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114 (1989) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 1, 60—105 

ON FORMAL THEORY OF DIFFERENTIAL EQUATIONS II 

JAN CHRASTINA, Brno 

Dedicated to my teacher Professor Otakar Boruvka on the occasion of his ninetieth birthday 

(Received June 29, 1987) 

Summary. As a very particular application of the theory of infinite prolongations of partial 
differential equations (diffieties), a method for solving the ancient Monge problem (~1780) is 
proposed. The original problem is whether the general solution of an under determined system 
of ordinary differential equations (the number of unknown functions exceeds the number of 
equations) can be expressed by explicit formulae containing some arbitrary * 'parametric'' 
functions. The proposed method is even more powerful and yields a deep insight into the structure 
of the considered equations. 

Keywords: underdetermined system, infinite prolongation, Pfaffian system, Monge problem, 
explicit solvability. 

AMS classification: 34A05, 35A30, 58A15, 58A17. 

Continuing the previous part [1], we should like to establish some interrelations 
between our approach and the common one. However, the variety of actual topics 
proves to be so immense that it is not possible to cope with this imposition at the 
first attempt. So we shall deal only with the particular case n = 1, the case of ordinary 
differential equations, through the main body of the present article. 

In classical terms, our intentions are as follows: we shall deal with local theory of 
quite arbitrary smooth systems of ordinary differential equations near the generic 
points. If the number of unknown functions is equal to the number of equations, 
the system can be transformed into dyJjdx = 0 (j = 1,..., m) which is a trivial 
object, of course. Similar conclusions can be drawn if the number of equations 
exceeds the number of unknown functions. However, the remaining underdetermined 
case deserves more attention. For instance, the famous Monge equation 

f(x, y, z, dyjdx, dz/dx) = 0 for two unknown functions y = y(x), z = z(x) has 
been thoroughly studied for a long time. Already Euler (in a particular case) and 
Monge found the interesting general solution of the type 

x = x(&) , y = y(&), z = z(&) (& = (t, u(t), du(t)jdt, d2u(t)\dt2)) , 

with certain fixed functions x, y, z of the argument & and an arbitrary u(t). Since 
then, the problem of resolving an underdetermined system by means of analogous 
formulae with a generalized argument & possibly involving some arbitrary constants 
and higher order derivatives of several arbitrary functions is called the Monge 
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problem. We can mention only two achievements here and refer to [2] for more 
information. It was Hilbert who first succeded in finding a negative result, namely 
that dz/dx = (d2yjdx2)2 cannot be resolved in this manner. Shortly after, E. Cartan 
gave a complete discussion of the particular case of m — 1 equations with m unknown 
functions but with a pessimistic remark (rather unusual in his scientific work) con
cerning the possible development of these result, cf. [3]. In fact, to the best of our 
knowledge, no essential progress followed although the underdetermined systems 
became very popular owing to the optimal control theory; see also [4] and the 
references therein. 

We would like to have more space (and patience) to present the solution of the 
Monge problem in full generality here but only the cases of m — 1 and m — 2 
equations for m unknown functions can be analyzed in more detail. We believe, 
however, that these particular cases are sufficient to demonstrate the universality 
of the method. Instead, for compensation, we shall look at some modifications of 
the problem if certain quadratures in the argument & are permitted. It is to be noted 
that the approach proposed yields a deep insight into the structure of the differential 
equations under consideration not fully exploited here. For instance, all explicitly 
solvable systems admit a large group of symmetries so that some links to the dif
ferential Galois theory surely exist. Nevertheless, the necessary tool, an intrinsical 
and easily manageable pseudogroup theory, is still lacking. 

The present paper is made independent (to a large extent) of the preceding part 
[ l ] , (Added in proof: see the errata to [ l ] and some comments at the end of the 
present article.) 

COMPLEMENTS TO THE GENERAL THEORY 

1. Review of fundamental concepts from [1, Sections 1—3, 5, 12]. For the con
venience of exposition, we recall some needful facts slightly modifying the notation 
and terminology. The underlying spaces for all considerations will be the inverse 
limits J = liminv J1, where J1 (/ = 0, 1,...) are certain (smooth, Hausdorff, with 
countable basis, real) manifolds of finite dimensions nl (but nl -» oo in all interesting 
cases) and the resulting limit arises from certain given surjective submersions 
jl

k: J1 -» Jk (l _ k) satisfying j \ ojl
k = j[. Only the final result J is important for us, 

not the specific determination by the data J1 and jl
k. Since the pullbacks jl* identify 

every space W^ of exterior differential s-forms on Jk with a subspace of the analogous 
space S^*1, the space Ws = uWk of differential s-forms on J can be easily introduced. 
In particular, Wa = uW0 = C°°(J) are functions and W = ® XFS are all differential 
forms on J. The concept of the exterior derivative d is familiar and the vector 
fields X, Y,... on the space J, the inner products X "1* \j/ e ¥ (where i/t e W), the 

*) For typographical reasons the author's symbol J was replaced by ~] throughout the paper. 
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Lie derivatives £?x =AX n +X 1 d, and the Lie brackets [X, Y] = XY- YX 
can be employed and satisfy the common rules. 

According to the definition of the inverse limit, a point p e J is represented by an 
array p°, p 1 , . . . , , where pl e J\ jl

k(p
l) = pk. We denote jk = lim;J: J -+ Jfc, hence 

Pl — Ji(p)- A coordinate system at a point p e J consists of a sequence / 1 , / 2 , . . . e ^ 
such that every piece/ 1 , . . . , / n l (I = 0,1, . . . ) belongs already to *P[J] = C00(J/) and 
provides a coordinate system on J1 near the point p1. A differential form can be 
expressed by a finite number of coordinates but a vector field X may be only identified 
with a formal sum X = Sg ; 3/G/-7, where gy = XfJ. Values at a point p e J of various 
objects will be often denoted by subscripts, e.g., f(p) = fpe R (fe !F0), Xpe TpJ is 
a tangent vector at p, (^ i ) p = T*J is the cotangent space. We shall often deal with 
various !F0-modules 3 and the relevant /R-linear spaces Sp. The dimension of the 
space Sp will be denoted by f(Ep). We shall prefer the regular case when f(3^) 
is a (finite) constant for all q e J lying near the given point p under consideration. 
Then the !P0-module 3 is locally free near the point p and £(Sp) is the number of 
(local) generators; we shall abbreviate it (a little inaccurately) by £(E) omitting the 
point p. If 3 c Wt is an arbitrary submodule of the !F0-module Vl9 then E1 denotes 
the !P0-module of all vector fields X on J satisfying X "1 £ = 0 (£ e £). If E1 is 
regular, then c; e E is characterized by the property X "1 £ = 0 (X e E1). 

The main object of our investigations will be the so called diffieties. The last term 
was invented to denote a special type of submodules A a Wt satisfying certain 
axioms <£oc^ 3)im9 ^ W J and SFin specified below. (The diffieties represent the 
infinite prolongations of general systems of partial differential equations in a very 
concise, intrinsical and self-contained manner eliminating all accidental and mis
leading features, as we shall soon see.) The axiom Z£oc means that a form i/t e xi,

1 

belongs to a given diffiety A if ij/ belongs to A locally (that is, if for every p e J there 
exists fe !P0 with/(P) # 0 , / ^ e A). The axiom 3im requires the !P0-module !Fi/A 
to be locally free with dimensions ^((W1JQ)p) = n(Q) independent of p e J. (More 
explicitly, for every peJ there exist forms \j/l

9..., \j/n e xi,
1 (n = n(Q)) such that 

there are unique decompositions i/t = X/'i//* + co (fl e !P0, coeQ) of every form 
\jj e !F! near the point p. One can then see that $),,..., ^n

p is a basis of ^¥x\Q)p) 
Let us denote Jf = ^f(A) = A1; clearly 2tf is a regular module and {{&) = n. 
The axiom <€£#<) is expressed by [«^, Jf ] c tf or, equivalently, by <£ #Q c A 
(that is, «£?xco e A for any Xe 2tf and co e A). The axiom &in postulates the existence 
of filtrations 
(1) A*: A0 c A1 c ... c fl' c ... c Q = uQ 1 

(for technical reasons we occasionally put Ql -= {0} if / < 0) by finitely generated 
submodules A' c A satisfying 

(2)U2 Ql+i =D A1 + S£#Ql (all I) , fi»+i ^ Ql + &^Ql (\ large enough) ; 

these are the good filtrations of A. 
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We shall mention one simple result of the theory. Let Otf = !P0 © & © 
© (Jf O #?) © (tf O Jf O ^f) © ... be the free commutative tfValgebra over 
the !F0-module jfT. Then the graded !P0-module 9 = © <Zl (&l = QlJQ1'1) turns 
into a O ^-module with the multiplication 

Xtb = (JSP*G>)A =(X -] doj)A G <gl+1 (X e jf, o e Ql, <jbe%1), 

where the hats indicate the relevant classes in ^ . Suppose regularity of all modules <&l 

at a point p e J. One can then see that the relation cbp = 0 implies (Xa>)p = 0 and it 
follows that the rule 

Xp.d>p = (X<h)p (Xpetfp, a>e$) 

defines a well-founded O ffl^-module structure on the graded /^-linear space ^ p = 
= © Wp. Owing to the Qfim axiom, we have a Noetherian module. So we find 
ourselves in the realm of the classical commutative algebra and in particular, we 
may consider the familiar Hilbert polynomial 

s(<z°p © ... © 9l
p) = t{al) s x&p, 0 = M /v/v! + (•••) 

(the equality is true for large / and the dots denote some lower degree terms), where 
p. = fi(Q, p) > 0, v = v(Q, p) _̂  0 are certain integers independent of the choice 
of the filtration (1). (The trivial case Q = {0} is omitted to ensure p > 0.) 

2. Morphisms of diffieties. Turning to new concepts, we shall consider a quite 
another diffiety beside the given Q, and then the notation will be as follows: the 
underlying space for the other diffiety 0 will be I = lim invI1 arising from certain 
surjective submersions i[: V --> Ik between manifolds. The spaces of differential forms 
on I1 or I will be denoted 4>[!l or $s, and <P = u $ r The diffiety O is a submodule 
of the #0-module <Pt satisfying the relevant axioms, of course. In order not to fall 
into deep water, we shall always tacitly suppose the equality n(Q) = n = n(Q), 
hence f(tf(Q)) = n = f(j?(0)). 

We begin with the concept of a mapping i:l -* J between the underlying spaces. 
Such a mapping is represented by a limit i = lint i)(l), where i\il):Ikil) -> J1 (0 ^ 
^ fc(0) = fc(l) = . . . , k(l) -> oo) are certain mappings between the usual finite-
dimensional manifolds satisfying the commutativity law i*(0

 0 i ^ 0 = j l + i © tk
l+

l+1) 

(l = 0,1, . . . ) . The mapping i is also determined by the relations jio i = t)il)
 0 ik(l} 

(recall that j t = lim j * : J -> J1 and i- = limj'J: I -> I'). However, the above concept 
is too wide for the common practice. Surjective submersions onto the submanifolds 

(3) i)il): Ik(0 -» J1 (ik
t
il)(lHl)) c J1 is an embedded submanifold) 

are preferable. In particular, surjective submersions i\(l) onto the whole manifold J f 

are tacitly employed if the resulting mapping i is surjective. The point is that in this 
case the pullbacks i*: V -• #, t*: ^ -• # p are fair injections. (Undoubtedly, these 
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measures are in reality excessively strong and can be weakened by Sard's theorem; 
however, the lure wjll be ignored.) 

The above mapping i is called a morphism between the diffieties Q and 0, if the 
conditions 
(4)1>2 i*Qa0, L*Y1+0 = <P1 

are satisfied. (Equivalently and more geometrically, every space JF(0)p is bijectively 
projected onto J^(Q)l(p) by the tangent mapping (i*)p: TpI -> Tl(p)J.) If moreover i 
is injective, then 0 is called a subdiffiety of Q, and if i is a surjection, then Q is called 
a factordiffiety of 0. An isomorphism or automorphism is obtained for bijective «, 
of course. 

