Časopis pro pěstování matematiky

Bohdan Zelinka
A remark on cancellation in direct products of graphs

Časopis pro pěstování matematiky, Vol. 114 (1989), No. 1, 35--38
Persistent URL: http://dml.cz/dmlcz/118364

Terms of use:

© Institute of Mathematics AS CR, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

A REMARK ON CANCELLATION IN DIRECT PRODUCTS OF GRAPHS

Bohdan Zelinka, Liberec

(Received July 21, 1986)

Summary. The direct product of two graphs G, G^{\prime} is the graph $G \times G^{\prime}$ whose vertex set is the Cartesian product of vertex sets of G and G^{\prime} and in which two vertices ($\left.v_{1}, v_{1}^{\prime}\right),\left(\nu_{2}, v_{2}^{\prime}\right)$ are adjacent if and only if v_{1}, v_{2} are adjacent in G and $v_{1}^{\prime}, v_{2}^{\prime}$ are adjacent in G^{\prime}. There exists a family $\underset{\mathbb{J}}{ }$ of the power of continuum consisting of pairwise non-isomorphic locally connected non-bipartite graphs with the property that for every bipartite graph G and for any two graphs G_{1}, G_{2} from $\boldsymbol{\Xi}$ the graphs $G \times G_{1}, G \times G_{2}$ are isomorphic. For every positive integer n there exists such a family. of finite graphs which has the cardinality greater than n. This is a negative solution of a problem by V. Puš.

Keywords: direct product of graphs, isomorphism of graphs.
AMS classification: 05C99.
We consider undirected graphs without loops and multiple edges. If G is a graph, then $V(G)$ denotes its vertex set. The symbol $G+G^{\prime}$ denotes the union of two vertexdisjoint graphs G and G^{\prime}. By C_{n} we denote a circuit of the length n.

The direct product $G \times G^{\prime}$ of two graphs G and G^{\prime} is the graph with the vertex set $V\left(G \times G^{\prime}\right)=V(G) \times V\left(G^{\prime}\right)$ in which two vertices $\left(v_{1}, v_{1}^{\prime}\right),\left(v_{2}, v_{2}^{\prime}\right)$ are adjacent if and only if v_{1}, v_{2} are adjacent in G and $v_{1}^{\prime}, v_{2}^{\prime}$ are adjacent in G^{\prime}.

The aim of this paper is to show an infinite class of graphs for which the implication

$$
\begin{equation*}
G \times G_{1} \cong G \times G_{2} \Rightarrow G_{1} \cong G_{2} \tag{1}
\end{equation*}
$$

is not true.
L. Lovász [1,2] has proved that (1) holds, if G is not bipartite or if all graphs G, G_{1}, G_{2} are bipartite and G is not discrete. Further, for each odd number $k \geqq 3$ and for any bipartite graph we have

$$
\begin{equation*}
G \times C_{2 k} \cong G \times\left(C_{k}+C_{k}\right) \tag{2}
\end{equation*}
$$

At the Czechoslovak Conference on Graph Theory and Combinatorics in Raček. Valley in May 1986, V. Puš proposed the following problem [3].

Decide whether (1) holds provided that
(i) neither G_{1} nor G_{2} is bipartite;
(ii) all graphs G, G_{1}, G_{2} are connected.

We shall extend (2), thus giving the negative answer to this question.

Theorem 1. Let a finite graph G_{1} contain an induced subgraph G_{0} isomorphic to the circuit of a length congruent with 2 modulo 4. Let G_{0} have the property that any vertex $x \in V\left(G_{1}\right)-V\left(G_{0}\right)$ is adjacent to a vertex $y \in V\left(G_{0}\right)$ if and only if x is adjacent to \bar{y}, where \bar{y} is the opposite vertex to y in the circuit G_{0}. Then there exists a graph G_{2} non-isomorphic to G_{1} and such that $G \times G_{1} \cong G \times G_{2}$ for any bipartite graph G.

Proof. As the length of the circuit G_{0} is congruent with 2 modulo 4, it is equal to $2 k$, where k is an odd integer. Let $V\left(G_{0}\right)=\left\{u_{1}, \ldots, u_{k}, u_{1}^{\prime}, \ldots, u_{k}^{\prime}\right\}$, let the edges of G_{0} be $u_{1} u_{k}^{\prime}, u_{k} u_{1}^{\prime}$ and $u_{i} u_{i+1}, u_{i}^{\prime} u_{i+1}^{\prime}$ for $i=1, \ldots, k-1$. The graph G_{2} is obtained from G_{1} by deleting the edges $u_{1} u_{k}^{\prime}, u_{k} u_{1}^{\prime}$ and adding the edges $u_{1} u_{k}$, $u_{1}^{\prime} u_{k}^{\prime}$.

