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CONTINUITY OF LIFTINGS

W. M. MixuLski, Krakow
(Received February I, 1985)

Summary. Conditions are given under which L(M)o,,(v,,) tend to L(M)a(v), where L is
a lifting, M a manifold, o, and o are sections defined in a neighbourhood of x € M such that
72(o,,) tend to ;X (o), and v, is a sequence of points over x tending to v.
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Let F and G be two natural bundles over n-dimensional manifolds. Let H be
a natural bundle over dim (GR")-dimensional manifolds. ([4]). If U is an open subset
of an n-manifold M, then a mapping a:U — FM (or g:(nfy)" ! (U) » HGM)
of class C® such that (my)e o = idy (nGy) o © = idrap)-1(0y) is called a section
of nyy: FM — M (nGy: HGM — GM). If M is an n-manifold, we denote by # M(#%M)
the set of section of FM - M (HGM — GM).If ¢ is an embedding of an n-manifold
M into an n-manifold N, we define ¢4: FM — FN and (G(p)*: HYGN - HYN
by ¢x0 = Fpoo o™ ! and (Gp)y ¢ = (HG@) o 0+ (Gp)™'. With each. n-manifold
M we associate a mapping L(M): FM — H#%M, which is natural for embeddings.
That is to say, for each embedding ¢ of an n-manifold M into an n-manifold N,
we have L(N) o 94 = (Go)y o L(M).

A family L= {L(M)} is called an (n, F, G, H)lifting.

Examples. (1) Let F and H be two natural bundles over n-manifolds. Let G be the
identity functor over n-manifolds. Let D = {D(M)} be a natural differential operator
([6]) such that for each n-manifold M, D(M): M — #M. Then D is an
(n, F, G, H)-lifting. In particular, if F is the functor of positive-defined symmetric
(O, 2)-tensors and H is the functor of (p, q)-tensors, then D is called a natural tensor
([1]). Hence natural tensors are liftings.

(2) Let F be the functor of tangent bundles (or (0,0)-tensors) over n-manifolds.
Let G be a natural bundle over n-manifolds. Let H be the functor of tangent bundles
(or (0, 0)-tensors) over dim (GR")-manifolds. Let L= {L(M)} be a lifting of vector
fields to G (or a lifting of functions to G) (see [2], [3]). Then Lis an (n, F, G, H)-
lifting.

The main theorem of this paper reads as follows.
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Theorem. Let L be an (n, F, G, H)-lifting. Let M be an n-manifold and ¢ € FM
a section defined on a neighbourhood of x € M and satisfying the following condition:

(%) There exists a vector field X defined on a neighbourhood of x such that .
X(x) £ 0 and j3(Lyxo) = j2(0). Moreover, let X(x) + 0 and j(Lyo) = j(0).

Leto,e FM (m = 1,2,3,...) be a sequence of sections such that j3(o,,) tend to
j2(o) if m tends to infinity. Let v, € (ny) ™" (x) (m = 1,2, 3, ...) be a sequence of
points tending to v. Then L(M) 0,,(v,,) tend to L(M) o(v).

Remark. Lyo is the Lie derivative of o with respect to X. If y e dom (X)n
N dom (o), then Ly o(y) is the vector from T,.,,FM given by the curve t = (p_,) .
. o(y), where {¢,} is a local 1-parameter group of X.

If ¢ is an embedding of an n-manifold M into an n-manifold N, then ¢4(Lyo) =
= L, 940 (see [6]). We denote by 0 the mapping given by M3y — 0 e T,,,FM.

Remark. The counterexample of D. B. A. Epstein [1, p. 638—641] shows why
we insist that ¢ should satisfy ().

From now on, we denote by 7 the given map from GR” to R". We write F, instead
of (ngs)~* (0) and G, instead of =~ *(0). Let s = dim (F,). I x € R", we denote by T,
the translation by x(r,: R* = R", 7.(y) = x + y). We have the C®-diffeomorphism
T:R" x Fy — FR" given by (x,f) = F t(f). We write L instead of L(R"). We
denote by P the projection R" X F, - Fy, and by p:R" —» R the projection
(315 «vns Xp) = X3.

We prove two lemmas.

Lemma 1. Let 0,0, € FR" be two sections such that 0edom (o,) (t = 1,2)
and j§(o,) = j§(0,). Then Lo, is equal to Lo, on G,.