A large supply of deep problems is coming on: decide whether given diffieties are 
isomorphic, find whether a given diffiety is a factordiffiety or subdiffiety of another 
diffiety, find whether there exists a common factordiffiety of two given diffieties, 
investigate automorphisms and infinitesimal automorphisms of a given diffiety, and 
so on. Connections to some actual topics and to several traditional areas (cf. the 
Backlund transformations, the equivalence problem, the Monge problem, the Lie 
and Lie-Backlund infinitesimal symmetries, and so on) are obvious and some of them 
will be discussed in what follows. 

3. From differential equations to diffieties, see [5, 6]. We intend to outline this 
way as briefly as possible so that only the local theory is presented without any speci
fication of the geometric contents. Let B be a manifold with coordinates t1,..., tn 

and E another manifold with coordinates t1,..., f, ux,...,um and the obvious 
surjection n: E -+ B identifying some of the coordinates: n*tl = tl (i = 1, . . . , n). 
We introduce the jet space J(n) where the coordinates are 

(5) t'-tti!...!. (Uiu ~>U = 1> •••>"; h = . . . = '*; J = l , . . . , m ; s = 0 ,1 , . . . ) . 

Clearly j(n) = liminv Jl(n), where Jl(n) (/ = 0,1, . . . ) is parametrized by the co
ordinates (5) with 5 constrained only to the values 0 , . . . , / . In particular J°(n) = E. 
The inverse limit arises from the obvious surjections j)(n): Jl(n) -> J'(7c) (k = I) 
omitting the coordinates (5) with s = k + 1, . . . , /. The relevant spaces of differential 
forms on the spaces Jl(n) or J will be denoted by W\l\n) or Ys(n), and Y(n) = U^O*). 
The notation can be simplified by the multi-index abbreviation J = it ... is, |</| = 5, 
and by the convention u^ = uJj, if the nondecreasing multiindex J = i1 ... is 

( i t = ... = is) is only a permutation of J9 = i\ ... Vs. Owing to this conven
tion, we have the familiar contact forms coJj(n) = du^ — ^uJ

Jt dtl e ¥\l+i\n) cz 
c W^n). Then the Cartan diffiety Q(n) is defined as the ^ ( ^ - m o d u l e consisting 
of all forms E/^ coJj(n) with arbitrary fJj e ^ o ^ ) - O n c a n easily verify all axioms 
££oc,..., 2Fin. In particular, the relevant module 2tf(n) = Jf(Q(n)) is freely gene
rated by the well-known formal derivatives 

3, = 3/d*1 + Z I I ^ 3/dii£ (i = l , . . . , n ) 
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and we have the so called standard filtration 

(6) Q(n)*: Q(n)° c ^(TI)1 C . . . C Q(n)1 cz ... cz Q(n) = u Q(n)1, 

where Q(n)1 is the submodule of Q(n) generated by all contact forms coJj(n) with 
1̂ 1 g /. (From the common point of view, the above spaces J*(7r) and Q(n)1 are 
considered for intrinsical objects preserved by all reasonable automorphisms. 
However, we take only the resulting J(7t) and Q(n) to be meaningful and quite 
other nitrations than (6) are permitted as well.) 

The diffiety Q(n) corresponds to the very special system of nm equations duJJdtl = 
= u{ containing (n + 1) m unknown functions uJ, u{ or better, to the infinite 
prolongation dujjdt1 = u^i thereof. An arbitrary system of partial differential 
equations appears if certain additional relations among the variables (5) are taken 
into account. 

Having this in mind, let {/*; KeK} C W0(n) be a set of functions labelled by K 
varying in an (in general infinite) index set K. Let J c J(7c) be the subset consisting 
of all points pe J that satisfy fK(p) = 0 (KeK). We wish to restrict the diffiety 
Q(n) to the subset J to obtain a new diffiety corresponding to the system 

(7) f%..,t\...,dsuJJdtJ,..) = 0 (KEK); 

the derivatives stand at the places of the variables uJ^. In order to derive this result 
without much effort, the functions fK will be submitted to strong restriction SFit 
(filtration) and&aj (passivity). 

The first assumption SFit ensures the existence of a filtration K° c K1 c ... 
... c K = UK1 by finite subsets with the property that every set of functions 
{fK; KeK1} is a subset of *P0\n) and may be completed to a coordinate system on 
the space J'(7i). It follows that J1 = 71(71) (J) (where 7̂ (71) = lim 7̂ (71)) are embedded 
submanifolds of the space J*(7t), and J = lim inv J1 with respect to the obvious 
mappings j): Jk -> J1 induced by j)(n). If we denote by (̂71) = lim7/(71): J -> J(7c) 
the natural inclusion, then !FS = i(n)* Ys(n) are the spaces of exterior s-forms on J. 

The second assumption gPat requires for every fixed / e W0(n) that if the identity 
f(p) = 0 (p e J) is satisfied, then dj(p) = 0 (p e J ; i = 1, . . . , n), hence X f(p) = 0 
(pe J, X e Jf). Consequently, every vector field X e J?(n) induces a well-defined 
operator X9 on the space W0 by the rule X'g = i(n)* Xf (g = i(n)*f, fe ^ov71))-
Clearly K' is a vector field on J and we shall abbreviate the notation by identifying 
X = X\ in particular d\ = dt. We usually denote c(n)* tl = x\ i(n)* uJj '= yJj and 
i(n)* (oJf(n) = OJJJ for more clarity. 

At this stage, one can easily verify that Q = i(n)* Q(n) is a diffiety on the under
lying space J. For instance, 3fim follows from 

d/ = E djdt1 + E dfjdu, co,(n) (fe W0(n)) 

after applying i(n)*9 ^to6 is trivial since (roughly speaking) J^(Q) = Jff(Q(n)) 
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along the subspace J c j(n), and !Fin follows from the (so called standard) 
filtration of Q consisting of the terms Ql = c(n)* Q(n)\ by definition. 

(A few words about the realization of the above assumptions 3Fi£ and 0>a<i 
should be useful. One usually starts with a finite set f 1 , . . . , / c e W0(n) which is suc
cessively completed by adding the derivatives dtf

J
9 didi,f

J
9... that are functionally 

independent of the previously calculated functions. The resulting set is filtered 
according to the norms \j\ of the variables uJj effectively appearing in the functions. 
If necessary, some exceptional points of the space J(n) must be left out to ensure the 
functional independence. If the final space J consisting of all points p e j(n) which 
satisfy fJ(p) = dJJ(p) = dfih fJ(p) = ... = 0 is nonempty (the compatibility 
condition), we are done. Careful analysis of the procedure proves to be rather tedious 
(but relatively easy in all current cases) and since we are interested only in the final 
resultAtisnot important to us. If necessary, the reader is referred to extensive literature 
[5 — 10] with other references and many examples.) 

4. Module structure related to the standard nitrations can be made very explicit. 
Since the !F0(7r)-modules &(n)1 = QfoyjQfa)1'1 are freely generated by the classes 
<bj(n) of contact forms, and the localizations (&s(n))p (|«/| = I) yield a basis of the 
space y(n)l

p, we obtain the O 34?(n)p-modu\e structure on ^{n)p by taking the values 
at p: 

Xp &Un)p = ( X 1 dcMn)); = 2. g'{p) &>,&), (X = 2. g%) . 

As the subdiffiety Q = c(n)* Q(n) is concerned, let co e Q(n)1 and assume (i(n)* OJ)P = 
=- 0 for the corresponding class (i(n)* OJ)A e <&l. It follows that 

co = hep + xl/ + lgK dfK (h9 g
K e W0(n); cp e Q(n)\ i/, e Q(n)1'') 

with h(p) = 0. But XfK = 0 and c(n)* dfK = 0 so that 

(X(c(n)* coY)p = (c(n)* Xoo)p = (c(n)* (X 1 d < ) p = (c(n)* (X n h dcpY))p = 0 

and the O ^fp-module structure on <&p is well-founded. Moreover, as follows from 
the above formulae, the O J?p-module ^ p is a factormodule of the O ^ ( T I ) . ( P ) -

module ^(n)l{p) with respect to the submodule of &(n)l{p) generated by the family 
of the classes of differentials dfK (K e K), for all points p e J. 

5. From diffieties to differential equations. Analogously as in Section 3, we should 
like to present here only the most essential information employing some local 
arguments. So, let Q be an arbitrary diffiety, let (l) be good filtration satisfying the 
equality (2)2 for / = c. Since the !F0-module Qc is finitely generated and the generators 
can be expressed by a finite number of functions, there exist a certain m and functions 
y1,..., ym e TQ such that every form lying in Qc can be expressed by a sum T,gJ dyJ 

with appropriate functions gl
9..., gm e !P0. Now, according to 3iim9 there are local 

formulae of the type 

(8) dyJ = Iz{>£ + oJ (jrj e Y0, coJ e Q) 
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near the point pe J under consideration, where IJJ1, . . . ,i r
/" (n = n(Q)) are certain 

fixed forms. But one can easily see that these forms can be chosen to be of special 
type xj/1 = dx \ where x1, ...9x

n are appropriate sufficiently general functions (i.e., 
satisfying dx1 A .. . A dx" 4= 0 on the subspace 3f(Q)p). 

Passing to the crucial point of the construction, let Q° be the submodule of Q 
generated by the above forms co1,..., a>m

9 and let us put inductively Ql+i = Ql + 
+ &x,Ql (I = 0,1, . . . ) . According to (8), every form of the type Ig J dy3 lying in Q 
necessarily is a linear combination of GO1, ..., com, that is, it lies in Q°. Consequently 
Qc cz Q°9 hence Qc+l = Qc + <£#QC cz Q° + J2V.Q0 = Q\ and in general Qc+k cz 
cz Qk for every k = 0, 1, . . . , by a similar argument. It follows that 

(9) Q*: Q° cz Ql cz ... c Qlcz ... cz Q = uQl 

is a good filtration. 
Let the vector fields Xl9...9XneJf? be (locally) defined by the requirements 

Xtx
J = 0 (i 4= j), Xtx

l = 1. Then the *F0-module Ql is clearly generated by the forms 
of the type 

< = Xxh - SextMwf = d ^ - Z j ; ^ dxf ( J 4 = X l t ... X f y ; 5 = 0 , . . . , / ) . 

Now, let us recall the diffiety ;Q(7r) of Section 3 on the underlying space with the 
coordinates t\ u3^. Then the formulae i*tl = x', i*ujj = yJj determine a (local) 
injection i: J -• J(n)9 and Q turns into a subdiffiety of I2(TT) since clearly i* co^n) = 
= coy. Speaking more expressively, if fK(...9t\—9u

J
j9...) = 0 ( K G X ) are all 

interrelations among the functions t\uJ
j9 then the diffiety Q corresponds to the system 

(7) of partial differential equations. 

ORDINARY DIFFERENTIAL EQUATIONS 

6. Introduction. From now on we shall restrict ourselves to the particular case 
n = 1 = dim J-f p without further explicit warning. Then the notation can be sim
plified: the variables tl

9 x
l (where i = 1) and w^, yJj (where J — 1 .. . 1 with s equal 

terms) will be abbreviated to t9 x and u[9 y[9 respectively. (We occasionally write 
uJ

0 = uJ\ yJ
Q = yJ.) Quite analogously, we have the contact forms co[(n) = 

= duJ
s — uJ

s+l dt which generate the diffiety Q(TZ) and the vector field d = 
= d\dt + 1£u[+l d\du[ which generates the module 3tf(%). 

