
Časopis pro pěstování matematiky

Zuzana Došlá
On oscillatory solutions of third-order linear differential equations

Časopis pro pěstování matematiky, Vol. 114 (1989), No. 1, 28--34

Persistent URL: http://dml.cz/dmlcz/118363

Terms of use:
© Institute of Mathematics AS CR, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118363
http://project.dml.cz


114 (1989) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 1, 28—34 

ON OSCILLATORY SOLUTIONS OF THIRD-ORDER LINEAR 
DIFFERENTIAL EQUATIONS 

ZLFZANA DOSLA, Brno 

Dedicated to Professor Otakar Boruvka on the occasion of his ninetieth birthday 

(Received June 24, 1986) 

Summary. The subject of this paper are the third order differential equations which have the 
solution space with bases consisting of 0, 1, 2 or 3 oscillatory solutions. To study such equations 
we use [3] and seek the possibility of perturbing the self-adjoint differential equation in such 
a way that both equations be asymptotically equivalent. 
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1. INTRODUCTION 

It will be assumed that the coefficients of the differential equations considered are 
real continuous functions on [t , oo). We shall call a function f(t) oscillatory when 
the set of its zero-points is infinite and unbounded from above. Otherwise, we shall 
call it non-oscillatory. 

The third-order linear differential euqation L3y = 0 can be 
I. non-oscillatory, when all its solutions are non-oscillatory; 

II. strictly oscillatory, when all its solutions are oscillatory; 
III. oscillatory: Ilia, there is only one non-oscillatory solution (up to a constant 

multiplication factor); 
111b. there is a two-parameter set of oscillatory solutions; 
IIIc. there is only one oscillatory solution. 
The equations of types I, II, Ilia and IIIc were studied by several authors (e.g. 

M» M» M ) * T n e subject of our paper will be the equations of type Illb. 
Let us consider the differential equation 

(1) y'" + 2q(t)y' + (q'(t) + r(t))y = 0 

and its adjoint 

(2) y'" + 2q(t)y' + (q'(t)-r(t))y = 0. 

If r(t) = 0 we have the self-adjoint equation 

(3) x'" + 2 q(t) x' + q'(t) x = 0 
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and all its solutions are given by 

X = cizi + C2Z1Z2 ' ^3-*2 

where zl9 z2 are linearly independent solutions of 

(4) z" + ±q(t)z = 0, qeCx[t0, 00). 

In [3, 4] Jones described the types of bases possible for the solution space of (l) 
with respect to the number of oscillatory solutions possible in a given basis. It is 
well-known [e.g. 2, Theorem 2.52] that if (4) is oscillatory then (3) has bases con
sisting of i oscillatory solutions, i = 0, 1, 2, 3. 

We seek the possibility of perturbing (3) to (l) in such a way that this property 
be preserved, i.e. the solution space of (l) has bases consisting of exactly i oscillatory 
solutions, i = 0 ,1 , 2, 3 (Theorem 2). First we shall find sufficient conditions under 
which (l), (3) are asymptotically equivalent (Theorem l) and in particular, (1) has 
a solution such that liminfy(f) > 0 (Corollary 1). Our results include the case 
when r(t) is oscillatory. 

We shall consider equations which are of Class I or Class II as defined by Hanan 
in [1]. We say that (l) is of Class I or Class II if every solution of (l) satisfying y(<x) = 
= / ( a ) = 0, / ' (a) > 0, a > 0 satisfies also y(t) > 0 for t e (f0, a) or t > a, res
pectively. In [8] M. Svec studied the effects of these properties on the existence of a 
solution without zeros. 

2. ASYMPTOTIC EQUIVALENCE 

Denote by X = X(t0) and Y = Y(t0) the sets of all solutions of (3) and (l) on 
[t0, 00), respectively. The continuity of coefficients of equations (l), (3) ensures 
X 4= 0, Y 4= 0 and thus X9 Y are linear spaces of the dimenion 3. 

