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Summary. Systems of linear differential equations with measures as coefficients are studied, 
together with their applications in control theory. A complete classification of the attainable 
sets for one-dimensional control systems is given. 
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1. INTRODUCTION 

In this paper we study the system of linear differential equations 

(1) x = A(t) x + f(t) , x e Rn, te(a,b)9 - oo ^ a < b ^ co 

where the coefficients of the matrix A(t) are measures and the term f(t) may be 
a locally integrable function or a measure. The solution of the equation (l) will be 
a function of locally bounded variation in (a, b). 

The study of such equations was initiated by J. Kurzweil who proved in 1958 the 
existence and unicity of solutions of a linear integral equation with Perron-Stieltjes 
integral ([4]), and next in 1959 the existence and unicity of solutions of the homo
geneous system 

(2) x = A(t) x 

where A(t) is a measure ([5]). Next, in H. Hildebrand's [3] and S. Stallard's [10] 
papers the equation (2) was studied in the class of functions of locally bounded 
variation as solutions. Recently, such a generalization of solutions of the system (1) 
may be found in the papers and books of §. Schwabik, M. Tvrdy, O. Vejvoda [9], 
5. Schwabik [8], S. G. Pandit, S. G. Deo [7], in the papers of J. Lig^za who has used 
the sequential theory of distributions, and in the papers by U. Sztaba and the author 
who apply the Lebesgue-Stieltjes integral approach. The case of A(t) being an in
tegrable function andf(f) a measure was studied by A. Halanay and D. Wexler [2]. 
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2. BASIC DEFINITIONS AND NOTATION 

Let (a, b), — oo S a < b ^ oo, be an open interval. Denote by 
BVloc(a, b) — the space of all right-continuous functions of locally bounded variation 

in (a, b), 
£?oc(a> b) — the space of all locally integrable with the p-th power functions in (a, b), 
C°(a, b) — the space of all continuous functions in (a, b). 
Let SCR be the cr-field of subsets C c (a, b) of the form 

N 

C = U (ch di], N ^ oo , 

and $ the cr-field of Borel subsets of (a, b). 

Every function g(*) e BVloc(a, b) determines a measure \ig on 9JZ: 

Vg((c,d]):= g(d) - g(c) 

and if (ct, d{] n (c,-, dj\ = 0 for i 4= j, i,j e A/, then 

^(u(c i ,d i])=E[^ i)-^,)] . 
i i 

In particular, /i^({e}) := g(e) - g(e~). 

Definition 1. Lebesgue's extension of the measure \ig to a r/-field ^ * which con
tains 31 will be called the Lebesgue-Stieltjes measure (L— S measure) generated 
by the function g. It will be denoted by a' or by dq and will be called the derivative 
of the function g. Conversely, the function #(•) will be called the primitive function 
for the measure dg. 

Examples. 1. If H(t) = < is the Heaviside function then the 
W (1 for t = a 

responding measure dH(t) = S(t) is the Dirac measure: 

S(t) (B) = 1 iff 0 e B and 5(t) (B) = 0 otherwise . 

2. If g(t) is absolutely continuous with respect to the Lebesgue measure then g'(t) 
is the measure which coincides with the usual derivative of g(t) (for a.e. t e (a, b)): 

g'(B) = $Bg'(t)dt = $Bdg(t). 

3. If g(x) = x then g'(x) is the usual Lebesgue measure dx. I 
Definition 1 implies that this differentiation is a linear operation, while the right-

continuity yields that the difference between any two primitives for the same measure 
dg is a constant function. 

If we have a measure fi defined on J1 then the function 
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g(x):= fi((a,x]) 

is a primitive for the measure /x. 
If a function f(t) is a'(*)-measurable (i.e.,fis measurable with respect to the tr-field 

^ * such that the triple ((a, b), &*, g') is a measure space) then we can define the 
L— S-integral off(*) with respect to the measure da: 

(3) id
cf(t)dg(t):=j{e^f(t)dg(t), a<c<d<b. 

(For f(t) = 1 we have \ ^ 1 dg(t) = g'((c, d~]).) 

In particular 

(3') \{e)f(t)dg(t): = f(e)g'({e\). 