Let us mention the correspondence between (ordinary) differential equations and 
diffieties in more detail. Clearly, the diffiety Q(n) corresponds to the underdetermined 
system duJ

0\dt = u{ of m differential equations involving 2m unknown functions 
ul9...9u

m
9 y},...,um and one independent variable t. According to Section 3, an 

arbitrary system of ordinary differential equations may be represented as a subdif
fiety Q of Q(7t) with appropriate m. This may be achieved in various manners, 
however, all subdiffieties corresponding to the same system are mutually isomorphic. 
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If one follows the approach of Section 3 rather closely, the given system is filtered 
according to the order of the derivatives involved. First, there may be equations of 
order zero: 
(10)0 r(r,wo,...,wS) = 0 (/ceK°), 

where the regularity (i.e., the maximum possible rank of the Jacobian (dfKjduJ
0)) is 

supposed. Secondly, there are equations of order one: 

(I0)i fK(f,wo,...,wS,w1,...,MT) = 0 (KEK1 - K ° , u{ -= dii'/df) , 

again with the regularity (i.e., the maximum rank of (GfK/3MJ)). Thirtly, there are 
equations of the second order: 

(10)2 fK(t, w1 , . . . , um) = 0 ( i c e K 2 - K1, u{ = dujjdt, u{ = d2uJjdt2) 

with the regularity, and so on. Then the condition 3*M is a consequence of the 
presumed regularity, and SPMM is satisfied if, for instance, every relation 

df% . . . ,dV/dt% ...)jdt = df% ...9u{9...) = 0 

(KEK1 -Kl-\ u{ = dsujjdts) 

of equations of order I is included into the next group (10)z+1. 
In practise, however, the matters turn to be much simpler. One usually starts 

with a given finite system fk(t> . . . , d V / d f , . . . ) = 0 (fc = l , . . . , c ) which may be 
replaced by an equivalent first order system by introducing new variables for the 
higher order derivatives involved. Then, in the regular case, the arising first order 
system can be resolved with respect to some derivatives, e.g., 

(11) dw*/df = ak(^,w1,...,wm,dwc+1/dr,...,dwm/dr) (k= l , . . . , c ) . 

If new variables wm+1 = dwc+1/df,..., wc+m = dwm/df are introduced, an equivalent 
but formally simpler system 

(12) dwk/dr = g\t9u\...9u
m) (fc = l , . . . , c ) 

is obtained (the meaning of c, m was changed) without reducing the generality of 
results. The system (12) corresponds to the system (10)X above, (10)0 is now empty. 
In order to fulfil ^ ^ ^ , we take 

d2w*/df2 = dgk\dt + I dii'/df. dgkjduj( = dgk) (fc = 1, . . . , c) 

for (10)2, then d3wk/df3 = d2gk for (10)3, and so on. So we have functions 

(13) / " = M ; - 3 1 " V (zceK = u K I ) , 

where the index set Kl consists of all pairs K = (k, s) with fc = 1, . . . , s and s = 
= 1, . . . , /. Let J a J(n) be the set of all p e J(n) such that fK(p) = 0, as usual. 
According to (13), the functions 

(14) x,y1
0,...,y'S,yc

l
+i,...,y7,yc

2
+i,...,ym

2,... 
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(where x = i(n)* f, yJ
s = i(n)* uJ

s) may serve as coordinates on J, and the diffiety 
Q = i(n)* Q(n) is freely generated by the forms 

(15) d / 0 - a * d x (fc = l , . . . , c ) , 

dys - yJ
s+i dx (j = c + l , . . . , m ; s = 0 ,1 , . . . ) . 

7. Involutiveness. Passing to the general theory, let Q be a diffiety with a good 
filtration (l). Since O $?p are polynomials of one variable, the degree v of the Hilbert 
polynomial x(^p> 0 is at most 1. The case v = 0 clearly implies Q = Ql for all / 
large enough so that the space J is of finite dimension and we deal with a determined 
system of ordinary differential equations, a system locally expressible by duJ/dt = 0 
(j = 1 , . . . , m), and therefore uninteresting from our point of view. For this reason, 
we shall assume v = 1, x(&P* I) = A1' + const, (ji > 0) unless otherwise stated. 

Since &p is a finitely generated module, the multiplication Xp: ^l
p -> ^l+ ] 

(XpGJtfp, Xp + 0) is surjective for / large enough. But the dimension ^l
p) = fi 

is constant for / large; then the multiplication is even a bijection. We speak of an 
involutive case if the above multiplication is surjective whenever / ^ 0 and bijective 
for / — 1 (compare with [1, Section 34]). We shall also need the so called semi-
involutive case (a new concept); then the above multiplication is supposed bijective 
for / = 1. 

The involutiveness can be easily achieved by a simple modification of the original 
filtration (l), if necessary. For instance, one can use the so called c-normal prolonga
tion of(l). This is the filtration 

Q* = Q* + c
: Q° = Qc cz Ql = Qc+i cz ... cz Ql = Ql + C cz ... cz Q = uQl , 

cf. [1, Section 18]. As follows from the above reasoning, given an arbittary good 
filtration (1), Q* + c is involutive for all c large enough. But even the involutive filtra-
tions are rather unpleasant and of little use in subtler investigations. 

8. Examples, (i) Looking at the standard filtration (6) in the particular case n = 1, 
one can check that n(Q(n)) = m. The diffiety Q(n) corresponds to the system dw0/df == 
= u\ of m differential equations involving 2m unknown functions and the dif
ference 2m — m (the number of "arbitrary functions") is exactly m = n(Q(n)). 
On the other hand, every term Q(n)1 (I = 0) is freely generated by certain m(l + 1) 
differential forms expressible just by m(l + 2) + 1 variables. The difference between 
these numbers diminished by 1 (due to the presence of the independent variable t) 
is m(l + 2) + 1 — m(l + 1) = m = fi(Q(n)) as before. 

(ii) The diffiety Q = i(n)* Q(n) of Section 6 is filtered by the modules Ql = 
= i(n)* Ql(n) and the existence of generators (15) implies JI(Q) = m — c. It cor
responds to the system (12) of c equations involving m unknown functions, the dif
ference m — c = \i agrees. The modules Ql are freely generated by the forms (15) 
with s = 0 , . . . , / in the total number of m + (m — c) /, and expressible just by 
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/ + m + (m — c) (I + 1) variables. The difference of these numbers diminished 
by 1 equals m — c = n(Q). 

(iii) Let us consider the space J with coordinates t, u0, v0,ul9vl9... and the vector 
field 

djdt + (wi + (v2)2) djdu1 + vx a/5v0 + w2 d\dut + v2 d\dvt + ... . 

This field determines a module ^ ( f i ) of a diffiety Q corresponding to the system 
du0jdt = M1 + (tf2)

2, dv0/df = vl5 dvjd^ = v2 of three differential equations 
involving five unknown functions, hence 5 — 3 = 2 = /z((2). The modules Ql (I = 0) 
freely generated by the forms 

dw0 - utdt - v2dv! , dus - us+1dt + vs+2dvi - v2dvs+1 (s = 1, . . . , /) , 

dv5 - vs+1dt (s = 0, . . . , / ) 

determine an involutive filtration of Q. There are 21 generators of Ql expressible 
just by 21 + 4 variables (cf. the next section for the proof) and the difference di
minished by 1 equals 2/ + 4 — 2/— 1 = 3 > fi(Q). The discrepancy may be inter
preted as the presence of certain "parasite variables" in the generators of Ql. 

9. Adjoint variables. Let us made a digression to some general concepts of the 
general theory of exterior systems (cf. [11]) suitably adapted for our needs. Dealing 
as usual with the space J, let S a W1 be a regular submodule and Adj S c IFj the 
submodule consisting of all forms of the type X "1 dc; with X e EL and £e 3. One 
can successively verify that the inclusion y e (Adj S ) 1 is equivalent to any of the fol-
loving conditions: 

(i) n i l d ^ - I i n d ^ O forallXeS1, £eS, 
(ii) y ~ l d £ e S for all £ e S , 
(iii) y - |d ( /£) = y / . £ - y - U . d / + / y n d £ 6 S f o r a l l / e ^ o , £ e S , 
(iv) YEEL and y - | d £ e S for all £ e S , 
(v) YeSL and ££Y£eS for all {e'S, 

(vi) S£fY$=fC£YZ+ y n ( d / A £)eSfora l l / e !P 0 , £ e S , 
(vii) X n S£fY£, = 0 for all X e SL, fe Y0, f e 3. 

In virtue of the rule 0 = <£fY(X l ^ f / y j j K + I l S£ fY^, we may 
continue with 

(viii) [/y, X] G S 1 for all fe W0, X e S \ 
(ix) y e S 1 and [y, X] e SL for all <P e SL. 

Always S c: Adj S and (according to (ix)) the case /(Adj S) — /(S) = 1 cannot 
occur. Moreover, Adj (Adj S) = Adj S or, equivalently, [X9 Y~\ e Adj S 1 for every 
X, y e Adj S 1 (use (ix) and the Jacobi identity, or (iv) and the rule S£[XY-^ = <£XS£Y — 
— S£Y5£X). Note that a submodule S cz XP1 is called completely integrable if 
[S 1 , S 1 ] c S 1 ; it follows that Adj S is completely integrable. In general, complete 
integrability of a regular submodule 3 a W1 is equivalent to any of the conditions 
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Adj S = S, X n d£ e S (X e S 1 , £ e S), JS?XE C S ( X G S1) as follows from the 
points (ix), (ii) and (v) above. 

Adj S is clearly a finitely generated module. Assume moreover Adj S to be regular 
with /(Adj S) = a. Then, applying the Frobenius theorem near a fixed point p e J , 
one can find a coordinate system f^ f 2 , . . . at the point p such that the differentials 
d f 1 , . . . ^ ^ may serve as (local) free generators of the module Adj S. Moreover, 
there exist local free generators of the *F0-module S expressible only in terms of 
the functions f 1 , ...,fa. (Proof: Since Adj S c S, every form lying in S can be 
represented by a sum Xg{ df* with appropriate g1,..., ga e ¥0. We conclude (using 
the Gauss elimination method and some redesignation of variables) that there exist 
local free generators of S of the type 

(16) dfk - Xh)dfJ (k = l , . . . , c ; sum over j = c + l , . . . , a ) . 

Then point (iii) gives Y ~] Ah) = 0 (Ye Adj S1), that is, dh) e Adj S and fey a r e 

functions of f 1 , ...,fa.) 
The functions f 1 , ...,fa will be called adjoint variables to the module S at the 

point P. (More accurately, every composed function f(fx, ...,ffl) may be called 
an adjoint variable which may be adapted to a global concept. Nonetheless, we 
prefer the former (ancient) terminology.) We already know that appropriate gen
erators of S can be expressed in terms of them. Conversely, if some generators of S 
can be expressed by certain functions g1,..., gh e ^F0, then already the adjoint 
variables f 1 , ...,ffl are functions of g1,..., g\ (Hint: If Xgj = 0, then X e Adj S 1 , 
hence Xfj = 0.) It follows that the adjoint variables are the most economical 
family in this respect. 

10. Cartan filtrations. A semi-involutive filtration (I) is called a Cartan filtration if 

(17) Q1 = Q n Adj Q° . 

Assume Adj Q° c Q for a moment. Then Adj Q° = Q1 by (17), hence Se^Q1 c Q1 

(we use #? = Q1 c O 1 1 and the complete integrability of Q1 = Adj Q°), hence 
Q2 = Q1 + -S^G1 = D1 (we use the semi-involutiveness). Quite analogously, 
Q2 = &3 = ... = u Q 1 = Q and, consequently, J is of finite dimension. Omitting 
this trivial case, we have Adj Q° 4= fi1, hence /(Adj Q°) = /(Q1) + 1 according 
to Qlim and (17). 