Theorem 1. Let every solution of (4) be bounded on [t0, 00) and let 

(5) J " \r(t)\ d. < 00 . 

Then (l) and (3) are asymptotically equivalent, i.e. there exists a one-to-one 
mapping T: X -> Y such that 

lim |x(f) - Tx(t)\ = 0 for every x(t) e X . 
f->oo 

Proof. Our assumptions imply that every solution y e Y is bounded (see e.g. 
[2, Theorem 3A6]). 

From (1), (3) we get 

(y - x)'" + 2q(y - x)' + q'(y - x) = - 7 7 

and putting u = y — x, 

(6) u'" + 2qu' + q'u= -ry . 
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Using the variation-of-constants formula we can write each solution u(t) of (6) in 
the form 

u(t) = cx z\(t) + c2 z,(t) z2(t) + c3 z\(t) - J[0K(r, s) r(s)y(s) ds , 

where the kernel 

i(0 z
2(0|2 

K(f, -) = \ 
:..(-) z2(s) 

and Zj, z2 are arbitrary solutions of (4) subject to the Wronskian condition 
z . ( O z 2 ( t ) - z i ( t ) z 2 ( 0 = l . 

Thus 

'«(.) = z\(i) [c. - i J" zi(s) r(-) J<s) ds] + 

+ z.(() z2(.) [c2 - J£ z,.(-) z2(s) r(s) e(s) ds] + 

+ z^)[c3-Hr„-?(s)Ks)^)ds] + 
+ \?K(t,s)r(s)y(s)ds. 

Let y e Y and let 

Ci = i J^ z2ry ds , c2 = j£ z.z2ry ds , c3 = ± \f0 z\ryds . 

Then 
(7) u(i) = \?K(t,s)r(s)y(s)ds 

with the property lim u(t) = 0. 
f"+00 

We define a mapping V: Y -• X by the relation 

(8) (Vy) (t) = >>(.) - u(t) = j{.) - J- K(t, s) r(s) y(s) ds 

and prove that Vis an injection. Note that by virtue of the linearity of the mapping V 
the function (Vy) (t) is really a solution of (3), i.e. if y e Ythen Vy e X. Suppose on 
the contrary that there exist yl9 y2 e 7, y± 4= y2 on [t0, oo) such that for xA = Vyu 

x2 = Vy2
 w e h a v e x i = x2 o n [*o> oo). Then according to (8) 

yi(t) - j r K(t, s) r(s) y,(s) ds = y2(t) - Jf K(t, s) r(s) y2(s) ds , 
thus 
(9) y,(t) - y2(t) = J," K(t, s) r(s) (y,(s) - y2(sj) ds, te [<<,, oo) . 

Next we prove that the integral equation 

f(t) = STK(t,s)r(s)f(s)ds, . 6 [,o,oo) 

has only the trivial solution on [t0, oo). 
As |K(f, s)\ ^ A for some real A and for all t = t0, s = f0, we have 

|/(t)|^AJr|/(s)||r(s)|ds. 
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Put x = R(t) = $? |r(s)| ds. Then we have 

|/(R-(x))| = A JS 1/(^^)1 ds 
and the Gronwall inequality yields ^(R"1^))! = 0, i.e. \f(t)\ = 0. 

We conclude that V is a linear injection of the vector spaces X, Y of the same 
dimension 3, i.e. V is a one-to-one mapping. Thus the mapping T: X -> Y defined 
by the relation T = V"1 has the property required in Theorem 1. Indeed, 

lim |x(0 - Tx(0| = lira \Vy(t) - V-l(Vy(t))\ = lim \Vy(t) - y(t)\ = 
f-*oo f-+oo f->oo 

= lim u(t) = 0 . • 
*->oo 

Corollary 1. Let q(t) > 0 be such that q, q~x are bounded and there exists a y =t= 0 
such that qy is either convex or concave. Let (5) hold. 