For c G (a, b) the function 
*(*) := \*f(t) dg(t) 

is of locally bounded variation. More precisely, fc(-) is continuous at all points of 
continuity of g(*) and right-continuous at the remaining points. Taking f(t) = 1 
we obtain one of the primitives for the measure dg('). 

If one of the functions f, g is continuous then the integral (3) can be understood 
in the Riemann-Stieltjes sense. 

If f, g e BV]oc(a, b) and (c, d] cz (a, b) then — as follows from the Lebesgue 
partition off — f(-) is L— S-integrable with respect to the measure g'(') in (c, d\. 

Now we give the definition of the product of a function f(*) e £Vj0C(a, b) and 
a measure g'('). 

Definition 2. Let f, g e BVloc(a, b). The product fg' is a measure q' such that 

q'{B) = jBf(s) dg(s) for all B G J . 

_ (S(t - s) if r _ s 
1. Я ( ř - r ) ő ( ř - 5 ) = p - S ) І f Г = 

' | 0 if r > 
Examples 

s 

2. If f(-)eBVloc(a, b) then /(*) <5(f - s) =f(s)c5(r - s). The same is true for 
/(•)eC°(a,6). • 

This product satisfies the jointness principle in the sense that the following gener
alization of the Radon-Nikodym theorem holds: Iff, g,he BVloc(a, b) and q' : = fg' 
then 

IBh( s)f( s)dd( s) = JBK s)d(i( s) f o r e v e r y B s m ( s e eC 1 1])• 

Iff, g 6 BVloc(a, b) then the measures a' andfg' have the same atomic points. 
Now we define when two measures are equal. 

Definition 3. Let f, g e5V l o c(a, b). Two measures are equal in the interval 
(c, d] cz (a, b) iff the difference f — g' is the zero-measure, i.e. if (f — g') . 
• ( ( a ' /*]) = O f o r a n y ( a ' ^] <= ( c ' ^ ] - This equality shows that the difference f(-) -
— g(-) is a constant function in (c, d] . 
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In the end we define when a function x(') e BV,0C(a, b) may be called a solution 
to the equation (I) in which the derivative, product and equality are understood 
as in Definitions 1, 2, 3, respectively. 

Definition 4. A function x(') e BVloc(a, b) is a solution to the equation (1) iff the 
L — S-measures generated by the left- and right-hand sides of (1) coincide. 

Applying Definitions 1 — 3 we obtain an equivalent definition of the solution. 

Definition 4'. A function x(*) e BVloc(a, b) is a solution to the equation (l) with 
the initial condition 

(4) x(t0) = x0 , t0e(a,b) 

iff x(m) is a solution to the integral equation 

(5) x(t) = x0 + JJ0 [d^(s ) ] x(s) + JJ0 d#-(s), t e (t09 b) 

where s/' = A and ^ ' = f 
Iff the measures A(*),f(«) are absolutely continuous with respect to the Lebesgue 

measure then the above definitions of solution coincide with the Caratheodory 
concept of solution. 

3. LINEAR DIFFERENTIAL EQUATIONS WITH MEASURES AS COEFFICIENTS 

Our starting point is the existence of solution of the Cauchy problem (2), (4). 
In the remaining part of the paper we assume that the following hypothesis H1 

is fulfilled: 
(Hx) det (E - Ck) + 0 for k = 1, 2, .. . . 

Theorem 1. IfH1 holds then there exists a solution x(') e BVloc(a, b) of the Cauchy 
problem (2), (4). 

This theorem can be proved as in [1] by using the successive approximation 
method (in [1] the integral in (5) is understood in the Riemann-Stieltjes sense but 
defined in a special way), or as in [11] by the Euler method. 

Now we will construct the fundamental matrix for the equation (2) and obtain 
the Cauchy formula for the problem (2), (4). To do this, let us decompose the measure 
A(') into its continuous and atomic parts, which follows from the Lebesgue decom
position of an arbitrary primitive for this measure. So, the measure A(t) may be 
written in the form 

(6) A(t) = A(t) + f C,ftt - tk) , tk e (a, b) 
k=l 

where A(*) = £?'('), ^ ( * ) e BVl0C(a,b) n C°(a, b), and Ck are some matrices. 
Assume that the following Hypothesis H0 is fulfilled: 
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(H0) The points {tk} are ordered: a < t0 _ tt ... < t„ < ... < b9 and the unique 
accumulation point of the sequence {tk} may be b 

