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CONTINUITY OF LIFTINGS 

W. M. MIKULSKI, Krakow 

(Received February 1, 1985) 

Summary. Conditions are given under which L(M) <rm(vm) tend to L(M) <r(v), where L is 
a lifting, M a manifold, <rm and a are sections defined in a neighbourhood of x e M such that 
j*(crm) tend to/*(cr), and vm is a sequence of points over x tending to v. 
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AMS Classifications: 58A20, 53A55. 

Let F and G be two natural bundles over n-dimensional manifolds. Let H be 
a natural bundle over dim (Gft^-dimensional manifolds. ([4]). If U is an open subset 
of an n-manifold M, then a mapping a: U -> FM (or Q: (nM)~x (U) -> HGM) 
of class C00 such that (TE^) O a = idv (n%M) o Q = 1d(7tGM)-i(U)) is called a section 
of nM: FM-+M (n%M: HGM -> GM). If M is an n-manifold, we denote by &M(2te<0M) 
the set of section of FM -> M (HGM -> GM). If <p is an embedding of an n-manifold 
M into an n-manifold N, we define <?*: J^M -> #iV and (G<p)*: J^^N -> Jtf&N 
by <p*<7 = F<p oa o(p~l and (Gp)* e = (HGcp) 0 o 0 (GtD)"1. With each n-manifold 
M we associate a mapping L(M): , f M -> Jf&M, which is natural for embeddings. 
That is to say, for each embedding q> of an n-manifold M into an n-manifold N9 

we have L(N) O ^ = (G<p)* o L(M). 

A family L = {L(M)} is called an (n, F, G, H)-lifting. 

Examples, (l) Let F and H be two natural bundles over n-manifolds. Let G be the 
identity functor over n-manifolds. Let D = {D(M)} be a natural differential operator 
([6]) such that for each n-manifold M, D(M): &M -> 3PM. Then D is an 
(n, F, G, if)-lifting. In particular, if F is the functor of positive-defined symmetric 
(0, 2)-tensors and H is the functor of (p, q)-tensors, then D is called a natural tensor 
([1]). Hence natural tensors are liftings. 

(2) Let F be the functor of tangent bundles (or (0,0)-tensors) over n-manifolds. 
Let G be a natural bundle over n-manifolds. Let H be the functor of tangent bundles 
(or (0, 0)-tensors) over dim (GlT)-manifolds. Let L = {L(M)} be a lifting of vector 
fields to G (or a lifting of functions to G) (see [2], [3]). Then Lis an (n, F, G, H)-
lifting. 

The main theorem of this paper reads as follows. 
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Theorem. Let Lbe an (n9 F, G, H)'lifting. Let M be an n-manifold and o e &M 
a section defined on a neighbourhood ofxeM and satisfying the following condition: 

(*) There exists a vector field X defined on a neighbourhood of x such that 
X(x) * 0 and j™(Lxo) = £(0). Moreover, let X(x) * 0 andj™(Lxo) =J*(0). 

Let om G 2FM (m = 1, 2, 3,...) be a sequence of sections such that jx(om) tend to 
Ix(o") tfm tends to infinity. Let vm e (n%)~l (x) (m = 1, 2, 3, ...) be a sequence of 
points tending to v. Then L(M) om(vm) tend to L(M) O(V). 

Remark. Lxo is the Lie derivative of o with respect to X. If ^ e d o m ( X ) n 
n dom (o)9 then Lx o(y) is the vector from Ta(y)FM given by the curve t -• (<p_,)* . 
. o(y)9 where {cpt} is a local 1-parameter group of X. 

If cp is an embedding of an n-manifold M into an n-manifold N9 then cp*(Lxo) = 
= L^x(p*o (see [6]). We denote by 0 the mapping given by M 3 y -» 0 e Tff(y)FM. 

Remark. The counterexample of D. B. A. Epstein [1, p. 638 — 641] shows why 
we insist that o should satisfy (*). 

From now on, we denote by n the given map from GRn to Rn. We write F0 instead 
of (n^n)~

l (0) and G0 instead of n~*(0). Let 5 = dim (F0). If x e Rn
9 we denote by T* 

the translation by x(rx:R
n -> Rn

9 rx(y) = x + y). We have the C°°-difTeomorphism 
T:Rn x F0 -> FRn given by (x , / ) -+ F zx(f). We write L instead of L(Rn). We 
denote by P the projection Rn x F0 -> F0, and by p: Rn -+ R the projection 
(x1 ? . . . , xn) -> xx. 

We prove two lemmas. 

Lemma 1. Let ol9o2e fFRn be two sections such that Oedom(crr) (t = 1,2) 
and j0(ot) = Jo(e2). Then Lot is equal to Lo2 on G0. 