Our next aim is to find a fair family of local free generators to the terms Ql of 
a Cartan filtration. Let f1 , ...,fa be the adjoint variables to the module Q°, where 
df1 £ Q. We may assume the existence of local free generators of the type (16) to the 
module Q°. And, introducing (a little artificial) notation of variables x = f 1 , y[ = 
= f 2 , . . . , y™ = fa (hence m = a — 1), the formulae (16) can be rewitten as 

(18)° dy\ - Sfejdjyi ~ hk
m+ldx (fe = l , . . . , c ; sum over j = c + l , . . . , m ) , 

where fey, fem+1 are functions of the variables x, y\9..., y™. Now, the sense of the 
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notation is clarified by looking at Q1. Indeed, according to (17), there are certain 
free generators of the type 

(18)1 dy\- y\dx9...9dy"; ~ ym
2dx 

to the module Q1, where y2 e !F0 are appropriate functions. Let X e JJf be normalized 
by Xx = 1. Then, if we employ the semi-involutiveness (in particular, the equality 
(2)2), the forms (18)1 together with 

(18)S dyj
s-y{+ldx (j = l9...9m; yJ

+i=Xy$9 

where s = 2 , . . . , /, generate the module Ql (I _ 2). But we do not have free generators 
since there are only fi(Q) = ^(QljQ°) = m — c forms in every family (18)V that 
are independent of the previous (18)1 u ... u (IS)8"1. However, the free generators 
can be easily found. In virtue of (18)° and (18)1 the relations y2 = gk hold (gk = 
= "Lh)y{ + hk

m
+i) and it follows that 

(19) dy\ -gkdx (k = l , . . . , c ) , 

dyi - yj
s+1 dx (j = c + 1,.. . , m; s = 1, . . . , /) 

are the desired generators to Ql (I = I). Note that the functions 

(20) x9y\9...9y
Il)C

l
9...9y2\y

c
3

+1
9...9y

m
39yl+\... 

may serve for local coordinates on the space J. 
Using the generator djdx + Zgfc djdy\ + I>yJ

s+, djdyJ
s of the module J^(Q)9 one can 

easily verify that normal 1-prolongations of our Cartan filtrations are involutive. 
Moreover, as follows from the explicit expressions of the generators given above, 
Qn AdjQ1 = Ql + i (so that the ^-prolongations are Cartan filtrations, too) and 
/(Adj Ql) - •(Q1) = f(Ql+1JQl) + 1 = m - c + 1 = fx(Q) + 1 (so that the "para
site variables" in the sense of the last example of Section 8 do not appear). 

11. Theorem. The first term Q° of a Cartan filtration (1) permits to reconstruct 
the whole filtration (l), hence the diffiety Q. For any regular submodule S c ( P 0 

there exists a diffiety Q on an appropriate underlying space J and a Cartan 
filtration (l) such that Q° = 3. 

Proof. Using the notation of Section 10, let x = f \ y\ = f 2 , . . . , / , ' = fa be the 
adjoint variables to the module Q°9 where d/1 <£ Q. Moreover, let (18)° be the local 
generators to Q°. Then the relevant functions gk needful for the reconstruction 
of the remaining generators (19) are known; this concludes the proof of the first 
assertion. 

To prove the second assertion, we begin with another underlying space / for 
technical reasons. Then the proof runs as follows: Let (18)° be local generators of 2, 
where x, y}5 . . . , y T e ^o a r e the adjoint variables to the module 2. Introducing 
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a new underlying space J with coordinates denoted by x, y\,..., y™ (and lying in <£0) 
and additional coordinates 

(21) yc
2
+l,...,ym

2,y
c
3

+i,...,ym,yl+l,....... 

(not lying in d>0), the desired diffiety is generated by the forms (19). 

12. Existence of a Cartan filtration for an arbitrary diffiety was already established 
in Section 5 if one chooses n = 1. Let us recall the construction: Starting with 
a filtration (l), le t f1 , . . .,fa be the adjoint variables to the module Qc. We may assume 
f1 $Q. Then, if we denote x =fi,y1 = f2, ...,ym = fa (m = a - 1), there are 
forms LQJ

0 = dyJ — y\ dxeQ and the filtration (9) with terms Ql generated by the 
forms 

COJ
n dyJ - y{ åx , <o{ = ày{ - yU i dx (y{+. = Xyi, s = 1, . . . , 0 , 

where the vector field X e Jtf normalized by Xx = 1 is used. If the arising filtration is 
involutive, we are done. If not, we turn to an appropriate normal prolongation. 
This concludes the construction. 

THE MONGE PROBLEM AND ITS GENERALIZATIONS 

13. Cartan's case. We ask whether the "general solution" of a system of certain 
m — 1 ordinary differential equations for m unknown functions y1,...,/" of an 
independent variable x can be represented by formulae of the type 

(22) x = x(&) , yJ = y\&) (j = 1 , . . . , m; & = (t, u(t),..., dau(t)\dta)), 

where 3c, yJ are certain fixed functions of the argument & involving the "arbitrary" 
function u(t). (One can then easily derive analogous formulae for the derivatives 
dsyj\dxs.) 

Without discussing the rather vague concepts of a "general solution" and "ar
bitrary function u(t)", we shall substitute the following more precise setting for the 
above mentioned classical problem: Instead of the original system (not specified 
above), we introduce its infinite prolongation, that is, the relevant diffiety Q on an 
underlying space J with the coordinates x, yJ

0 = yJ, yJ
s (j = 1 , . . . , m; s = 1, 2, . . . ) , 

where y[ stand for the derivatives dsyJ\dxs. Let moreover Q = Q(n) be the diffiety 
generated by all contact forms du{ — ui+1 dt (i = 0,-1,...) on the underlying space 
J = J(n) of the coordinates t,u0,uu ... . The problem is whether Q can be represented 
as a factordiffiety of 0. If this is the case, then the relevant surjection r. I -* J yields 
the formulae (22) provided we put x = t*x, yj = i*yJ. 

In fact, E. Cartan investigated the more general case when the argument & may 
also depend on some arbitrary constants cu ..., cb. In terms of diffieties, the problem 
consists in representing a given diffiety Q as a factordiffiety of another diffiety O 
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generated by the preceding contact forms dut — ui+i dt together with forms dv1 , . . . 
..., dvb

9 differentials pf certain additional functions. The relevant underlying space I 
has the coordinates t9 v

l,..., vb, u0, ul9 ... . We shall see, however, that this gener
alization does not bring too many difficulties. 

14. True generalizations are easy to formulate. For instance, one might be interested 
in the case of the argument 

& = (t9 u(t), v(t),..., dau(t)jdta, dav(t)jdta) 

involving two arbitrary functions u(t), v(t). Then the given diffiety Q is to be expressed 
as a factordiffiety of the diffiety 0 generated by two series of contact forms dut — 
— ui + 1dt, dvt — vi+1dt (i = 0 ,1, . . . ) on the underlying space I with the co
ordinates t, u0, v0, ul9 vl9... . A little more generally, some constants may be permit
ted in &, too, but we shall not deal with this problem. Instead, we shall consider the 
case when a quarature is present: 

& = (t9 u(t),..., dau(t)/dta, $h(t, u(t)9..., dau(*)/dta) dt) . 

Then the relevant diffiety 0 involves the form dv — h(t9 u 0 , . . . , ua) dt and the under
lying space involves the additional coordinate function v. 

15. Determination of factordiffieties. Let Q be a factordiffiety of a diffiety 09 

let i: I -• J be the relevant surjection of the underlying spaces. Let (l) be a good 
filtration. Recalling the definition of morphisms of diffieties, one can verify the com
mutative diagram 

(23) Sex: i*Q° - t*O1 -> i*Q2 -> ... (X e tf(0)) 

T t t 
SeY: Q° -> Ql -> Q2 - • . . . ( y = I*XEJP(Q)) 

with i-related vector fields X, Y. Since i* is injective, the inequality fi(Q) ^ fi(0) 
follows by a simple argument employing the multiplication by X and yin the modules 
0 <9'/<9'-- and <&l = ® Ql\Ql~l, respectively, and the relevant Hilbert polynomials. 
If (l) is involutive, then the equality (2)2 is valid for every / ^ 0 and the mapping 
i*: Q -> 0 can be reconstructed already from the left vertical arrow i*: Q° -• 0 
of the diagram (23). If moreover (l) is a Cartan filtration, then the diffiety Q can be 
reconstructed from the first term Q° (cf. Theorem 11), hence (up to an isomorphism) 
from the module t*Q° (since L* is injective). It follows that the knowledge of the 
submodule t*Q° c: 0 permits to determine all the other data. 

In more detail, let 0 be a diffiety and let a regular submodule E c 0 b e given. 
Our aim is to identify 2 with the above mentioned submodule of the kind t*Q° 
for a certain factordiffiety Q of 0 not yet known. The method proposed is quite 
clear: according to Theorem 11, there exists a diffiety Q with Q° = 2 the first term 
of a Cartan filtration. Then, recalling the notation from the proof, we observe that 
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the generators (18)° are expressed by the functions x, y\9..., y™ lying in both spaces 
<P0 and !F0 so that they must be identified by the sought morphism i: I -> J. As the 
remaining variables (22) are concerned, we may employ the diagram (23) which gives 

(24) i*x = x , i V i = y{ 0 = 1, . . . , m) , t*yk
s+1 = i*£>Yyk = <£xy\ 

(k = c + l , . . . , m ; s = 1 ,2 , . . . ; I e / ( 0 ) , Ye je(Q), Xx = Yx = 1) . 

Clearly i*Q° = E c 0 and in general i*Ql = (£?x)
lE c (9, by induction. Con

sequently, (4)x is satisfied. The condition (4)2 is satisfied if, e.g., i* Adj Q° = Adj S 4: 
dp. 09 which will be assumed. So we have a morphism of diffieties. 

However, we are interested in a surjective morphis , that is, in the case of the 
injective pull-back i* when the images in (3) are not proper submanifolds. This is 
ensured, at least locally, if the family of forms 

dx = i* dx , dy{ = i* dy{ , i* dyk
s 

(j = 1 , . . . , m; fc = c + 1, . . . , m; s = 2, 3,...) 

is linearly independent at every point or, equivalently, if the forms 

(25) dy{ - * y 2 dx , i*(dy* - yk
s+i dx) 

(j = 1 , . . . , m; fe = c + 1, . . . , m; s = 2, 3,...) 

lying in 0 are linearly independent. (The differential dx is omitted since we assume 
Adj E £ 0, hence we may also assume dx == d/1 £ 0.) But 

**(drf - y*+i dx) = (£fxy (dy{ - i*y{ dx) 

according to (24), so that the forms (25) with s restricted to 2, 3 , . . . , I generate the 
module S + 5£XE + ... + (£?x)

1 E. It follows that the last independence condition 
may be expressed without any use of coordinates by 

(26) t(E + <£#E + ... + (^^)l E) = c + (m- c)l (l = 0 ,1, . . . ) . 

(Besides, note that this seemingly complicated condition will be trivially satisfied 
in all examples below.) In view of m — c = fi(Q) = fi(0), the above results may be 
expressed as follows: 

16. Theorem. Let E c 0 be a regular submodule freely generated by certain c 
differential forms expressible by just m + 1 variable and satisfying Adj E (£ 0 
and (26). Let (l) be a Cartan filtration of a diffiety Q with Q° = E. Then Q is 
a factor diffiety of 0 and m — c = [i(Q) _ [i(0). 

17. Solution of the Monge problem to be examined in the present paper is based 
on Theorem 16. We ask whether a given diffiety Q may be represented as a factor-
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diffiety of another given diffiety 0. Then the proposed way is as follows: All sub-
modules S c 0 satisfying the conditions of Theorem 16 are to be determined 
(which seems to be the most difficult step). Then, a Cartan filtration (l) to the given 
diffiety Q can be (as a rule) easily found and, since the relevant morphism r. / -• J 
is determined already by the (bijective) portion i*: Q° -> E of the pullback t*: Vi -• 
-> <£1? the concluding step consists in identifying the first term Q° of the filtration 
(l) with one of the found submodules E. This is already the common classical equi
valence problem (which may lead, however, to lengthy discussions). 

We continue this paper by applying the method proposed to particular problems 
already mentioned in Sections 13 and 14. We begin with the instructive and relatively 
easy primary problem of Section 13 for then the procedure can be developed without 
any auxiliary technical rearrangements. In addition to the results known already to 
Cartan, some new (and promising) details can be picked up. Then the other problems 
are analyzed following the same schema of reasoning. Nonetheless, some modifica
tions (specific to every problem) clarifying some further generalizations and shortening 
the exposition (but unfortunately, obscuring a little the basic idea) prove to be necessary 
and are employed. 

EXPLICIT SOLVABILITY WITH ONE FUNCTION 

18. Preliminaries. We begin with the primary problem of Section 13. In the course 
of exposition, some useful abbreviations and conventiones will be introduced. We 
shall (tacitly) use only regular finite generated modules which means that some 
nowhere dense subsets must be left out from the spaces under consideration. More
over, following the experience of old masters of analysis, we will omit some "degen
erate" subcases in the concluding Sections 28 and 29 in order not do enlarge the 
exposition. 