By the product C S(s) we understand the matrix whose all elements are equal 
io Cij5(s), 1 = l9j = n 

According to (6) the equation (2) may be written as 
00 

(7) x = A(t) x + £ Cfc x(ffc) 6(t - rfc) . 
k = i 

The auxiliary equation 
(8) x = A(t) x 

with the initial condition (4) has a unique solution x(*) which is a continuous function 
of locally bounded variation in (a, b) and may be written in the usual Cauchy form 

x(t) = $(t) x0 

where $(t) e BV]oc(a9 b) n C°(a, b) is the fundamental matrix of (8). 
Returning to the equation (2) we see that in every interval (tk9 tk+1) it reduces to 

the equation (8). Therefore we are looking for the solution of (2) in the form 

(9) x(t) = $(t)$'l(tk)sk9 te[tk9tk+1)9 k = 0, 1,... 

where sk = x(tk). Obviously, s0 = x0. The sequence {sk} must be constructed in 
such a way that the piecewise continuous function x(t) is a solution to the equation 
(2) in (t09 b). Differentiating (9) we obtain 

(10) x = A(t) x + £ [x(tk+) - x(rfc-)] d(t - tk) = 

fc=l 

= # ) * + I [h - % ) ^ ( f c - i ) s*-i] <5(t - tk) = 

= A(t) X + £ 8kd(t - tk) 
k = \ 

where efc := sfc — x(ffc — ) is the jump of the solution x(*) at the instant tk. Comparing 
(10) with the right-hand side of (7) we conclude that x(-) is a solution of (2) iff 

(H) s f c- $(tk)$-x(tk_1)sk_1 = Cksk9 k = l , 2 , . . . . 

Therefore the sequence {sfc} satisfies the following reccurence equation of the first 
order: 
(12) (E- Ck)sk = <P(tk)$-1(tk_1)sk_l9 k = l , 2 , . . . , s 0 = x 0 

(E denotes the unit matrix). 
Consequently, knowing sfc>1 (and thus also x(t) in the interval (tk-.l9 tk)) we can 

compute sfc from (12) in a unique manner by the hypothesis Hl9 then we can extend 
this solution to the next interval (tk9 tk+1)9 and so on. 

Thus we obtain 
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Theorem 2. Under the hypothesis Hx the problem (2), (4) has a unique solution 
X(')E BVloc(a, b). This solution may be written in the form 

(13) x(t) = $(t) $~\t0) x0 + I *(0 $'%) «*#(' - h) • 
k:tkgt 

If the hypothesis Hj is not fulfilled then the problem (2), (4) may have more than 
one solution as is shown in the following 

Example, The equation 

x = 5(t)x , x(-\) = 0, xeR1 

has a continuum of solutions: every function x(t) = H(t) c, c an arbitrary number 
is a solution of this equation. • 

The formula (12) under the hypothesis Hx may be rewritten as 

(14) sk = (E - Q ) " 1 % ) $-1(r,_1) sft_1 = (E - Q ) - 1 * ( . * - ) . 

By (14) we have that if x0 = 0 then sk = 0 for all k e /V, thus the problem (2), (4) 
with x0 = 0 has only the null-solution. Hence the problem (2), (4) has a unique solu
tion for an arbitrary x0. 

Now we deduce some interrelations between the sequences {sk} and {e j . If we 
compare the last term of (10) with (7) we obtain the equality 

e* = Ck x(tk) = Cksk = Ck[$(tk) ^ ' 1 ( r f c - 1 ) v . , . + Cjk] , k = 1, 2 , . . . . 

Therefore, if the hypothesis Hx is fulfilled then 

(15) ek = (E- Q ) - 1 Ck $(tk) $-%-,) s4_. = (£ - Q ) " 1 C» x f o - ) . 

Under an additional hypothesis 

(H2) det Cfc 4= 0 for k = 1, 2 , . . . 

we prove that the sequence {ek} satisfies the reccurence equation 

(16) ek+i = (E- Q ^ ) - 1 Ck+i % + i ) * - 1 ( r k ) C l T
1 c k , fc = 1,2,... 

where ex = (E — Ci)"1 Cx #(?i) ^ " ^ f o ^ o IS calculated from (15). Indeed, from 
(15) we have 

(17) x(tk~) = Ck-
1(E-Ck)ek9 

and (14) implies the equality 

O8) e*+i = sk+l - (E - Cfc+i)sfc+1 = 

= c*+ik+i + % + i ) ^_1W [*(**-) + cj}. 