Proof. Choose a chart (U, \j/) on F0 such that P o T~i o o0(6)eU. Putting 
/ , = \j/ o P o T~1 o ot (t = 1, 2) we find that jgfa) = j0(f2). By Whitney's extension 
theorem [5] there exist a C°°-mapping / : Rn -> /?s and an open neighbourhood W 
of 0 such that / = ft on Vt = {(x l 5 . . . , x„) G fV: ( - 1 ) ' x t = n|x ; | for 2 ^ i g n} 
for * = 1, 2. Let <r G &Rn be given by c?(x) = T(x, i / r 1 o/(x)). Then o = ot on Vt 

for r = 1, 2. Hence ho = Lcr, on Tc'^int Vt) for t = 1, 2. Since G0 c cl ( ^ ( i n t V,)) 
we obtain that Lox = Lcr2 on G0. 

Lemma 1 is proved. 

Lemma 2. Let o e ^Rn be a section such that 0 e dom (o) and j0(LdIdXio) = j0(0). 
Then there exist a section o e &Rn and a chart (U9 q>) on F0 such that o(0) e U, 

j 0 (o) = Jo°(~) and djdxt J = 0, where J = cp o P o T " 1 o o. 

Proof. Choose a chart (U9 <p) on F0 such that o(0) e U. Let $ = 
= (To(idRn x 9" 1 ) )" 1 . Putting / = > o P o T " 1 ocr, we find e > 0 such that 
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^ o(T(-ff0 0 ) )*^W = ( ^ / ° ^ o o)W) for H I < e, | ' | < c It follows (since 
Jo(Ld/SXl°) =Jo(fy) that Jo°(d/d*i/) = 0. On some open neighbourhood W of Oe 
eRn

9 define J: W-> Rs by / (x l 5 ...,*„) = f(0, x2, ..., x„). Then JZ(f) = ; ? ( / ) . 
Let & e ^Rn be given by <r(x) = T(x, <p~l of(x)). It is easy to verify that 
Jo (*) = / » and f = cp 0 P o T" 1 o a. 

Lemma 2 is proved. 

Proof of the theorem. Since K(x) 4= 0, we may of course assume that M = Rn
9 

x = 0 and X = djdxx. By Lemmas 1 and 2 we may assume that there exists a chart 
(U, cp) on F0 such that o(0) e U and d\dxxf = 0, where / = cp <, P <> T" 1 <> a. We 
show that any subsequence of Lom(vm) contains another subsequence tending to 
L<r(v). This is sufficient to establish the result. 

L e t /m = (p o P oT'1 o om (m = 1, 2, 3,.. .). By passing to subsequences, we may 
assume that ||D(/m —/)(0)| | < exp( —m) for each differential operator obtained 
by partially differentiating at most m-times (so D is a monomial in the djdx^j. Let 
xm = (1/m, 0, ...90)eRn. By Whitney's extension theorem [5] there is a C00-
-mapping/i:/?" -> Rs such that jxjh) is equal to 0 if m is odd and to jxj(fm — 
— / ) o t_Xm) if m is even, for m sufficiently large. Let fi = h + / . 

Since djdx1f = 0, we obtain that JxJR) is equal to Jx°Jf) if w is odd and to 
Jxjfm o T-xw) if m is even, for m sufficiently large. Define <r e «^7?n by ^(x) = 
= T(x, <p-1 o fi(x)). Then Jo((~-xJ)* G) is equal to Jo°((T-.xm)* G) 'f m ^s °dd and to 

Jo(om) if m is even, for m sufficiently large. By Lemma 1, we obtain that HGz_Xm 0 

oLd oG TxJvm) is equal to HGr-Xm o Lo o G rxJvm) if JM is odd and to Lom(vm) if m 
is even, for m sufficiently large. Therefore La2m(vlm) tends to Lo(v) as required. 

The theorem is proved. 
I would like to thank Prof. A. Zajtz for suggestions and corrections. 
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Souhrn 

SPOJITOST LIFTÛ 

W . M . MlKULSKI 

Jsou udány podmínky, za kterých L(M) <тm(vm) konveгguje k L(M) G(V), kde L je lift, M vaгieta, 
<гm, <т jsou řezy definované na okolí bodu x є M a splňující j£Ҷö'ш) ~>1'.?(0')» a vm Je posloupnost 
bodů nad x konvergující k v. 

Резюме 

НЕПРЕРЫВНОСТЬ ЛИФТИНГОВ 

\У. М . М1КШ.5К1 

В работе даны условия, при которых ^(М) <гт^т) стремится к ^(М) а^\ где Ь — лифтинг, 
М — многообразие, <гт, <г — сечения, определеные на окрестности точки х е М и такие, 
что7*(о"т)->у®(сг), и гш — сходящаяся последовательность лежащая над х с пределом V. 

Лшког'з аййгеза: 1п§Ши1е оГ Ма1пета11С8, 1а§1е11отап Ш^егзку, Кеутоп1а 4, Кгако\у, 
Ро1апа\ 
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