mér na S. V &larnku je sestrojena takova mnoZina §,
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Ze pro ur&eni tloudtky rodiny w se stadi omezit jen na rovnomérné molekuldrni miry na S. Této
skute&nosti je vyuZito pro charakterizaci rodin w s nulovou tloustkou.

Pe3wome

TOJIIIMHA CEMEVCTBA MHOXECTB
ANTONIN LESANOVSKY
ITycTb S-MHOXECTBO H W—CEMENCTBO ero oAMHOXeCTB. ITOHsITHE TONIIMHBI CEMeNCTBA W OBIIO
BBeIeHO B [4] C nOMoNILIO OBIIUX MOJIEKYISPHEIX Mep Ha S. B CTaThbe CTPOMTCS TaKOE MHOXKECTBO S,

YTO JIJIS ONIPCAC/ICHMS TOJIIMHBI CEMEACTBA W MOXHO OTDaHHMYHTHCS PaBHOMEPDHBIMHA MOJICKYNAp-
HBIMHA M€PAaMH Ha 3' .9T0T d)an MCIIOJIB3YETCS A1l XapaKTe€PU3aLIMH CEMEHCTB W C HYJIEBOX TOJIIIMHOMI.
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