Multiplying (18) by C ^ i we obtain 

(C/T+i - £)e* + 1 = % + i ) ^ ( i * ) [*(**-) + £fc] , 
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so 
«*+i = (Q~+i - -E)"1 $(tk+1) $-%) [x(tk~) + a j . 

If we substitute (17) into the last equality then after simple calculations we obtain 
(16). • 

From (14) and (16) we deduce by induction that all elements of the sequences {sk} 
and {ej depend only on x0, and these dependences are linear and continuous: 

sk = Tkx0 , sk = Qkx0 

where Tk, Qk are some matrices. Therefore, substituting these relations into (13) and 
eliminating x0 outside the brackets we obtain the usual Cauchy form of the solution 
to the equation (2): 

x(t) = 0(t) x0, te (t0, b) 

where the matrix <P(t), normed at t0, has all elements belonging to BVloc(a, b). This 
matrix has the following properties (analogous to those occurring in the classical 
case; the proofs are identical and follow from the construction): 

P. 1 &(t0) = E; 

P. 2 ±<P(t) = A(t)<P(t); 
at 

P. 3 0(t2) *(tt) = <J>(h + t2); 

P. 4 <£(f) is non-singular for all t and 0~1(')e BVloc(a, b). 

The last property is not quite obvious, but can be proved by using (14) and the 
hypothesis H1# We have 

h = x(tk-) + sk = (E - C f c ) - 1 ^ ^ - ) for fc= 1 ,2 , . . . , 

and consequently, Ht implies 

sk 4= 0 iff x(tk-) * 0 

which follows by induction from P. 1. Thus $(t) + 0 on every interval t e [tk, tk+1), 
and so on. Therefore the inverse matrix # - 1 ( f ) exists for every t e (a, b). The second 
part of P. 4 follows from the construction of the inverse matrix and from the pro
perties of functions of bounded variation. I 

The above properties enable us to solve the equation (l) by applying the variation-
of-constants method. We are looking for the solution to (l) in the form 

(19) x(.) = #( . )z(0 

where z(') e BVloc(a, b), so x(«) e BVi0C(a, b) as well. Substituting (19) into (l) we 
obtain 

x = <t>(t) z(t) + $(.) z(t) = A(t) 4>(t) z(t) + $(t) z(t) = 

= A(t) x(t) + <P(t) z(t) = .4(f) x(t) + f(t) . 
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Then (19) is a solution to (l) iff 
i(t) = *-\t)f(t). 

Therefore z(*) must be a primitive function for the measure <P~l(t)f(t): 

*it) = c + Ho *~\s)f(s) &s ^ f~ LL(a> h) 
or 

z(t) = c + J[0 ^
_1(s) d&(s) if / = &' is a measure . 

We conclude that the solution to the problem (1), (4) may be written by the following 
Cauchy formula: 

x(t) = <P(t) x0 + *(*) J|0 t-^fis) ds , f~ Lloc(a, b) 
or 

x(t) = <P(t) x0 + <P(t) J{0 $-l(s) d^(s) , / = &' is a measure . 

4. ATTAINABLE SETS AND THE TIME-OPTIMAL CONTROL PROBLEM 

In this part we introduce the concept of the attainable set for the control system 

(20) x = A(t) x + f(t, u) , x(t0) = x0 , x e Rn, w e T , t0e(a,b) 

(u is called the control). The time-optimal control problem will be also studied. The 
following assumptions will be made: 

Z. 1 All elements of the matrix A(*) are measures fulfilling the hypotheses H0, H^ 

Z. 2 f(t9 •) is continuous and/(*, x) is a measurable function. 

Z. 3 The set of admissible controls is 

* = {w('): (a> b)st -* U(t); u(>) is measurable} 

where for every ts(a9 b), U(t) is a non-empty, compact set and the multi
function t -> U(r) is measurable in the sense that for every closed D a Rm the 
set {t e (a9 b): U(t) n D 4= 0} is measurable. 

Z. 4 There is a function n(*) e L\oc(a, b) such that for arbitrary u(-) e <%, 

\f{t9 u(t))\ = fii(t) a.e. re(fl,b), i-= 1,..., n . 