Now let G be a bipartite graph. Consider the direct products $G \times G_{1}, G \times G_{2}$. As $V\left(G_{1}\right)=V\left(G_{2}\right)$, also $V\left(G \times G_{1}\right)=V\left(G \times G_{2}\right)$; this is the set of all ordered pairs (v, w) where $v \in V(G), w \in V\left(G_{1}\right)$. Let A, B be the bipartition classes of G. We define a mapping φ of $V\left(G \times G_{1}\right)$ onto $V\left(G \times G_{1}\right)$. If $v \in V(G), w \in V\left(G_{1}\right)$ -$-V\left(G_{0}\right)$, then $\varphi((v, w))=(v, w)$. If $v \in A$, then $\varphi\left(\left(v, u_{i}\right)\right)=\left(v, u_{i}\right), \varphi\left(\left(v, u_{i}^{\prime}\right)\right)=$ $=\left(v, u_{i}^{\prime}\right)$ for i odd and $\varphi\left(\left(v, u_{i}\right)\right)=\left(v, u_{i}^{\prime}\right), \varphi\left(\left(v, u_{i}^{\prime}\right)\right)=\left(v, u_{i}\right)$ for i even. If $v \in B$, then $\varphi\left(\left(v, u_{i}\right)\right)=\left(v, u_{i}\right), \varphi\left(\left(v, u_{i}^{\prime}\right)\right)=\left(v, u_{i}^{\prime}\right)$ for i even and $\varphi\left(\left(v, u_{i}\right)\right)=\left(v, u_{i}^{\prime}\right)$, $\varphi\left(\left(v, u_{i}^{\prime}\right)\right)=\left(v, u_{i}\right)$ for i odd. We shall prove that φ is an isomorphic mapping of $G \times G_{1}$ onto $G \times G_{2}$. Let $\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right)$ be two vertices of $V\left(G \times G_{1}\right)$. Suppose that they are adjacent in $G \times G_{1}$. Then v_{1}, v_{2} are adjacent in G and w_{1}, w_{2} are adjacent in G_{1}. The vertices v_{1}, v_{2} must belong to different bipartition classes of G; without loss of generality we may suppose that $v_{1} \in A, v_{2} \in B$. If both w_{1}, w_{2} are in $V\left(G_{1}\right)-V\left(G_{)}\right)$, then $\varphi\left(\left(v_{1}, w_{1}\right)\right)=\left(v_{1}, w_{1}\right), \varphi\left(\left(v_{2}, w_{2}\right)\right)=\left(v_{2}, w_{2}\right)$; the vertices w_{1}, w_{2} are adjacent also in G_{2} and $\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right)$ are adjacent also in $G \times G_{2}$. Suppose that $w_{1} \in V\left(G_{1}\right)-V\left(G_{0}\right), w_{2} \in V\left(G_{0}\right)$. Then again $\varphi\left(\left(v_{1}, w_{1}\right)\right)=\left(v_{1}, w_{1}\right)$. If $w_{2}=u_{i}$, where i is odd, then $\varphi\left(\left(v_{2}, w_{2}\right)\right)=\varphi\left(\left(v_{2}, u_{i}\right)\right)=\left(v_{2}, u_{i}^{\prime}\right)$. As w_{1}, u_{i} are adjacent in G_{1}, so are w_{1}, u_{i}^{\prime}, because u_{i}^{\prime} is the opposite vertex to u_{i} in G_{0}. They are adjacent also in G_{2} and thus $\varphi\left(\left(v_{1}, w_{1}\right)\right), \varphi\left(\left(v_{2}, w_{2}\right)\right)$ are adjacent in $G \times G_{2}$. Analogously if $w_{2}=u_{i}^{\prime}$ for i odd. If $w_{2}=u_{i}$ or $w_{2}=u_{i}^{\prime}$ for i even, then $\varphi\left(\left(v_{2}, w_{2}\right)\right)=$ $=\left(v_{2}, w_{2}\right)$ and again $\varphi\left(\left(v_{1}, w_{1}\right)\right), \varphi\left(\left(v_{2}, w_{2}\right)\right)$ are adjacent in $G \times G_{2}$. If $w_{1} \in V\left(G_{0}\right)$, $w_{2} \in V\left(G_{1}\right)-V\left(G_{0}\right)$, the considerations are analogous. Now let $w_{1} \in V\left(G_{0}\right), w_{2} \in$ $\in v\left(G_{0}\right)$. If both w_{1}, w_{2} are in $\left\{u_{1}, \ldots, u_{k}\right\}$, then $w_{1}=u_{i}, w_{2}=u_{j}$, where $j=i+1$ or $j=i-1$. If i is odd, then j is even. We have $\varphi\left(\left(v_{1}, w_{1}\right)\right)=\varphi\left(\left(v_{1}, u_{i}\right)\right)=\left(v_{1}, u_{i}\right)=$ $=\left(v_{1}, w_{1}\right), \varphi\left(\left(v_{2}, w_{2}\right)\right)=\varphi\left(\left(v_{2}, u_{j}\right)\right)=\left(v_{2}, u_{j}\right)=\left(v_{2}, w_{2}\right)$ and again $\varphi\left(\left(v_{1}, w_{1}\right)\right)$, $\varphi\left(\left(v_{2}, w_{2}\right)\right)$ are adjacent in $G \times G_{2}$. If i is even, then j is odd. We have $\varphi\left(\left(v_{1}, w_{1}\right)\right)=$ $=\varphi\left(\left(v_{1}, u_{i}\right)\right)=\left(v_{1}, u_{i}^{\prime}\right), \varphi\left(\left(v_{2}, w_{2}\right)\right)=\varphi\left(\left(v_{2}, u_{j}\right)\right)=\left(v_{2}, u_{j}^{\prime}\right)$. As $j=i+1$ or $j=$ $=i-1$, the vertices $u_{i}^{\prime}, u_{j}^{\prime}$ are adjacent in G_{1} and in G_{2} and the vertices $\left(v_{1}, u_{i}^{\prime}\right)$, $\left(v_{2}, u_{j}^{\prime}\right)$ are adjacent in $G \times G_{2}$. Analogously if both w_{1}, w_{2} are in $\left\{u_{1}^{\prime}, \ldots, u_{k}^{\prime}\right\}$. If $w_{1} \in\left\{u_{1}, \ldots, u_{k}\right\}, w_{2} \in\left\{u_{1}^{\prime}, \ldots, u_{k}^{\prime}\right\}$, then either $w_{1}=u_{1}, w_{2}=u_{k}^{\prime}$, or $w_{1}=u_{k}$, $w_{2}=u_{1}^{\prime}$. In the former case $\varphi\left(\left(v_{1}, w_{1}\right)\right)=\varphi\left(\left(v_{1}, u_{1}\right)\right)=\left(v_{1}, u_{1}\right), \varphi\left(\left(v_{2}, w_{2}\right)\right)=$
$=\varphi\left(\left(v_{2}, u_{k}^{\prime}\right)\right)=\left(v_{2}, u_{k}\right)$. As u_{1}, u_{k} are adjacent in G_{2}, the vertices $\varphi\left(\left(v_{1}, u_{1}\right)\right)$, $\varphi\left(\left(v_{2}, u_{k}^{\prime}\right)\right)$ are adjacent in $G \times G_{2}$. In the latter case $\varphi\left(\left(v_{1}, w_{1}\right)\right)=\varphi\left(\left(v_{1}, u_{k}\right)\right)=$ $=\left(v_{1}, u_{k}\right), \varphi\left(\left(v_{2}, w_{2}\right)\right)=\varphi\left(\left(v_{2}, u_{1}^{\prime}\right)\right)=\left(v_{2}, u_{1}\right)$ and the situation is the same as in the former. Analogously if $w_{1} \in\left\{u_{1}^{\prime}, \ldots, u_{k}^{\prime}\right\}, w_{2} \in\left\{u_{1}, \ldots, u_{k}\right\}$. We have proved that φ maps each pair of vertices adjacent in $G \times G_{1}$ onto a pair of vertices adjacent in $G \times G_{2}$. Analogously we may prove that φ^{-1} maps each pair of vertices adjacent in $G \times G_{2}$ onto a pair of vertices adjacent in $G \times G_{1}$. The mapping φ is an isomorphism of $G \times G_{1}$ onto $G \times G_{2}$.