Then (l) has a nonoscillatory solution y(t) such that lim inf y(t) > 0. Further
more, every solution of (l) is bounded. r~*°° 

Proof. Under the assumptions on q (4) is oscillatory and we can use the asymptotic 
formulas for the solutions zx(t), z2(t) of (4) derived in [6] 

z . ( 0 ~ q-^(t)sm(S>tnql*+o), 

-1(0 ~ g+1/4(0cos(i;oa1 /2 + o), 

- 2 ( 0 ~ q-i!*(t)cos(ytoqU> + o), 

z'2(t)~-q + i/*(t)sm(\'toqi» + o). 

This implies that every solution of (4) and its derivative are bounded, and a solution 
x(t) of (3) satisfies 

lim inf x(t) = lim inf (z\(t) + z\(i)) = lim inf q~1/2(f) = [lim sup q(i]\"m > 0 . 
r-+oo 

Theorem 1 yields the existence of a solution y(t) of (l) such that lim inf y(i) ^ 
= lim inf x(t) + lim u(t) > 0. 

Corollary 2. Lef lim q(t) = c > 0 and let there exist a y 4= 0 such that qy is either 
t*-»oo 

convex or concave. Let (5) hold. Then (l) has a nonoscillatory solution y(t) such 
that 

lim y(t) = 1/Vc . 

Proof. It is similar to that of Corollary 1. 

3. OSCILLATORY SOLUTIONS 

Theorem 2. Let (l) be of Class I or Class II, oscillatory and let the assumptions 
of Corollary 1 be fulfilled. 
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Then the solution space of(i) has bases consisting of exactly i oscillatory solu
tions, i = 0 ,1 , 2, 3. , 

For the proof of Theorem 2 we need the following 

Proposition 1 [3, Theorem 1]. If (l) is of Class I and if some of its solutions 
oscillates then the solution space of(i) has a basis with three oscillatory solutions 
and a basis with exactly two oscillatory solutions. 

Proposition 2 [3, Theorem 2], If (I) is of Class II and if some of its solutions 
oscillates then the solution space of(\) has a basis consisting of exactly i oscillatory 
solutions, for i = 0, 1, 2. 

Proposition 3 [3, Theorem 4]. If (I) is of Class I, if some of its solutions oscillates 
and if it has a basis with two or three nonoscillatory elements then (2) has a basis 
with three oscillatory elements. 

Proof of Theorem 2. We will need the fact that if yi9 y2, y3 are linearly independent 
solutions of (1) then so are yl9 yx + y2, y2 + y2 or yt + y2, y± + y3, yx + y2 + 
+ y3. This easily follows from the fact that they have the same wronskian. 

Suppose (1) is of Class I. Since (l) has an oscillatory solution according to Proposi
tion 1 the equation (l) has bases with i oscillatory solutions, i = 3,2. Thus it remains 
to prove the existence of bases with i oscillatory solutions, i = 0 ,1 . 

By Corollary 1 the equation (l) has a nontrivial nonoscillatory solution w(t) 
such that lim inf w(t) = c > 0. On the other hand, by Proposition 1 we have two 
linearly independent oscillatory solutions w(f), v(t) which together with w(t) form 
a basis for the solutions of (1). According to Corollary 1 the solutions u(t), v(t) 
are bounded by N > 0. If we take the nonoscillatory solution w*(r) : = 2N/c w(t) 
then the solution u + w*, v + w* both are nonoscillatory and together with u(t) 
form a basis for (l). Indeed, 

lim inf (u + w*) ^ lim inf u + lim inf w* = 

2N 
= lim inf u + — c = - N + 2N = N > 0 . 

c 

Analogously, if we put w** := 3N/c w(t) then the solutions u + w*, v + w*, 
u + v + w** are nonoscillatory and form a basis for (l). 