These assumptions guarantee that for every w(*)e^ the composition/(•, w(*)) 
belongs to L\oc(a, b), therefore for every admissible control w(*) there exists a unique 
solution to the problem (20) which may be written by the Cauchy formula 

(21) x(t) = $(t) x0 + 4>(t) J .„ *" '(s)f(s, u(s)) ds . 

Fix an arbitrary T, Te(t0, b) and consider the set X(T, U) = {x(T): X(') is given 
by (21), «(•) e li\ c R". 
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Definition 5. The set Jf(T, U) is called the attainable set for the system (20) 
at the instant T. 

This set may be written in the form 

X(T, U) = <P(T) {x0 + jr0 *-'(*)/(«, U(s)) ds} 

where the last integral is understood in the sense of Aumann. In the author's paper 
[13] the following properties of the attainable set were proved: 

Theorem 3. The set Jf(T, U) is non-empty, compact and convex, and the fol
lowing bang-bang principle holds: 

X(T, U) = 0(T) {x0 + jj0 extr [conv <P~l(s)f(s, U(s))] ds 

where extr (Z) denotes the set of all extremal points of the set Z and conv Z is the 
convex hull of the set Z. The attainability multifunction 

h:(t09b)3T-+jr(T,V) 

is right-continuous in the Hausdorjf metric; more precisely, ifT+ tk (k = 1, 2, ...) 
then h is continuous at the instant T 

Now we formulate the time-optimal control problem. Fix an arbitrary final state 
xt e Rn called the target of control. The problem reads as follows: 

Find the control u(') e °tt and the instant t such that the corresponding trajectory 
x(*) of the system (20) satisfies the condition x(t) = xx with the smallest / possible. 

First we formulate the existence theorem. 

Theorem 4. If xt e tf (tl9 U) for some tt > t0 then there exists t e (t0, £x] such 
that xt e Jf(t, U) and xx $ tf(t, U) for t < t. 

Proof. The set 
S:= {te(t0,b): x^e^t^U)} 

is a sum of at most countable number of intervals and every summand of S is closed 
from the left (this follows from Theorem 3). Moreover, S is bounded from below 
by t0. Consequently, in the set S there exists an infimum t which is the left end of 
a summand of S and — by the definition of the attainable set — there exists a time-
optimal control. I 

In the classical situation (i.e., in the case of a non-atomic measure -4(#)) the optimal 
control is an extremal one in the sense that xx is a boundary point of the set Jf (f, U). 
This property plays an important part in the proof and makes it possible to obtain 
a necessary condition of optimality in the form of thePontryagin maximum principle. 
If the set of atomic points of the measure A(') is non-empty then the target x t may 
be a boundary or an interior point of the set X(t, U) as is illustrated by the following 
example. 
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Example. Let us consider a one-dimensional system 

x = [1 + id(t - 1)] x + u , x(0) = 1 , - 1 = w = 0 . 

The emission zone of the initial point is bounded from below by the curve 

*•<» - { ; + v ; f ; 11 < « - " w - - o 
and from above by the curve 

*•<•>-{v «',Vi (fot»(') = °) 
Since £t = 2e, we have <P(t) = xfl(f). If xt e (l + §e, 3e) then 1 = 1 and xL e 
eintJf(l ,U). • 

5. COMPLETE CLASSIFICATION OF THE BEHAVIOUR 
OF THE ATTAINABILITY MULTIFUNCTION FOR ONE-DIMENSIONAL 

CONTROL SYSTEMS 

In this part we present the complete classification of the behaviour of multi
function h introduced in the previous part for one — dimensional control systems. 
As will be shown, there is 16 different situations (possibilities) of such behaviour. 
In higher dimensions such a classification is — in my opinion — impossible. This 
classification will be demonstrated by a very simple example. 

Example. Let us consider the system 

x = A5(t - 1) + u, x(0) = e = 0, f = 0, x,u e Rl , B = u = C 
where 

4 * 1 , B < C. 
Now 

*(O = E = I , £x = Tr^' s i = = r b ' 4,{t) = i + T4IH('~°-
The emission zone of the point (0, e) is bounded by the curves 

(e + Bt if t < 1 

*в(0 = J—le + B + B(l-Л)(t-ïj] if í ž l ( f м «(')--») 

if ř < 1 

[c + C + c(l-A)(f-l)] if tbl ( ^ " ( 0 - с ) . 

