Časopis pro pěstování matematiky

Jiří Binder
A note on weak hidden variables

Časopis pro pěstování matematiky, Vol. 114 (1989), No. 1, 53--56
Persistent URL: http://dml.cz/dmlcz/118367

Terms of use:

© Institute of Mathematics AS CR, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

A NOTE ON WEAK HIDDEN VARIABLES

Jikíl Binder, Praha

(Received October 28, 1986)

Abstract

Summary. We consider a σ-additive version of "centrally additive" hidden variables as introduced in [9]. As the main result we construct a logic without sufficiently many centrally additive

 dispersion free states. Consequently, this logic does not admit weak hidden variables.Keywords: logic, hidden variables.
AMS classification: 81B.

NOTIONS AND RESULTS

In the logico-algebraic approach to the foundations of quantum mechanics, the hidden variables hypothesis expresses by the presence of "sufficiently many" twovalued states (see [3], [5], [8], [11], etc.). Since many important logics have no two-valued states (see [1], [2], [7]), it is natural that generalized types of hidden variables have been considered ([6], [9]). In this note we introduce and shortly analyse one such generalization. Although the main result is in fact negative (it implies the absence of hidden variables), the investigation led us to a construction of a logic having rather special central properties.

Let us review the basic notions as we shall use them in the sequel. By a logic we mean a σ-orthomodular partially ordered set (see e.g. [3]). If L is a logic then by $C(L)$ we denote the set of all absolutely compatible elements of L (i.e. $C(L)=$ $=\{a \in L, a$ is compatible to each $b \in L\}$). The set $C(L)$, which is known to be a Boolean σ-algebra (in L), is called the centre of L.

We say that a mapping $h: L \rightarrow\{0,1\}$ is a central $0-1$ state if
(i) $h(1)=1$,
(ii) $h(a)+h\left(a^{\prime}\right)=1$ for any $a \in L$,
(iii) $h(a) \leqq h(b)$ whenever $a, b \in L$ and $a \leqq b$,
(iv) $h\left(\bigvee_{i \in N} a_{i}\right)=\sum_{i \in N} h\left(a_{i}\right)$ whenever $a_{i} \in L(i \in N), a_{i} \leqq a_{j}^{\prime}$ for any $i \neq j$ and at most one of a_{i} 's does not belong to $C(L)$.
Of course, if L is Boolean the central $0-1$ states coincide with the $0-1$ states.
We have the following result:

Theorem 1. Let L be a logic and let h be a (central) $0-1$ state on $C(L)$. Then there is a central $0-1$ state \tilde{h} on Lsuch that the restriction of \tilde{h} to $C(L)$ is h.

Proof. We aply the following result [9]. For the logic L there exists a Boolean algebra B and an injective mapping $\varphi: L \rightarrow B$ such that the following conditions are satisfied:

```
\(\varphi(1)=1\),
\(\varphi\left(a^{\prime}\right)=\varphi(a)^{\prime}\) for each \(a \in L\),
\(\varphi(a) \leqq \varphi(b)\) whenever \(a, b \in L, a \leqq b\),
\(\varphi(a \vee b)=\varphi(a) \vee \varphi(b)\) whenver \(a, b \in L, a \leqq b^{\prime}\), and \(a \in C(L)\).
```

In particular, φ is a Boolean embedding of $C(L)$ into B. Now let h be a central $0-1$ state on $C(L)$. By the theorem of Horn and Tarski [4] h can be extended to a twovalued finitely additive measure on B. Denote this measure by k and put $\tilde{h}(a)=$ $=k(\varphi(a))$. We claim that \tilde{h} is the required extension. Inded, $\left.\tilde{h}\right|_{C(L)}=h$ and if a_{i} is a sequence of mutually orthogonal elements of L and $a_{i} \in C(L)$ for $i>1$, then $\tilde{h}\left(\bigvee_{i \in N} a_{i}\right)=k\left(\varphi\left(\bigvee_{i \in N} a_{i}\right)\right)=k\left(\varphi\left(a_{1}\right) \vee \varphi\left(\bigvee_{i>1} a_{i}\right)\right)=k\left(\varphi\left(a_{1}\right)\right)+k\left(\bigvee_{i>1} a_{i}\right)=\tilde{h}\left(a_{1}\right)+$ $+h\left(\bigvee_{i>1} a_{i}\right)=\sum_{i \in N} \tilde{h}\left(a_{i}\right)$. The proof is complete.