It remains to prove that G_{2} is not isomorphic to G_{1}. Suppose $G_{1} \cong G_{2}$. The graph $\boldsymbol{G}_{\mathbf{2}}$ contains an induced subgraph consisting of two vertex-disjoint circuits of the length k with the property that in G_{1} none of these circuits exists. As G_{1}, G_{2} are finite, the graph G_{1} must also contain an induced subgraph consisting of two vertexdisjoint circuits D_{1}, D_{2} of the length k with the property that in G_{2} none of these circuits exists. This implies that one of these circuits, say D_{1}, contains the edge $u_{1} u_{k}^{\prime}$ and the other contains the edge $u_{k} u_{1}^{\prime}$. Let x be the vertex of D_{1} adjacent to u_{1}. Then, according to the assumption, x is adjacent to u_{1}^{\prime}, because this is the opposite vertex to u_{1} in G. But u_{1}^{\prime} belongs to D_{2} and thus there exists an edge joining a vertex of D_{1} with a vertex of D_{2}, which is a contradiction with the assumption that the union of D_{1} and D_{2} is an induced subgraph of G_{1}. Hence G_{1} and G_{2} are not isomorphic.

Note that the assumption that G_{1} is finite was used only in the proof that G_{1}, G_{2} are not isomorphic. Other considerations may be easily extended to the case when G_{1}, G_{2} are infinite. Therefore we may prove another theorem.

Theorem 2. There exists a family \mathfrak{F} of the power of continuum consisting of pairwise non-isomorphic locally finite connected non-bipartite graphs with the property that for any bipartite graph G and any two graphs G_{1}, G_{2} from \mathfrak{F} we have $G \times G_{1} \cong G \times G_{2}$.

Proof. Let P be a one-way infinite path whose vertices are x_{i} and whose edges are $x_{i} x_{i+1}$ for all positive integers i. Let D_{i} for all positive integers i be pairwise vertexdisjoint circuits of the length 6 vertex-disjoint with P. In each D_{i} choose a vertex y_{i} and by \bar{y}_{i} denote the vertex of D_{i} opposite to y_{i}. Join both y_{i} and \bar{y}_{i} by edges with x_{i} for each i. Denote the graph thus obtained by H. Let $\mathscr{A}=\left(a_{i}\right)_{i=1}^{\infty}$ be a sequence such that $a_{i}=0$ or $a_{i}=1$ for each i. To the sequence \mathscr{A} we assign the graph $H(\mathscr{A})$ in such a way that for each i such that $a_{i}=1$ we perform in H the transformation from the proof of Theorem 1 with D_{i}, i.e. we replace D_{i} by two triangles, each of which has one vertex adjacent to x_{i}. Evidently any two graphs $H\left(\mathscr{A}_{1}\right), H\left(\mathscr{A}_{2}\right)$ for different sequences $\mathscr{A}_{1}, \mathscr{A}_{2}$ are non-isomorphic. It follows from the considerations in the proof of Theorem 1 that $G \times H\left(\mathscr{A}_{1}\right) \cong G \times H\left(\mathscr{A}_{2}\right)$ for any bipartite graph G and any two sequences $\mathscr{A}_{1}, \mathscr{A}_{2}$ with the described property. As the set of all such sequences is of the power of continuum, the assertion is proved.

Theorem 3. For any positive integer n there exists a family \mathfrak{F} of a finite cardinality greater than n consisting of pairwise non-isomorphic finite connected non-bipartite graphs with the property that for any bipartite graph G and any two graphs G_{1}, G_{2} from \mathcal{F} we have $G \times G_{1} \cong G \times G_{2}$.

Proof is done analogously as that of Theorem 2 with the only difference that P is a finite path (of an arbitrarily large length).

Evidently there exists no infinite family of finite graphs with this property, because the vertex sets of all graphs of such a family would have to be of the same cardinality and there are only finitely many non-isomorphic graphs with a given finite number of vertices.

References

[1] L. Lovász: Operations with structures. Acta Math. Acad, Sci. Hung. 18 (1967), 321-328.
[2] L. Lovász: On the cancellation law among finite relational structures. Periodica Math. Hung. 1 (1971), 145-156.
[3] V. Puš: Problem 14. Czechoslovak Conference on Graph Theory and Combinatorics, Raček Valley, May 1986 (unpublished).

Souhrn
POZNÁMKA O KRÅCENÍ V DIREKTNÍCH SOUČINECH GRAFỦ

Bohdan Zelinka

Existuje systém 厅ֻ mohutnosti kontinua skládající se z neisomorfních lokálně konečných souvislých nikoliv sudých grafủ té vlastnosti, že pro každý sudý graf G a pro každé dva grafy G_{1}, G_{2} z §̆ platí $G \times G_{1} \cong G \times G_{2}$. Pro každé přirozené číslo n existuje takový systém konečných grafư, který má koneと̌nou mohutnost větší než n. Tóto je negativní řešení problému V. Puše.

Резюме

ЗАМЕЧАНИЕ О СОКРАЩЕНИИ В ПРЯМЫХ ПРОИЗВЕДЕНИЯХ ГРАФОВ

Bohdan Zelinka

Существуют семейство $\mathbb{\delta}$ мощности континуума, состоящее из попарно неизоморфных локально конечных связных недвудольных графов и обладающее тем свойством, что для
 $\boldsymbol{G} \times \boldsymbol{G}_{1} \cong \boldsymbol{G} \times \boldsymbol{G}_{2}$. Для каждого натурального числа n существует аналогичное семейство конечных графов, которое имеет конечную мощность больше чем n. Это решает отрицательно проблему В. Пуша.

Author's address: Katedra tváření a plastu̇ VŠST, Studentská 1292, 46117 Liberec 1.