Obviously, xB(0 < Xc(') for te(0, 1). 
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For arbitrary A -# 1 and B < C we have 35 possible situations (22 of which are 
"qualitatively" different) which we describe below. We arrange these situations in 
some groups. 
0. If A = 0 then we have the classical situation, i.e., the multifunction h is continuous 

in the Hausdorff metric: 

h(t) = [e + Bt, e + Ct] for all t > 0 

1 C > B > -e. 

1. A < 0 . 
n r* 

a) If 0 > A > then xc(l - ) > xc(l) > xB(l-) > xB(l) > 0. 
e + B 

P) If A = ?-^-£ then x c ( l - ) > xc(l) = xB(l - ) > xB(l) > 0. 
e + B 

y) If A < then x c ( l - ) > x B ( l - ) > xc(l) > xB(l) > 0. 
e + B 

2. A e (0,1). 

a) If 0 < A < C ~ B then xc(l) > xc(l - ) > xB(l) > x B ( l - ) > 0. 
e + C 

P) If A = - ^ — - then xc(l) > xc(l - ) = xB(l) > x B ( l - ) > 0. 
e + C 

y) If A > ^—^ then xc(l) > xB(l) > x c ( l - ) > x B ( l - ) > 0. 
e + C 

3. A > \. 

Then 0 > x c ( l - ) > x B ( l - ) > xB(l) > xc(l). 

II. C > B = -e. 

In this case xB(') is continuous and xB(l) = 0. 

1. If A < 0 then x c ( l - ) > xc(l) > xB(l). 

2. If Ae(0, 1) then xc(l) > x c ( l - ) > xB(l). 

3. If A > I then x c ( l - ) > xB(l) > xc(l) . 

III. C> - e > B. 

1. If A < 0 then xc(l - ) > xc(l) > xB(l) > x B ( l - ) . 

2. If _4e(0, 1) then xc(l) > xc(l - ) > 0 > x B ( l - ) > xB(l). 

3. If A > 1 then 

a) B + C > -2e. 
D n 

(*!) If 1 < A < then xB(l) > xc(l - ) > 0 > x B ( l - ) > xc(l). 
e + B 
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If A = - then x c ( l - ) > xB(l) > 0 > x B ( l - ) = xc :(l). 
e + £ -

If -?-=--? < A < — - then xc(l - ) > xB(l) > 0 > xB(l - ) > xc(1). 
e + B e + C 

If A = - ^ - ^ then xc(l - ) = xB(l) > 0 > x B ( l - ) > xc(l). 
e + C 

If A > £—-? then xc(l-) > xB(l) > 0 > xc(J) > x B ( l - ) . 
e + C 

B + C = -2e. 

If 1 < A < 2 then x c ( l - ) > xB(l) > 0 > xc(1) > x B ( l - ) . 

If A = 2 then x c ( l - ) = xB(\) > 0 > xB(l - ) = xc(1). 

If A > 2 then xB(l) > x c ( l - ) > 0 > xB(l - ) > xc(l). 

B + C < - 2 e . 

If 1 < A < 5 j Z - £ then xB(l) > x c ( l - ) > 0 > * B ( l - ) > xc(l). 
c + B 

If A = ^ - ^ then xB(l) > xc(l - ) > 0 > xc(l) = x B ( l - ) . 
e + B 

If ?-----? < A < ^——- then xB(i) > x c ( l - ) > 0 > xc(l) > x B ( l - ) . 
e + B e + C 

If A = ^—~- then x c ( l - ) = xB(l) > 0 > xc(l) > xB(l - ) . 
e + C 

If A > - ^ — ~ then x c ( l - ) > xB(l) > 0 > xc(1) > x B ( l - ) . 
e + C 

IV. - e = C > B. 

In this case xc(*) is continuous and xc(l) = 0. 