We say that L possesses weak hidden variables, if for any pair $a, b \in L$ with $a \neq b$ there is a central $0-1$ state $h: L \rightarrow\{0,1\}$ such that $s(a)=1$ and $s(b)=0$. Similarly as in the finitely additive case we have the following characterization.

Proposition 2. A logic L possesses weak hidden variables if and only if there is an injective mapping $\psi: L \rightarrow B$ into a Boolean σ-algebra B of subsets of a set such that
(i) $\psi(1)=1$,
(ii) $\psi(a) \leqq \psi(b)$ if and only if $a \leqq b(a, b \in L)$,
(iii) $\psi\left(a^{\prime}\right)=\psi(a)^{\prime}$ for any $a \in L$,
(iv) $\psi\left(\bigvee_{i \in N} a_{i}\right)=\bigvee_{i \in N} \psi\left(a_{i}\right)$ whenever $a_{i} \in L(i \in N), a_{i} \leqq a_{j}^{\prime}$ for any $i \neq j$ and $a_{i} \in C(L)$ for $i>1$.

Proof. If $\psi: L \rightarrow B$ is a mapping with the properties (i)-(iv) and if $a \neq b$ then $\psi(a) \backslash \psi(b)$ is nonvoid. If we take a point $p \in \psi(a) \backslash \psi(b)$ and consider the state $s_{p}: B \rightarrow\{0,1\}$ concentrated in $\{p\}$, then $s_{p} \psi$ is a central $0-1$ state on L and $s_{p} \psi(a)=$ $=1, s_{p} \psi(b)=0$.

Conversely, if L possesses weak hidden variables and if we denote by Ω the set of all central $0-1$ states, then a routine verification gives that it suffices to take for B the σ-algebra generated by all sets $\Omega_{a}=\{h, h(a)=1\}(a \in L)$ and put $\psi(a)=\Omega_{a}$. This completes the proof.

Now a natural question arises, whether each L possesses weak hidden variables (provided, of course, that $C(L)$ possesses weak hidden variables, which obviously requires $C(L)$ to have a set representation). The answer is in the negative.

Example 3. There exists a logic L such that
(i) $C(L)$ is σ-isomorphic to a σ-algebra of subsets of a set,
(ii) there exists $e \in L$ such that $s(e)=1$ for no central $0-1$ state.

The construction. Let M be a six element $\operatorname{logic} M=\left\{0,1, a, a^{\prime}, b, b^{\prime}\right\}$ and let S be a set with card $S=2^{N}$. Put $L_{x}=M$ for any $x \in S$ and consider the logic product $P=\prod_{x \in S} L_{x}$ (the domain of P is the usual cartesian product and the partial ordering and the orthocomplement are taken "coordinatewise"). Let us define a relation \sim on P by putting $f \sim g$ if and only if the following conditions are satisfied (elements of P are considered as mappings from S into L):
(i) $f^{-1}(b)=g^{-1}(b), f^{-1}\left(b^{\prime}\right)=g^{-1}\left(b^{\prime}\right)$,
(ii) $f^{-1}(1) \cup f^{-1}\left(a^{\prime}\right)=g^{-1}(1) \cup g^{-1}\left(a^{\prime}\right)$,
(iii) $\{x \in S, f(x) \neq g(x)\}$ is at most countable.

Further, put $N_{f . g}=\{x \in S, f(x) \nsubseteq g(x)\}$ and define another relation \lesssim on P by setting $f \lesssim g \Leftrightarrow N_{f, g}$ is at most countable and $N_{f, g} \subset\left(f^{-1}(a) \cup g^{-1}\left(a^{\prime}\right)\right)$. The relation \sim on P is an equivalence and the factor $P=L / \sim$ becomes a logic when endowed with the partial ordering and the orthocomplement induced by \lesssim and ', respectively (the verification of these facts is rather lengthy but essentially simple and is left to the reader).