So we are going to study factordiffieties of the diffiety 0 = (dM; — ui+ldt; 
i = 0 ,1 , . . . } , i.e., the diffiety generated by the above mentioned forms 9t = dut — 
— ui+1dt on the underlying space / with the coordinates t, M0, M l 9 . . . . Clearly 
n(Q) = 1 and 3^(0) is generated by d = djdt + lM i + 1 d\du{. We temporarily intro
duce the notation Sf = E df\du{. S, (fe tf>0), hence df = df. dt + Sf and 

(27) d£ = dt A i ( / | - * + df) S£ + ISf A S, (£ = Zf%) . 

According to Theorem 16, we wish to determine submodules S c 0 with {(E) = c 
and ^(Adj E) = m + 1, where m — c = p.(0) = 1, hence m = c + 1 and <f(Adj E) = 

_* c + 2. The other requirements of Theorem 16 will be automatically satisfied 
and need not be taken into account. 

19. The hierarchy of generators. Let £0 e E be a nonvanishing form with the lowest 
S rorder. In more explicit terms, we assume 
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(28)0 £0 = I / i 9 , - z (/2(p)*0) 
i = 0 

near a point p e J under consideration and suppose that the integer n appearing 
in (28)0 is the lowest possible one. According to (27), we have 

«i =- a -i d«0 = _;(/;-1 + a/i) s, ="__M e Adj s 
i = 0 

and if even ^ e S, we may continue with c2 = 3 "I d£_ e Adj S, and so on. As a final 
result, there appears a certain chain of forms 

(28), ^ = n <_*,_. = Hfiz\ + efj-r) s, = I j ? . - £ (j = I, ...,JV - i) 
i = o 

with ^ = 3 1 dftf..! e Adj S, but £N <£ S. Obviously /J = ... = fn
N

+N and we can 
normalize/° = ... = fN

+N = 1, at least locally. Let us now look at the formula 

(29) dSj = At A £,.+ 1 +"_]V; A S, (7 = 0, ...,N - 1) 
» = o 

for the case j = N - 1. Since £N$E, there exists X e S 1 with X "1 fN = 1. It 
follows that 

T = X 1 d ^ - i = dt + (linear combination of $0,..., 3,,+^-!) e Adj S 

but T £ S. So we have two forms £jv, T e Adj S not lying in S, and another linearly 
independent form of this property cannot exist. 

It follows easily from the last sentence that (31) are generators of the module S 
(hence N = c = ^(S)) since another form independent of them cannot exist in S. 
Indeed, the $rorder of such a form would be at least n + N and by applying the 
above procedure, a third essentially new form lying in Adj S but not in S could be 
derived, which is impossible. 

20. Structural formulae. We shall analyse the formula (29) using the new family of 
generators dt, S0,...9Sn-l9 <_0> .••>£*> 9n+N+1,Sn+N+2,... of the module Qt. Ac
cording to the common rules of exterior algebra, (29) can be rewritten as 

(30) &Zj = xj A ZJ+1 + t a) A £, +"t /?} A 9, (j = 0,..., N - 1) , 
t = 0 i = 0 

where Zj9 a], /?} are forms of certain special type: 

(31)1,2,3 TjEdt + {#<«} , a) e {all except dt} , # e {£,•+!<,<*} . 

This (a little unusual but useful) notation means that T,- is a sum of dt and a linear 
combination of S0,..., S„_i, then a) is a linear combination of all forms of the new 
family of generators except dt, and /?} is a linear combination of <_;+2,..., <_#-_• 
(More complicated situations will appear later.) 
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Existence of such a formula (30) can be established as follows: First, the second 
summand at the right hand side (29) is expressed by the new generators. Secondly, 
all terms of this summand which involve the factors £0 , . . . , ^ are separated, which 
determines a). Thirdly, terms with the factor £j+1 determine Xj. At last, all the 
remaining terms of the second summand of (29) are already of the kind 1)8} A Sf. 
with* = 0, . . . , M - 1, but j8} can involve neither S0, . . .59„-1 ,? J V , L+N+D £n+N+2>-•• 
(look at Adj S), nor £0 , . . . , l;j+1 (due to the second and the third step above), so that 
(31)3 is true. 

21. Reduction procedure. According to (31)3 we have pl
N_x = 0. Then, using the 

identities 

(32) 0 = d2c;,. = dT, A £y + 1 + 

+ Xj A (xJ+1 A £j + 2 + ZaJ+1 A U + S/Jj+1 A 9k) + 

+ 2 d < A £t + Sa) A (T, A £ I + 1 + la? A £k + 2 $ A Sk) + 

+ ZdjSJ A 3, + SjSj A d U S l + 1 , (I = 0, . . . ,N - 2) 

and the congruences (31), we shall prove ft) = 0 by a descending induction argument: 
Assume pN_t = ... = fi)+1 = 0 but ft) 4= 0. If f£j is a nontrivial summand of fi) 
with maximum J (necessarily I + 1 < J < N), then the term dp) A 3, appearing 
in the last line of (32) contains the summand fdt A £J+1 A 9f and, using (31) with 
the maximum property of J and the induction argument, one can check that it cannot 
be cancelled by any other summand of (32), which is a contradiction. So we conclude 
p) = 0, and looking at (32) again, one sees that the products Xj A xj+1 identically 
vanish. Hence T0 = ... = xN = x e Adj S and 

(33), dtj = T A {,+ 1 + i 0C(j A 6 (j = 0,...,N- 1) 
i = 0 

is valid which simplifies considerably the primary structure equations. 

22. The canonical formulae. If we consider the module {£0} with the single genera
tor ^0, (33)0 implies Adj { 0̂} = {T>£o>£i}- It follows that there exists another 
generator f£0 (f + 0) expressible by exactly three variables, f£0 = dy0 — yt dx 
(the Darboux theorem). Then, if the primary generator £0 is replaced by the new one 
f i ; 0 , the structural equations (33) are not disturbed provided £ l 5 . . . , (i^-i and a) 
are slightly corrected. After the change, (33)0 simplifies to d£0 = x A £>1 + a0 A 
A £0 + dx A dyt. Since dx$S, we have dj^ — y2dxeS for an appropriate 

j ; 2 e $ 0 (the 3)im axiom). Moreover, f 1 e Adj {f0} = {dx, d>>0, dyt} = {dx, £0, dy±} 
so that the next generator ^ can be replaced by the form dyx — y2 dx. (The forms 
£2 , . . . , £N_1 and OL) must be slightly corrected.) After the change, (33)x turns into 
dfx = T A £2 + aj A C0 + a} A £I = dx A dy2, and continuing similarly as 
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above, a certain form dy2 — y3 dx we may substitute for £2, and so on. As the final 
result we obtain new generators 

(34); Zj = dyj-yJ+idx (j = 0,...,N-i) 

of the module S. In particular, we have 

23. Theorem. Every factordiffiety of the diffiety 0 from Section 18 is isomorphic 
to the diffiety 0 itself. 

24. The cross-section method by non-adjoint variables can be alternatively 
employed to derive the generators (34) without any use of the Darboux theorem. 
It will be also useful in other situations to appear later on. It is based on the formulae 
(28), (33) and runs as follows: Since the generators £0 , . . . , £N-t of S can be expressed 
in terms of the adjoint variables to £, we may consider (28), (33) under the family 
of constraints 

u0 = 0 O > - - - ? W n - l ? UN+l = aN+l> UN + 2 = aN + 2'> ••• 

(where a{ are constants), which do not introduce any interrelations among the adjoint 
variables. Let us denote by tildes the results of constraining (whenever necessary 
for more clarity). Then (28)0 turns into 

| 0 = d w n - (un+l +/S~1w« +/o ,~2tf„-i + ••• + foai)dt = dyo " yid* 

with the notation y0 = wn, yt = un+1 + ... + f%au x = t. This is exactly (34)0. 
Clearly Adj {|0} = {f, | 0 , I J = {df, dwn, du n + 1 } , but at the same time Adj {cf0} = 
= {dx, d.y0, d}^}. It follows that u„ + 1 can be expressed by f, y0, yi- Then (28)j 
turns into the formula 

l l = d "n + l + / l d " „ - K + 2 + / l + 1 " n + l + / l X + / r 1 < I | , - l + - . +flao)*X = 

= / ( d y l - y2 d 0 + g(dyO - yl d 0 

with certain functions f,g,y2. Necessarily / + 0 so that the next form (34) t has 
appeared. Continuing in this way, one can obtain the whole family of generators (34). 

25. The derived modules. All submodules S a 0 satisfying the assumptions of 
Theorem 16 are determined and, following the instructions of Section 17, we have 
to find a criterion whether a given module Q° can be identified with some of these 
modules S. In our particular case, this equivalence problem can be easily resolved 
by a method due to Cartan, and the relevant background will be derived here. We 
shall use the notation from Section 9 for a moment since both topics are closely 
related. 

So we are in the space J and a submodule S cz }Pl is considered. Let us introduce 
the submodule Der S c ^ consisting of all forms £ that satisfy any of the following 
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equivalent conditions: 

(i) { € S and X'H d ^ e S for all X e S 1 , 
(ii) <ex^ e E for all X e S 1 , 
(iii) y 1 J^c; = 0 for all K, y G S 1 , 
(iv) [K, y ] n £ = 0 for all K, y e S 1 . 

(Note that (ii) => (i) follows from the rule & fXZ = fSex^ + X ~1 f. df under the 
regularity of S, (iii) <->(iv) follows from 0 = S£X(Y^ £) = [K, y ] ~| £ + Yl X& 
and other implications are easy.) Clearly S =3 Der S =D Der2 S D ... and S' = 
= fl Der1 -̂  1s the greatest completely integrable submodule of S. In particular, 
S is completely integrable if S = Der S, and in this case S = Adj S. Using (ix) 
Section 9 and the above point (iv), one can also verify the inclusion (Adj Der S ) 1 z> 
ID (Adj S)1 , that is, Adj Der S c Adj S. 

We shall look at the "nearly completely integrable case" when 

(35) {(E) = /(Der S) + 1 = ... = /(Dere S) + e = 

= /(Der1 S) + e (/ = e) ; 

here e = e(S, P) = 0 is an integer independent of p e J. We shall need only the 
particular case when S = Q° is the initial term of a Cartan filtration of Q with 
/*(:Q) = 1. Then S(QljQ°) = p(Q) = 1, hence 

(36) <f(Adj S) = /(Adj 0°) = S(Ql) + 1 = /(G0) + 2 = /(S) + 2 . 

50 we shall suppose /(Adj S) = /(S) + 2 for the module S. 
Under this assumption, let us look at Der S. Either e = 0 and S = Der S is 

completely integrable, or e = 1. In the latter case clearly 

(37)° Adj Sx czE1 a Der S 1 . 

Let K, y be vector fields generating together with Adj S 1 the module S 1 , that is, 
5 1 = {K, y, Adj S 1 } . Then Der S 1 = {K, y, [K, Y], Adj S1} and (as follows from 
/ (DerS) - / (Der 2 S) = 1) there exists a vector field Z = fK + gY such that 
[Z, [K, y ] ] G Der S 1 . Consequently Z e Adj Der S 1 , hence Adj Der S 1 = 
= {Z, Adj S1} and we have the inclusions 

(37)1 Adj Der S 1 c Der S 1 c Der2 S 1 

analogous to (37)°. One can also easily verify /(Adj Der S) = /(Der S) + 2. 
So we may look at Der2 S. Either e = 1 and Der S = Der2 S is completely 

integrable, or e = 2. In the latter case, the above procedure may be repeated with 
(37)1 instead of (37)°, and so on, up to the completely integrable module Derc S = 
= Derc + 1 S. Let us also mention the relations 

(38) /(Adj Der1 S) = /(Der1 S) + 2 (J = 0 , . . . , e - 1) , 

(39) Adj Der 'S 3 Der1"1 S (/ = 1, ...,e) , 
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appearing in the course of the reasoning, cf. the role of the vector fields X, Y, Z 
above in the first step / = 1. 