1. If A < 0 then xc(l) > xB(1) > x B ( l - ) . 

2. If _4e(0,1) then xc(l) > x B ( l - ) > xB(l). 

3. If A > 1 then xB(l) > xc(l) > xB(l - ) . 

V. -e> C> B. 

1. A < 0. 

a) If 0 > A > ^ - Z - ? then 0 > x c(l) > xc(l - ) > xB(l) > xB(l - ) . 
e + C 

P) If ,4 = 5-----? then 0 > xc(l) > x c ( - - ) = xB(l) > x B ( l - ) . 
e + C 

7) If A < B ~ C then 0 > xc(l) > xB(l) > xc(l - ) > x B (1- ) . 
e + C 
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2. A e (0,1). 

a) If 0 < A < ^——- then 0 > x c ( l - ) > xc(l) > x B ( l - ) > xB(l). 
e + C 

P) If A = £ — - ? then 0 > x c ( l - ) > xc(l) = x B ( l - ) > xB(l). 
e + C 

y) U A> C ~ B then 0 > x c ( l - ) > x B ( l - ) > xc(l) > xB(\). 
e + C 

3. If A > 1 then xc(l) > xB(l) > 0 > xc(l - ) > xB(l - ) . 
Some of these situations may be "qualitatively" identified, namely: I. 1 with V. 2, 
I. 2 with V. 1, ccl with px and with y5; a2 with y4, a3 with Y3, «4 with Y2> a5 w ^ h P3 
and with y1. 

In I. 1, I. 2, II. 1, II. 2, III. 1, III. 2, IV. 1, IV. 2, V. 1, V. 2 we have xB(t) < xc(t) 
for all t > 0, therefore in these cases the attainable set is h(T) = [xB(T), xc(T)] 
while in the remaining situations we have the following inequalities: xB(t) > xc(t) 
for r e ( l , t), xB(t) < xc(t) for te(ty 1) and xB(t) = xc(F) = e/(l - A) where i = 
= AI(A - 1). 

In these last cases we have 

Һ(T) 

[[xв(T), xc(T)] if 0 ^ T < 1 oг T > t 

[xc(T), xвTj] if l < T < i 

ІHІ if T = í . 

The multifunction h has a closed graph in the following situations (apart from the 
classical situation 0): II. 2, III. 2, III. 3, a4, a5, P2, yu y2i IV. 2, One of these situations 
is of special interest, namely, III. 3, p2 because in this situation h is also continuous 
in the HausdoriF metric. 

From some of the situations described we deduce that the following proposition 
is not generally true (contrary to the classical case of a non-atomic measure A(*)): 

If u(t) g v(t) for a.e. te(t0, r j then x,,(r) = xv(t) for te(t0, t{). For example, 
if we put A = i , e = 1, u(t) = 1, v(t) = 2 then xu(t) < xv(t) for r e (0, 1) while 
xu(t) > xv(t) for r e (1,3). 

In the conclusion we solve the time-optimal control problem for the system 

x = f<5(r - 1) x + u , x(0) = 1 , - 2 ^ « g l 

with the target xx = 2 (cf. III. 3. a4). 

For any s > 0 there exists an e-suboptimal control, namely, uE(t) = 1 which 
transfers our system from the initial state to the final state x(l — e) = 2 — e so that 
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|x(l - S) - Xt\ = 6, 

but the optimal control for this problem is 

u(t) = - 2 

because for this control x(l) = 2 and x(t) < 2 for every X and every admissible control 
different from u(t). I 
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Souhrn 

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE, JEJICHŽ KOEFICIENTY 
JSOU MÍRY, A TEORIE ŘÍZENÍ 

ZDZISLAW WYDERKA 

V článku se studují soustavy lineárních diferenciálních rovnic, jejichž koeficienty jsou míry, 
a jejich aplikace v teorii řízení. Je podána úplná klasifikace dosažitelných množin pro jedno
dimenzionální soustavu optimální regulace. 
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Резюме 

ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ, КОЭФФИЦИЕНТАМИ 
КОТОРЫХ ЯВЛЯЮТСЯ МЕРЫ, И ТЕОРИЯ УПРАВЛЕНИЯ 

2о218ЬА\У ^УОЕЯКА 

В статье изучаются системы линейных дифференциальных уравнений, коэффициентами 
которых являются меры, и их приложения в теории управления. Приводится полная класси
фикация достижимых множеств для одномерной системы оптимального управления. 

АшНог'з аМгезз: 1пзШи1 Ма^етатуЫ, Шшегвухег 81а$к1, ВапкоVа 14, 4007 Ка1о>У1се, 
Ро1апа\ 
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