Now we have to show that $C(L)$ is isomorphic to a σ-algebra of subsets of a set. In order to do so, observe that $[f] \in C(L)(f \in P)$ exactly in the case when the set $\{x \in S, f(x) \notin\{0,1\}\}$ is countable. It immediately follows that the mappings s_{x}, r_{x} $(x \in S): C(L) \rightarrow\{0,1\}$ defined by the requirements

$$
\begin{array}{ll}
s_{x}([f])=1 & \text { if and only if } \\
r_{x}([f])=1 & \text { if and only if } f(x) \in\left\{1, a^{\prime}, b\right\}, \\
\left.r^{\prime}, b^{\prime}\right\}
\end{array}
$$

are $0-1$ measures on $C(L)$. This implies that for any $[f] \in C(L)$ there is a $0-1$ measure t on $C(L)$ with $t([f])=1$. Therefore, $C(L)$ has a set representation.

Finally, put $e=\left[f_{a}\right]$, where $f_{a}(x)=a$ for any $x \in S$. We have to show that there is no central $0-1$ state h on L with $h(e)=1$. Assume that such an h exists and proceed by way of contradiction. For each $K \subset S$, let f_{K} be the characteristic function of K (with 0,1 taken from M). The mapping $\varphi: K \rightarrow\left[f_{K}\right]$ is an isomorphism of the Boolean algebra $\exp S$ (of all subsets of S) onto a sub- σ-algebra of $C(L)$. Therefore $m=h \circ \varphi$ is a probability measure on $\exp S$. Obviously, if $K \in \exp S$ and $S \backslash K$ is countable, then $\left[f_{K}\right] \geqq\left[f_{a}\right]$ and therefore $m(K)=h\left(\left[f_{K}\right]\right) \geqq h\left(\left[f_{a}\right]\right)=1$. This implies that m is a two-valued probability measure on $\exp S$ such that $m(J)=0$ for each countable set $J \in \exp S$. We have reached a contradiction (see [10]). The proof is complete.

In the conclusion of this note let us observe that the above example has the following central properties potentially applicable also elsewhere:
(i) We have $\Lambda\left\{\left[f_{K}\right], K \subset \exp S, K\right.$ countable $\}=0$ in $C(L)$ but $0=\left[f_{a}\right] \leqq f_{K}$ for any K countable.
(ii) $C(L)$ is atomic, the intersection of $\left[f_{a}\right]$ with every atom in $C(L)$ equals 0 but $\left[f_{a}\right] \neq 0$.

Acknowledgement. The author would like to express his gratitude to Prof. Pavel Pták for his encouragement during this research.

References

[1] V. Alda: On 0-1 measures for projectors. Aplikace matematiky 26 (1981), 57-58.
[2] R. J. Greechie: Orthomodular lattices admitting no states. J. Comb. Theory A 10 (1971), 119-132.
[3] S. Gudder: Stochastic Methods in Quantum Mechanics. North Holland, New York, 1979.
[4] A. Horn, A. Tarski: Measures in Boolean algebras. Trans. Amer. Math. Soc. 64 (1948), 467-497.
[5] J. M. Jauch: Foundations of Quantum Mechanics. Addison-Wesley, Reading ,1968.
[6] A. R. Marlow: Quantum theory and Hilbert space. J. Math. Phys. 19 (1978), 1842-1845.
[7] P. Pták: Exotic logics. Colloquium Math. (to appear).
[8] P. Pták: Hidden variables on concrete logics (to appear).
[9] P. Pták: Weak dispersion-free states and the hidden variables hypothesis. J. Math. Phys. 24 (1983), 839-840.
[10] S. Ulam: Zur Masstheorie in der algemeinen Mengenlehre. Fund. Math. 16 (1930), 140-150.
[11] N. Zierler, M. Schlessinger: Boolean embeddings of orthomodular sets and quantum logics. Duke J. Math. 32 (1965), 251-262.

Souhrn

Jikí Binder

POZNÁMKA O SLABÝCH SKRYTÝCH PARAMETRECH

Článek se zabývá σ-aditivní verzí centrálně aditivních skrytých parametrů zavedených \mathbf{v} [9]. Je nalezena logika, která nemá úplnou množinu centrálně aditivních bezdisperzních stavů.

Резюме
Jiríí Binder

ЗАМЕЧАНИЕ О СЛАБЫХ СКРЫТЫХ ПАРАМЕТРАХ

Рассматриваются центральные состояния на логике, введеные в связи с проблемой скрытых параметров. Построена логика, не имеющая полное семейство центральных 0-1 состояний.

Author's address: Pedagogická fakulta UK, M. D. Rettigové 4, 11639 Praha 1.