Now let (l) be of Class II. By Proposition 2 we get that (l) has a basis consisting 
of exactly i oscillatory solutions, i = 0 ,1 , 2. Let us prove the existence of a basis 
with three oscillatory solutions. It was shown in [1] that (l) is of Class II if and 
only if (2) is of Class I. Considering the equation (2) which also has an oscillatory 
solution (see [ l ]) we have from the first part of the proof that (2) has a basis with two 
and three nonoscillatory elements. Now, Proposition 3 gives the existence of a basis 
with three oscillatory elements which was to prove. 
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Corollary 3. Let q(t) satisfy the assumptions of Corollary 1 and let r(t) be such 
that either r(t) = 0 or r(t) = 0 on [t0, oo), r(t) = 0 does not hold on any subinterval, 
and J00 r(t) dt converges. 

Then the conclusion of Theorem 2 holds. 

Proof. If r(t) _ 0 then (1) is of Class I and (1), (2) are oscillatory. Indeed, this 
follows e.g. from [2, Theorem 2.61] because q.q"1 are bounded. 

If r(t) = 0 then (2) is of Class I and (l) of Class II. Thus all assumptions of Theorem 
2 are fulfilled. 

Concluding remark. The problem of structure of the solution space of (l) with 
respect to the number of oscillatory solutions remains open in the following cases: 

1) r(t) satisfies (5) and 

i) q(oo) = oo, or 

ii) q(co) = 0; 

2) J00 r(t) dt diverges. 

Suppose that li) holds. Let y e (0,1/2) exist such that q~y is either convex or con
cave. Then by the same asymptotic formulas as in the proof of Corollary 1 we get 
that every solution of (4) tends to zero and thus every solution x(t) of (3) tends to 
zero. In this case the problem of existence of two and three nonoscillatory solutions 
is open. 

Suppose that 2ii) holds. Let J00 q~5l2q'2 < oo and let there exist a y > 0 such that q7 

is convex. Then every solution x(t) of (3) satisfies limsupx(f) = oo. The validity 
* ->00 

of Theorem 1 for this case would entail the validity of Theorem 2. 
As concerns the case 2, we mention that the following theorem (see [2, Theorem 

3.6] or [5]) holds. If q(t) = 0, q'(t) + r(t) = d > 0, r(t) - q'(t) = 0 then every 
solution of (1) is oscillatory on (t0, oo) except one solution y(t) with the property 
y ~* 0, y' -* 0 as t -> oo, i.e. (1) is of type Ilia. 

Acknowledgement. The author wishes to thank Professor Marko §vec for his 
helpful comments and for pointing out several references. 
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Souhrn 

O OSCILATORICKÝCH ŘEŠENÍCH LINEÁRNÍCH DIFERENCIÁLNÍCH 
ROVNIC 3. ŘÁDU 

ZUZANA DOŠLÁ 

Předmětem článku jsou lineární diferenciální rovnice 3. řádu, jejichž prostor řešení má báze 
obsahující právě i oscilatorických řešení, pro všechna i = 0, 1, 2, 3. Nejprve hledáme asympto
ticky ekvivalentní perturbaci samoadjungované rovnice, odkud dostaneme existenci jistého 
neoscilatorického řešení, a pak použijeme výsledků [3], 

Peзюмe 

O KOЛEБЛЮЩИXCЯ PEШEHИЯX ЛИHEЙHЫX ДИФФБPEHЦИAЛЬHЫX 
УPABHEHИЙ 3-ГO ПOPЯДKA 

ZUZANA DOŠLÁ 

Пpeдмeт cтaтьи — линeйныe диффepeндиaльныe ypaвнeния 3-гo пopядкa, пpocтpaнcтвo 
peшeний кoтopыx oблaдaeт бaзиcoм, coдepжaщим poвнo i кoлeблющиxcя peшeний, для вcex 
i = 0,1, 2, 3. Cнaчaлa ищeтcя acимптoтичecки эквивaлeнтнoe вoзмyщeниe caмocoпpяжeшюгo 
ypaвңeния, oткyдa cлeдyeт cyщecтвoвaниe нeкoтopoгo нeocциллятopичecкoгo peшeния, и зaтeм 
пpимeняeтcя paбoтa [3]. 
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