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THERE EXISTS A PROLONGATION FUNCTOR
OF INFINITE ORDER

W. M. MixkuLski, Krakow
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Summary. An example of a prolongation functor of infinite order is given.
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The concept of a natural bundle, which is due to A. Nijenhuis, originated the
study of a wider class of geometric functors. A prolongation functor F in the sense
of [3] is a covariant functor defined on the category .# of all smooth finite dimension-
al manifolds and smooth maps with values in the category &#.# of smooth fibred
manifolds and their morphisms satisfying the following two conditions:

(1) The composition B o F of F with the base functor B: FM — M is the identity
on /.

(2) If M e Obj & and i: U — M is the inclusion of an open subset, then Fi: FU —
— 1;,'(U) is an & #-isomorphism, where my: F .4 — M is the bundle projection
of FM.

Let r be a natural number or infinity. A prolongation functor F is said to be of
the order r if for any two manifolds M, N, any maps f, g: M — N and any point
x € M, the condition j,f = jig implies F f(y) = F g(y) for all points y € ny"(x),
and r is the smallest number with this property.

The restriction of an arbitrary prolongation functor F to the subcategory ./,
of n-dimensional manifolds and their embeddings is a natural bundle in the sense
of A. Nijenhuis. Here a well known result is, [1], that F | ., has a finite order,
provided FR" has a countable basis.

By a recent description of a general class of geometric functors by means of Weil
algebras, which is due to G. Kainz and P. W. Michor, [2], all product-preserving
prolongation functors also have finite orders.

Hence it seems to be interesting to discuss the following question: ‘““Has any
prolongation functor a finite order?” In this paper we give a counter-example of
a prolongation functor of infinite order.

I would like to thank Prof. I. Kolaf for valuable suggestions and Dr. J. Slovik
for correction.

Example. A class of well known functors in differential geometry consists of the
so-called r-th order tangent functors, which can be constructed as follows, see e.g.
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[3]- Given an integer r = 1 and a manifold M, we set T"*M = J(M, R), (i.e. the
set of all r-jets of M into R with target 0). One easily sees that T"*M is a vector
bundle with standard fibre J{(R™, R),, provided dim M = m. Let T"M be the dual
vector bundle of T™*M. Given any r-jet Ae J)(M,N),, the composition of jets
determines a linear map from the fibre (T"*N), over y e N into (T™*M),. Hence
any smooth map f: M — N induces a linear Z.#-morphism T™*f: f'T™*N — T™*M,
where f'T™*N means the pull-back of T™*N with respect to f. Then we define T"f:
T'™M — T'N to be the dual map of T™*f and obtain an r-th order prolongation functor
T" with values in the subcategory ¥"#4 < & .# of smooth vector bundles.

Now, put d, = dim ((T*R¥),). For any smooth manifold M we define FM to be
the (formally infinite) fibred product over M

FM = X\ (A%T*M),

kz1
and for any smooth map f: M — N we define Ff to be the fibre product of morphisms
' Ff = Xy (A*T*): FM - FN .

k=1
Clearly, if k > dim M, then A**T*M = M x {0}, so that we deal in fact with a finite
fibred product over every manifold M. Hence F is a prolongation functor.

A simple consideration shows that F is of infinite order. It is sufficient to deduce
that the order of A%T* is at least k. Let f: R% — R% be defined by (x,, ..., x,) —
— (x§, ..., x5). Recalling that the map T |(T*R%*), is dual to the map
J: Jo(R™, R)o = J5(R™, R)o, J(j&y) = jo(vof), we find (since f(j5(x;)) = jo(x}))
that rank (T*f | (T*R%),) = rank (f) = d,. Therefore A%(T*f|(T*R%),) % 0. But
Jj&~'f coincides with the (k — 1)-jet of a constant map, which implies that the order
of A%T* s at least k.
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Souhrn

PROLONGACNI FUNKTOR NEKONECNEHO RADU EXISTUJE
W. M. MIKULSKI

Je podan piiklad prolonga¢niho funktoru nekoneéného fadu.
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