The relations (38) and (39) permit to determine some fair generators of the mod
ule 3. 

Denoting £(S) = c as usual, (35) clearly implies <f(Dere 3) = c — e. Since Dere 3 
is completely integrable, the Frobenius theorem gives Derc.E = {dv1 , . . . , dvc~e}, 
at least locally, with appropriate functions v1,..., vc~e e !P0. Since <f(Der' 3) = c — / 
(/ = 0 , . . . , e), we have 

(40), D e r ^ = {dv 1 , . . . , dv c - e , ^ 7 j , . . . , ^ - / - i } (l = 0,...,e) 

with appropriate forms rj0, ...,r\e^l e S^. These forms can be chosen to be of 
a certain very special type. We begin with the form r\0 (which is more advantageous 
in some examples, but an alternative way starting with r\l^1 may be also useful, cf. 
Section 45). Relation (38) gives *f(Adj Der6""1 3) = c - e + 3 so that the form r\0 

first appearing in (40)e_i is expressible by vl,..., vc~e and three additional variables. 
Applying the Darboux theorem, we may even assume r\0 = dy0 — yt dx where 
x> yo> y i a r e the additional variables, dx £ Der*'1 3. We continue with the form rjY 

first appearing in (40)e_2. Relation (38) gives *f(Adj D e r ' - 2 3) = c - e + 4 so 
that rj1 depends on one additional variable y2eW0. According to (39), we have 
r\x e Adj Der'"*1 3, hence r\t may be assumed a linear combination of dx and dyu 

hence r\2 = dyt — y2 dx (the Darboux theorem is not needed!). A quite analogous 
reasoning gives the remaining generators ffo,..., *7e-i of the kind rjj = dyj — 
— yj+l dx. Hence 

(41) 3 = {dv 1 , . . . ,dv c - p ,dy 0 - yi dx , . . . , dye.t - yedx] . 

Not only this final result, but also the method is of independent interest since it 
must be applied if we deal with applications, cf. Sections 28, 29 and the papers 
[3, 12]. 

26. The equivalence problem. Let us return to the Monge problem. We begin with 
assuming Q to be a factordiffiety of G with i: J -> I the relevant surjection. We 
know that the submodule 3 = i*Q° c: 0 possesses the generators (34), that is, 

(42) 3 = {dy0 - yt dx,..., dyN_x - yN dx} , 

which is a particular case c = e of (41). One can then explicitly verify the property 
(35) with c = e = N = /(S) and, by virtue of the obvious equalities 

(43) Der' 3 = Der1 i*Q° = i* Der* Q° 

and the injectivity of i*, the same property 

(44) •(Q0) = *f(Der Q°) + 1 = ... = ^(Derc Q°) + c (c = S(Q0)) 

holds for the module Q°. 
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Let conversely Q be a diffiety admitting a Cartan filtration (l) with the first term Q° 
satisfying (44), that is, (35) rewritten for Q° instead of E. It follows that there are 
generators (41) with lacking terms dvfc for the module Q°. According to Theorem 11, 
the diffiety iQ is even isomorphic to 0 (not a mere factordiffiety of 0), which is in 
full agreement with Theorem 23. However, the main result of reasoning may be 
formulated as follows: 

27. Theorem. The initial term Q° of a Cartan filtration (1) of a diffiety Q fulfils 
(44) if and only if Q is a factordiffiety of the diffiety 0 from Section 18. 

28. Example. In this and the next section we shall proceed in the spirit of the 
matematical analysis of the past century, and the notation and terminology will be 
slightly adapted to the geometrical contents. We commence with the Monge problem 
for the system of ordinary differential equations 

dxjdt = x' , dy\dt = y', dzjdt = z' 
with two relations 

(45) f(t, x, y, z, x', y', z') = 0 , g(t, x, y, z, x', / , z') = 0 

between the variables involved; the Jacobian of / , g with respect to x', y', z' is 
supposed to be of rank two. According to Section 6, diffieties can be called for help. 
So we introduce the diffiety Q where the first term Q° of the Cartan filtration is 
generated by the forms 

I, = dx — x' dt, .7 = dy — y' dt, ( = dz — z' dt 

with relations (45) between the variables. Abbreviating the notation, the partial 
derivatives will be temporarily indicated by subscripts so that the differentials are 
related by 

d/ = d'fdt +fx£+fyn +U + / ^ d x ' +frdy' +f2.dz' = 0 , 

dg = d'fdt + g£ + gyr\ + g2C + gx, dx' + gy, dy' + gz, dz' = 0 , 

where d' = djdt + x' djdx + y' djdy + z' djdz is the truncated operator d. Clearly 
t{Q°) = 3, <f(Adj Q°) = 5, and the forms 

X = fx'Z + fy* + /z'C , n = gx,£ + gy^ + gz£ 

generate Der Q°. Hence <f(0°) = /(Der Q°) + 1 which is the first equality in (44). 
It follows that the requirements of Theorem 27 are satisfied if /(Der2 Q°) = 1, 

that is, if the forms d#, dn are proportional under the conditions d/ = dg = i = 
= 7t = 0. (The degenerate case dx = dn = 0 fits well into the framework of Section 
30 and is not analyzed here.) Since we are in a 7 — 4 = 3-dimensional space, at 
most two conditions on the coefficients of the forms d/, dn can arise. However, 
owing to 
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dx = (dfx. -fxdt) A £ + (dfy,-fydt) A rj + (d/2, -f2dt) A C, 

an analogous expression for dn (easily following from d/ = dg = 0) and a very 
particular type of the conditions x = n = 0 (namely, they interrelate only the forms 
f, //, C), the conditions reduce to exactly one. 

Denoting Q = u dx + v dn for a moment, where w/v is the undetermined propor
tionality factor, the condition is expressed by the requirement that the rank of the 
matrix 

0 fx> fr л- 0 0 0 
0 9x> 9y 9z> 0 0 0 

S'f fx Л Л fx> fy л 
д'g 9x 9y 9z 9X> Qy 9: 

[5' n e s/5x n O 3/ay n 0 a/Sz n 0 d/Ov n Q djdy' n 0 U/Sz' n oj 

is five. (The vector fields 3', G7dx,..., djdz' used here are dual to the coframe dt, £, n, 
C, dx', d / , dz'.) Under this condition, the form w/ + vn generates Der2 Q° and the 
next module Der3 Q° is trivial. 

We shall not evaluate the rank condition explicitly but mention a few particular 
cases. At first, assume (45) of the following special type: 

( / = ) x' - h(t, x, y, z, z') = 0 , (g =) y' - k(t, x, z, z') = 0 . 

The above matrix becomes considerably simpler and after easy calculations, the rank 
condition is expressed by hz,z, d' 1 dn = kz,z, d' ~1 d% or, more explicitly, by 

hz,z{kx£ + kj, + (k2 - fcz,,) c) = k,.t.(hxz + hyn + (hz - hz,t) C). 

But <!;, rj, C are related by / = { — hz,C = 0, n = n — fcz,C = 0, and the final result is 

hz,z{(kx + ky) hz, + fcz + fcz,,) = kz.z,((hx + ft,) fcz, + hz + /TZ,,) . 

The particular case fc = x was mentioned in [12]. Then the relations (45) again 
reduce to x = h(t, x, y, z, z'), y' = x and, after denoting y" = x', the original 
system turns into the second order equation y" = h(t, y\ y, z, z') and the rank 
condition is hz,z, = 0. It is not satisfied for the equation y" = (z')1/2 which is 
Hilbert's negative result mentioned above. 

29. Continuation. We shall consider the same problem once more but in several 
dimensions and using some dual and (from our point of view) non-intrinsical con
cepts. The results are partly due to Goursat, cf. [2]. Altering the notation, we intro
duce the system 

(46) dx*/dz = V (i = l , . . . , n ) 

in the space of variables z, x 1 , . . . , x", t1 , . . . , t" related by n — 1 conditions 

(47) f\z, x 1 , . . . , x", t\ ..., f) = 0 (j = 1 , . . . , n - 1) , 
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where the Jacobian (dfJ\dt{) is of rank n — 1. Introducing the relevant diffiety Q 
with the initial module Q° generated by the forms £* = dx* — tl dz on the subspace 
(47), we shall prove that the property (44) is equivalent to the involutiveness (in the 
classical sense) of a certain system ofn — 1 partial differential equations of the 
first order with one unknown function z(xx,..., x"). 

Let us first assume that (44) is fulfilled (with c = n). In virtue of (47), the variables 
tl, ...,tn can be expressed in terms of the remaining functions z, x 1 , . . . , xn and one 
auxiliary variable t (say, t = tx), yl = yl(z, x 1 , . . . , xn, t). Then Q0L is generated 
by the vector fields 

Z = djdz + Sy* d\dxl, T = djdt 

and by vector fields from Adj Q01 (but the latter do not matter much). Hence, ac
cording to (44) and (iv) Section 25, Der* Q° is generated by the vector fields mentioned 
together with the Lie brackets 

(48) [T, Z] = Zy\ d\dx1,..., [T, . . . , [T, Z] . . .] = Sjll.r dfix* (I terms Tand t) 

(we tacitly assume linear independence of these vectors, a more general case is covered 
by the theory of Sections 30 — 33). One can see that the form C = dz — p1 dx1 — ... 
. . . — pn dxn (which is also a linear combination of £i9..., C„) generating the module 
Der""1 Q° is determined by the conditions 

(49) Z -| C = [T, Z] "I C = ... = [T,..., [T, Z] ...] -| C = 0 

(up to n — 1 terms T) . 

According to (48), these conditions may be interpreted as osculating requirements 
for the hyperplane C = 0 and the cone consisting of all the above vectors Z at a fixed 
point z, x 1 , . . . , x" with varying parameter t. It follows that the functions p1 , ...,pn 

can be expressed in terms of z, x 1 , . . . , xn and the auxiliary variable t so that there 
exist exactly n — 1 relations of the type 

(50) gJ(z,xi,...,xn,pl,...,pn) = 0 (; = 1 , . . . , 7 i - l ) , 

if t is eliminated. The equation C = dz — Spf dx* = 0 together with (50) may be 
interpreted as a system of partial differential equations for one unknown function z9 

the so called associated system to (47). Now, an appropriate multiple of C is equal 
to the form rj0 of Section 25: « 

(51) w(dz — _Ep£ dx') = dy0 — yi dx . 

Here y0 is a function of z, x 1 , . . . , x", t9 but it may be also expressed by z, x 1 , . . . , xn, x. 
Denoting y0 = y(z9 x 1 , . . . , xn, x) for more clarity, the relation (51) expresses the 
fact that the functions z(xx,..., xn, a, b) implicitly defined by y(z, x 1 , . . . , xn, a) = b 
(a, be R are constants) satisfy the adjoint system. In other words, we have a complete 
integral, hence the associated system is involutive. 
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Before passing to the proof of the converse result, let us look at the particular 
case n = 3 of the preceding section. The associated system (we use the form ( = 
= dt — p dx — q dy — r dz here) 

F(t, x, y, z, p, q, r) = 0 , G(t, x, y, z, p, q, r) = 0 

to (45) can be derived from the osculating conditions (49) or, more easily, by sub-
stituing x' = x(A), y' = y(X), z' = z(X) into (45) and then by eliminating the deriva
tives dx/dA, ..., d2z/dA2 from the equations 

f=g = df/dA = dg/dA = d2f/dA2 = d2a/dA2 = px + qy + rz - 1 = 

= d(px + qy + rz)/dA = d2(Px + qy + rz)/dA2 = 0 . 