Proof. Choose a chart (U, ) on F, such that Po T ! 0,(0)e U. Putting
fi=VoPoT 'oo,(t=1,2)wefind that jO(f,) = j&(f2). By Whitney’s extension
theorem [5] there exist a C*-mapping f: R" — R® and an open neighbourhood W
of 0 such that f =f, on V, = {(xy,..., x,) € W: (—1)* x; = n|x;| for 2 < i < n}
for t = 1,2. Let 6 € #R" be given by &(x) = T(x, ¥y ! o f(x)). Then & = o, on ¥,
for t = 1,2. Hence LG = La, on =~ !(int V;) for t = 1, 2. Since G, = cl (z~!(int V}))
we obtain that Lo; = Lo, on G,.

Lemma 1 is proved.

Lemma 2. Let 6 € ZR" be a section such that 0 € dom (¢) and j§(Lyjox,9) = i3 (0).
Then there exist a section & € FR" and a chart (U, @) on F, such that 6(0)e U,
j&(6) = j&(o) and 0[ox, f = 0, where f = 9 o Po T™! o 6.

Proof. Choose a chart (U, ¢) on F, such that 6(0)e U. Let § =
= (To(idgn x @~"))"!. Putting f=¢@oPoT 'o0, we find ¢ >0 such that
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Yo (t=10,..00% () = (%, f o Ter,0,....0)(%)) for [|x|| <& || <e It follows (since
J&(Lajax,0) = j&(0)) that j&(9/0x, f) = 0. On some open neighbourhood W of Oe
eR", define f: W— R° by f(xy,...,x,) = f(0, x5, ..., x,). Then j&(f) = j&(f)-
Let e FR* be given by 6(x) = T(x,¢ "o f(x)). It is easy to verify that
j&(6) =j5(c) and f=@oPoT o6

Lemma 2 is proved.

Proof of the theorem. Since X(x) % 0, we may of course assume that M = R",

= 0 and X = 0/0x,. By Lemmas 1 and 2 we may assume that there exists a chart
(U, ) on F, such that ¢(0)e U and 9[dx, f = 0, where f =@ PoT 'o0. We
show that any subsequence of La,,,(v,,,) contains another subsequence tending to
Lo(v). This is sufficient to establish the result.

Let f,, = 9o PoT 'o0, (m=1,2,3,...). By passing to subsequences, we may
assume that |D(f,, — f)(0)| < exp(—m) for each differential operator obtained
by partially differentiating at most m-times (so D is a monomial in the 9/dx;). Let
Xm = (1/m,0,...,0)e R". By Whitney’s extension theorem [5] there is a C*-
-mapping h: R" — R* such that j2 (h) is equal to 0 if m is odd and to jg ((f, —
— f)ot~4,) if m is even, for m sufficiently large. Let h=h+f _

Since 0[0x, f = 0, we obtain that j2 (h) is equal to j(f) if m is odd and to
J2 (fum o T-y,,) if m is even, for m sufficiently large. Define 6 € FR" by é(x) =
= T(x, ¢~ ' o i(x)). Then j§((v-,,)« 6) is equal to j&((t-, )« o) if m is odd and to
jg’(a,,,) if m is even, for m sufficiently large. By Lemma 1, we obtain that HGt_, o
o L& o G 1, (v,) is equal to HGt_, o Lo o G 7, (v,) if m is 0odd and to Lo,,(v,,) if m
is even, for m sufficiently large. Therefore Lo,,(v,,) tends to La(v) as required.

The theorem is proved.

I would like to thank Prof. A. Zajtz for suggestions and corrections.
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Souhrn

SPOJITOST LIFTU
W. M. MIKULSKI
Jsou udiny podminky, za kterych L(M) o, (v,,) konverguje k L(M) o(v), kde L je lift, M varieta,

o, 0 jsou fezy definované na okoli bodu x € M a splijici j¥(e,,) = jX(0), a v, je posloupnost
bodl nad x konvergujici k v.

Pe3lomMme

HEITPEPBIBHOCTE JIM®TUHI OB
W. M. MIKULSKI
B pabote naHbr ycnosus, npu KoTopsix L(M) o, (v,,) ctpemurtcs x L(M) o(v), rae L — madTunr,

M — mHOroobpasue, o,, ¢ — CCYCHHS, ONpENEICHbIE HA OKPECTHOCTH TOYKM X€ M H Takme,
4T0 jP(0,,) —> j(0), K v, — CXOIAAMAACA NOCIEAOBATENBHOCTD JIeKAINask Hall X C MPENEIOM v.
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