According to our results, the well-known involutiveness condition 

(Gx + pGt) Fp + (Gy + qGt) Fq + (Gz + rGt) Fr = 

= (Fx + pFt) Gp + (F, + qFt) Gq + (Fz + rFt) Gr 

is equivalent to the rank condition mentioned (but not explicitly stated) in Section 28. 
We turn to the converse assertion. Let (47) be given with the involutive associated 

system (50). Our aim is to verify (44). Because of the involutiveness, there exists 
a complete integral y(z, xl,..., xn, x) = y depending on two parameters x, y. This 
means that (51) is satisfied with y0 = y, w = yz, yt = yx so that the first differential 
form n0 = dyc> — y1 dx of Section 25 results. In order to find the following forms 
f/i, ...,i7„-.i we must look at the osculating conditions from the dual (and hence 
equivalent) point of view. At every fixed point z,xx, ...,xn, the hyperplane ( = 
= dz — Up1 dx1 = 0 of the cotangent space is enveloping to the cone 

(52) dz - Xpj dxj = 0 , -Id ' j>7dt ' dx1 = 0 (/ = 1, . . . , n - 1) 

where the functions pJ are implicitly defined by (50). The relations (52) are in fact 
equivalent to the original system £x = ... = £" = 0 with variables related by (47), 
of course. Keeping this in mind, we can rewrite (52) in new coordinates y0,..., y„_i, x 
introduced (a little artificially) by the equations 

(53) yc = y(z, x1, ...,xn,x) , 

yi = M z> x\...,xn,x),..., yn = yx,„x(z, x 1 , . . . , xn, x) 

and any one of the (equivalent) relations 

yxi(z, x 1 , . . . , xn, x)jyz(z, x 1 , . . . , x", x) = -pl(z, x 1 , . . . , t) . 

Then, owing to (51), the first equation (52) multiplied by uz may be rewritten as 

yz dx + I,yxt dx1 + (yx dx — yx dx) = dy — yx dx = 0 

which is equivalent to dy0 — yt dx = 0. (This is already known.) But (52) with 
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I = 1 may be replaced by the equivalent relation d(yz(dz — Y,p5 dzj))jdx = 0, 
i.e., by 

y2X dz + Lyx,x dxl + (yxx dx - yxx dx) = dyx - yxx dx = 0 , 

which is equivalent to dyt — y2 dx = 0. Continuing in this way, one can obtain the 
generators 

0° = {dy0 - y! dx, ...9dyn-± - yndx] , 

that is, (44) is satisfied (with the constant c = n) and this concludes the proof. 
Since the original system (46) written in the coordinates y0,..., yn, x is of the simple 

form dytjdx = yi+l (i = 0 , . . . , n — 1), the general solution is expressed by the 
formulae y^ = u(t), yt = du(f)/df,..., yn = dnu(t)Jdtn and the transformation (53) 
gives the solution in terms of the original variables 

z = z(&) , xl = xl(&) (i = 1, . . . , n; & = (t, u(t),..., d"i*(f)/dt")) 

by inversion. The particular case n = 2 of the system (47) consisting of one equation 
fl(z, xl, x2, dxx/dz, dx2/dz) = 0 proves to be relatively easy since then the involu-
tiveness condition is trivial. In this case, the formulae (53) give the solution 

u(t) = y(z, xl, x2, x), du(t)jdt = yx(z, x1, x2, x) , d2u(t)jdt2 = yxx(z, x1, x2, x) , 

discovered already by Monge. 

EXPLICIT SOLVABILITY WITH CONSTANTS 

30. Preliminaries. We shall deal with factordiffieties of the diffiety 0 = 
= {dv1 , . . . . dvb, du0 — ut dt, du1 — u2 dt,...} on the underlyings space I with the 
coordinates t, vl,...,vb, M0»

 MI» • Clearly ju(<9) = 1 and &(&) is generated by 
(formally) the same vector field A = djdt + 2u i + 1 djdut as in Section 18. Nonetheless, 
(27) must be replaced by the more complicated relation 

(54) d£ = dt A (S(f i _1 + dfl) St + E dgk dvk) + 

+ X(dfl + Z dfl\dvk. dvk) + l(Ogk + S dgkjdvl. dv') A dvk, 

where ^ = Sf^f + 2gfc dvk. We wish to determine submodules S c 0 with £(3) = c, 
^(Adj 3) ^ c + 2. 

31. The cross-section method. As far as the generators of 3 are concerned, there 
may exist some forms in 3 expressible only by the differentils dv1 , . . . , dvb. Let these 
forms be linear combinations of 

(55) nk = dvk+ X h\dvl ( f c = l , . . . , f l ) . 
l = a+l 
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Moreover, there are generators of E involving some contact forms, especially one 
with the lowest #rorder: 

(56) £o = I / J S , + £ g'o dvl e .9, + {9<n, dv>"} (f0 = 1) . 
i=0 l=a+l 

Proceeding with (56) quite analogously as in Section 19 with (28)0, one can get some 
forms 

Zj = 3 H d^x = 9n+j + {!)<n+j9dv*"}eE (j = 1,...,N - 1) 

but with £v = d 1 d^^ i = &n+J+i + {...}eAd)E not lying in E. Moreover, 
quite analogously as in Section 19, T = X 1 d^N = df + (...)e Adj E is a second 
form not lying in E. Hence 

3 = {«•", £<w} , AdjS--{«" I ,€S K ,T} f a+JV = c . 

Consequently, we may introduce the constraints 

„ « + l = cx
9...9v

h = ch'a 

with fixed constants c1,..., cb"a without disturbing essentially the module E. But the 
above data become considerably simpler since the differentials dua+1, ...,dvb com
pletely disappear. In particular, 

nk = dv\ Zj^ZfjSi ('<= l , . . . , a ; j = 0 , . . . , N ; / ^ = 1). 
i = 0 

The coefficients fj may depend on the variables v1,..., va but this fact does not cause 
any troubles and the reasoning of Sections 19 — 24 can be carried over to our problem 
word by word. As a final result, some forms of the type (34) may replace the original 
generators ^ so that the final result is (41) with the constants c — e = a9e = N. 

32. The equivalence problem. Given a diffiety Q with a Cartan filtration (1), we 
ask whether there exists a surjective morphism i: J -+1 with t*Q° = E9 E being 
specified by (44). The solution is analogous as in Section 26. First, let such an i exist. 
Then, the property (38) follows from (41) for the module E by easy calculation. And, 
according to (43), the same property (35) is true for the module Q°. Then the reasoning 
of Section 25 applied to Q° (instead of E) yields certain generators of the type (41) 
for the module Q° so that Q is a factordiffiety of 6), in fact isomorphic to 0. 

33. Theorem. The property (35) rewritten for Q° instead of E is typical for the 
initial term Q° of a Cartan filtration (l) of a diffiety Q in order that Q be a factor 
diffiety of a diffiety O from Section 30. Then Q is even isomorphic to 0 with 
possibly another constant b, namely with b = a. 
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EXPLICIT SOLVABILITY WITH TWO FUNCTIONS 

34. Preliminaries. We wish to determine the factordiffieties of the diffiety 0 = 
= {dut — ui+i dt, dvt — vi + i dt; i = 0,1,...} on the underlying space I with the 
coordinates t, u0, v0, ut, vi9... . Clearly fi(0) = 2 and _?f(<9) is generated by the 
vector field d = djdx + Z(ui + i djdut + vi+1 djdvi). We shall abbreviate St = 
= dut - ui+i dt, r\i = dvt - vi+i dt, Sf = E(Of/Gi/;. 9t + df\dvt. rji), hence df = 
= dfdt + 5f(fe<P0)and 

(57) d£ = dt A Eft/1"1 + df) 9t + (g '-1 + dgl) m + ?(Sfl A S, + Sgl A I,,) , 

where ^ = ^(fl9( + _7*»/*). According to Theorem 16, we are interested in submodules 
S c 0 with t(3) = c, _̂ (Adj S) = c + ^(O) = c + 3. 

35. The hierarchy of generators. An arbitrary form f e 3 may be written as a sum 
n m 

(58) . = __/'-».+ i < r v 
i = 0 i = 0 

If the first (second) summand on the right hand side is not really present, we formally 
put n = — 1 (m = — 1). In the other cases, we tacitly suppose /" 4= 0, gm 4= 0 and 
speak of n (m) as of the 9rorder (i^-order) of f. Now, if (58) is a nonvanishing form 
in 3 with the lowest possible m, then either m = 0 or m = — 1. 

Let us begin with the first case m = 0. Then the relevant minimal form 
n m 

(59)0 £0 = ^/o^i + £ gl
0rji (m minimal, m = 0) 

i = 0 i = 0 

is determined up to a nonvanishing factor. Analoguously as in Section 19, there 
appears a chain of forms 

n+j m+j 

(59),- £, = 3 "I -£;_, = X/J9. + X 0J.7. e 3 (j = I,..., M - 1) 
i = 0 i = 0 

with fM = d "1 d^M-i E Adj 3 but fM ^ 3 . These forms can be explicitly calculated 
by applying (57) and one can see that the forms (59),. are also unique in a certain 
weakened sense: all forms in 3 of the ^rorder at most m + j (j = 0,..., M — 1) 
are linear combinations of £0,..., £j. 

It may well happen that already the forms (59) generate 3. However, then we are 
just within the domain of Sections 18 — 29 of explicit solvability with one function. 

Omitting this easy subcase, there surely exists a nonvanishing form 
n m 

(60)0 &>--E/d-Ji + I- ;o*. (m^m + M) 
i = 0 i = 0 

with the minimal possible m. It is determined up to a factor and a linear combination 
of the preceding forms (59). Then, due to the existence of the form £M $ 2, the fol-
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lowing steps are a little more complicated than before. According to (57), we have 
the form 

fi=n df0 = Afo^ + BIS) &t + ^ o " 1 + 3g0) ff* e Adj E . 

If there exists a function f0 e <P0 such that lx = <Ti — /O£M e £> w e m a y continue 
with £2 = 9 "I d^ e Adj 3 , and so on. As a final result, there appears a certain 
chain of forms of the type 

n + j ifi + j 

(60), lj = a -1 dtj^ -ffiu = ZJPt + I g'jfit (J = 1, ...,N - 1) 
i = 0 i = 0 

with lN = 9 "I dfjy-i e Adj 2, where lN — f<i;M £ 3 for any choice of the function 
fe <P0. So we have two different forms in the module Adj E not lying in 2, and the 
existence of a third form of the type T e df + {San, *7aii}

 c a n he proved quite analo
gously as in Section 19. It follows that the forms (59), (60) generate the module E. 

Let us mention the second case m = — 1. Let (28)0 be a form in the module E 
with the lowest possible n. Then there appear forms (28)̂  with £N — d "1 d£N-i ^ 2. 
The subcase when these forms (28) generate 2 may be omitted so that there exist 
other forms in 2. Let (60)0 be such a form with m minimal (note that the inequality 
m ^ m + M is ignored here). Then either m ^ 0 or m = —1. In the first subcase 
we continue with the forms (60)j. In the latter subcase, we take a form (60)0 with the 
lowest possible n9 n = n + N (the second sum in (60)0 is not present here!) and 
continue with the forms d "1 d{0, d "1 d£ l 5 . . . exactly as before. It follows that (28), 
(60) (without the second sums) are generators of the module 2. These generators are 
unique in a certain weakened sense which need not be specified here. 

36. Technical rearrangements are useful in order to include all the above subcases 
into a unified and lucid schema (permitting further generalizations to the case of 
explicit solvability with several arbitrary functions). We should like to prove that the 
generators of the module 2 can be assumed to be of the type 

(61) tj = ".£ (ffr + g'/ld U = 0, • •., N - 1; ZJ+. = d 1 &Q , 
i = 0 

m + k 

(62) lk = £ (fk% + gl?,,) ( k - 0 M - l ; { J + 1 = n d { l + fkSH; 
i = 0 

m ^ n + N) 

with a totally ordered family of (equal 9r and nr) orders which fill up certain non-
overlapping intervals n = j = n + N — 1, m ^ f c ^ m + M— 1. 

Such a state can be achieved in both the above cases .The proof runs as follows: 
In the first case m = 0 with the primary generators (59) and (60), we make a shift 
of all lower indices 

ni »-> fi+const. (const, is large enough) 
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in the expressions for the generators thus ensuring the rjrorders exceed the cor
responding 9 rorder§, that is, ensuring m = n and m ^ n after the shift just made. 
(One can realize that the sought factordiffiety of O is not substantially changed. 
Moreover, the f/rorders of the generators are again totally ordered and fill up two 
non-overlapping intervals exactly as before the shift.) Then, after a sufficiently 
general linear substitution with constant coefficients of the type 

ut i-> Au{ + Bvt, vt i-> Cut + Dvt 

and the same substitution on the forms Sh r\i9 the 9 rorder can be made equal to 
the //rorder for every generator of S. That is, we have formulae of the type (61), (62). 
The second case m = — 1 with the primary generators (28) and (60) is quite analogous 
(and even easier since some summands with the forms r\{ are missing) so that the 
above reasoning need not be repeated. 

We conclude this section with the formulae 

(63) dtj = dt A ZJ+1 + Ztyj A 3, + Sg) A m) (j = 0, . . . ,N - 1) , 
i = 0 

m + fc 

(64) dlk = dt A (£fc+i + fkQ + X {Sfi A 9, + Sgi A m) (k = 0,..., M - 1) 
1 = o 

playing the role of (29). They easily follow from (57), (61), (62). 

37. Structural formulae. Instead of the original generators dt, i90, rj09 Si, rjt  

of the module #1 ? we shall use the family of forms which is obtained if every form Sj 
(j = n,..., n + N) is replaced by £j, and every form r\k (k = m, . . . , m + M) is 
replaced by £k. Then the formulae (63), (64) can be rewritten as follows: 

d£; = T, A ZJ+l +ioCj A £, +"X/Jj A S, + "£>] A -., (j = 0,...,JV - 1) , 
i = 0 i = 0 i = 0 

N-l fc 

dlfc = Tfc A (f t + 1 + f^) + £ gj A '£, + 0Ck A ^ + X al A ?, + 
i = 0 i = 0 

J I - 1 w + fc m— 1 

+ ( £ + I )#. A s, + 2ri A fj, (k = o , . . . ,M-i) , 
i = 0 i = n + N + l i = 0 

where the forms on the right hand sides are of the special type 

Tjedt + {9<n>1<n+j} ; a) e {all except dt} ; j8j, y)e {£j+1<,<N, 1<M} \ 

?kedt + {fl<fl, SN+K,<w+k,^<m, £N} ; aj, a£ e {all except dt} ; 

^kG{sfc+l<)j Pk> 7fcG \£fc+K,<Afj • 

This can be derived quite analogously as in Section 20. 

38. Reduction procedure of the structural equations is a little tedious but follows 
the same lines as in Section 21 and need not be repeated here in much detail. As 

90 



fas as the first group of differentials d^s is concerned, clearly j3Jv-i, yjv-i G {?<N}> 
and using the identity d2^N^1 = 0 one can prove fll

N-1 = yl
N^1 = 0 by an induction 

argument on the lower index of the presumed summand | j e {|<M}« Then fi) = 
= ylj = 0 follows from the identity d2£j = 0 by a simple induction on j . The second 
group of differentials d<fk is seemingly more complicated, but the vanishing of 
a k = fil

k = yk = 0 can be verified even more easily than before by induction on the 
lower index k. 

At last, one can see that Xj A xj+1 = 0 (j = 0 , . . . , N — l), hence T0 = ... = xN = 
= T G Adj E which corresponds to the relevant results of Section 21. However, only 
the relations of the type xk A xk+1 = £N A j3 (fc = 0, . . . , M — 1) with some form 0 
can be read from the identity d2lk = 0 so that we conclude xk = x + gk£N 

(k = 0 , . . . , M — 1) with appropriate functions gke <P0. The final result 

(65) d ^ = T A fJ + 1 + I aj A £, (i = 0, ...,N - 1) , 
i = 0 

(66) d?fc = (t + gkQ A (&+1 + A^) + £ 5j A c(- + S ft A «?, 
»=0 i = 0 

(fc = 0 , . . . , M - 1) 

is a little more complicated than (33). 

39. The canonical formulae. Since (65) is identical with (33), we may suppose the 
validity of formulae (34) for the generators f0,..., ^ - I - And, keeping these genera
tors, we shall successively modify <f0,..., cfM-1 in order to obtain some simple expres
sions for them. In doing so, | k may be replaced by any form of the type 

flu + - W * - i + ••• + Klo + fcN-i£N-i + ... + Ki0 ( / * 0) 

without disturbing the structural formulae (66), but some data (as f k 9 . . . , J3J) need 

a slight adaptation (which need not be explicitly explained here). 
We begin with l0. Let us look at the submodule S9 = {f<N> £o} c £• Clearly 

Adj E9 = {T, f^, cf^j} = {dx9dy^N9^x}. As follows from Section 9, there are 
generators of E9 expressible by the adjoint variables to S \ that is, by the variables 
x9 yo> • ••> yN a n d two additional functions, say z0, z t . In particular, 

(6?) /fo = V d z o + ft" dzA + hN dyN + ... + ft0 dy0 + ft dx 

where the coefficients ft', ..., ft are functions of the above mentioned adjoint variables. 
Then, l0 being replaced by the new generator f£0 — ftjy-i£N-i — ... — h0^09 the 
formula (67) reduces to £0 = ft' dz0 + ft" dzt + ftN dy^ + ft dx. At last, if we take 
an appropriate multiple of the last form £0, the expression ft' dz0 + ft" dzt turns 
into a complete differential which may be identified with dz0. After all these changes, 
we have 

C0 = dz0 - p0 dx - q0 dyN (-p0 = ft, -q0 = ft*) , 

where p09 q0 are functions of the variables x, >>0,..., yN9 z0, z1# 
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Keeping this form <f0, we may continue with \1 and the submodule S9 = 
= {£<N910, cfx} with Adj S9 = {T, £<N9 cfgl} = {dx, dy<N, ^2} = {dx, dygN, dz0, 
dz 1 ,dz 2 ) , where z2 is a new function. Using similar arguments as above, one can 
find a new generator of the type l1 = dzt — px dx — q1 dyN9 where pl9 q1 are 
functions of x, y 0 , . . . , yN9 z0, zl9 z2. 

Keeping this form \l9 we continue with \l9 and so on, to the final result 

(68)1>2 Zj = dys - yj+1 dx , |fc = dzfc - pfc dx - qk dyN 

(j = 0 , . . . , N - 1, k = 0 , . . . , M - 1) 

where x, yj9 zk9 pk9 qk are appropriate functions. In particular, 

(69)fc pk = pk(x9y0,...,yN9 z09...9zk+1) , qk = qk(x9 y09 ...9yN9 z 0 , . . . , zfe+1) 

are composed functions of the above mentioned type. One can verify (looking at 
Adj {£<N9 |^k}) that zk+i is really present in formulae (69)fc. If, for instance, zk+1 is 
really present in the functions pk9 one can ensure pk = zk+1 by a simple change of 
variables and (68)2 reduces to lk = dzk — zk+1 dx — qk dyN resembling the contact 
forms of the first group (68) j . 

The formulae (68), (69) are sufficient in all explicit calculations. Nevertheless, the 
next (essentially weaker) consequence is also of certain interest. 

40. Theorem. Every factordiffiety of the diffiety O of Section 30 is isomorphic 
either to the same diffiety or to the diffiety 0 from Section 18. 

Proof. Consider the submodule S9 c i*Q generated by (68) together with the 
forms dyj - yl+1 dx (j = N9...9N + M; ys+1 = LxyS9 X e Jtr(0)). 

41. A note on the equivalence problem. Given a diffiety Q9 we are interested whether 
i*Q° = S for some module S with the generators (68). Instead of employing the 
general equivalence theory of exterior systems, one may proceed more elementarily 
as follows. In view of the existence of generators (68), there are chains 

(70) {{o}«=... = {«o,...,e.Y-i} = 
c {Co> •••> Cjv-i, <=oj c ••• c- {£o> •••> C N - I , to, •••, £ M - I J

 = -5 

of submodules in S of a very special type. Namely, recalling (68), (69), one can check 
the properties 

<Adj {(0,..., £,}) =j + 2, /(Adj {^0,..., iN.t, l0,..., 4}) = N + k + 3 , 

{£0, - , ZJ+i} = Adj {Z0,..., Q (j = 0, . . . , JV - 2) , 

{«fo,—,«fw-i,«5o,—,f*+i} c Adj{tJ0,...,«f.v-i,?o,—,?*} (lc = 0, . . . ,M - 2 ) . 

Since t* identifies Q° with E, a quite analogous chain must be present in the given 
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module Q°; this is the chain {t*_1C0} c {**-1£o> l*~l%i} c ... , of course. This 
method resembles the approach of Sections 26 and 32 based on the sequence of derived 
submodules 3 <-= Der.E c ... with the property (35). However, in our problem the 
chains (70) with the above properties need not be uniquely determined so that the 
calculations are more interesting. 

42. Example. Quite in the spirit of Sections 28 and 29, let us have a brief look at 
the explicit solvability of the equation dzjdt = h(dxjdt, dyjdt) involving three 
unknown functions. According to the general theory, the diffiety Q with the Cartan 
filtration (1) where the first term Q° is generated by the forms 

(71) i = dx - x'dt, n = dy - / dt, £ = dz - z'dt (z' = h(x', yf)) 

is coming into play, and we are going to determine other generators that are of the 
kind (68) for the module Q°. In principle, two subcases may occur. Instead of the 
original variables t, x, y, z, x, y, either there are some new coordinates u, v0, vu w0, 
w1? w2 such that we have the generators 

(72) dv0 — vt dw , dw0 — p0 dw — q0 dvx , dwx — pt dw — qx dvt 

(withPo* go functions of u, v0, vx, w0, wx), or there are coordinates u, v0, vu v2, w0, wL 

such that Q° possesses generators 

(73) dv0 — vx dw , dvx — v2 dw , dw0 — p0 dw — q0 dv2 

with appropriate functions p0, q0. 
Let us begin with the first subcase. Let us look for the submodule Q' c Q° 

generated by the first two forms of (72). As follows from (72), we have 

(74) •(Adj O') = 5 , tfc Adj O ' . 

On the other hand, Q9 may be generated by two linear combinations of the forms (71). 
Assuming Q' = {£, + fC, r\ + gC} for definiteness, we are led to the question whether 
there exist functions f, g such that (74) is satisfied. The calculations are easy provided 
the auxiliary basis of forms 

dt, C, dx', dy', H+fZ, Z + grj 

and the dual vector fields are employed. Abbreviating p = dhjdx', q = dhjdy', 
we have 

d({ +fC) = d* A ((1 +fp)dx+fqdy') + df A C, 

d(S + G*i) = dt A (gp dx' + (l + gq) dy) + dg A C , 

and specifying df = a dt + b dx' + c dy' + . . . , dg = A dt + B dx' + C dy' + ..., 
one can explicitly find the generators of Adj Q' and see that (74) is satisfied if and 
only if the matrix 
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0 0 a A 1 + fp gp fq 1 + gq 0\ 
a A 0 0 -b -B -c -C 1 

1 + fp gp b B 0 0 0 0 0 
fq 1 + gq c C 0 0 0 0 0/ 

is of rank three. Then, a simple reasoning shows that this is the case if and only if the 
submatrix 

A +fp gp b B\ 
\ fq 1 +gq c Cj 

is of rank one. The last condition can be expressed by 

(75)^2,3 " l+fp + gq = 0, gc+fb = 0, bC - Be = 0 . 

Since b = dfjdx', c = dfjdy\ B = dgjdx', C = dg\dy'9 the identity (75)3 implies 

g(t9 x, y9 z, z', / ) = G(f, x, j , z, /(*, x, y, z, x', / , z')) 

(briefly a = G(/)), where G is an arbitrary function. In virtue of this result, the identity 
(75)2 reduces to the equation G(f) df\dy' + f df\dx' = 0 for the function / . One 
can easily check the general solution/. According to the well-known arguments, it is 
implicitly determined by a relation of the type 

(76) G(f)x'-fy' + H(f) = 0, 

where H = H(t, x, y, z, •) is an arbitrary function. Finally, the identity (75)x can be 
rewritten as 

(77) 1 +fdh\dx' + G(f) dhjdy' = 0 

which is a condition on the function h in order that (75) may be satisfied. 
It is not much difficult to prove that (77), (78) are also sufficient for the existence 

of generators of the type (72) to the module Q°. Moreover, investigation of the second 
subcase with generators (73) immediately leads to the problem of determining a sub-
module 52' = {f + /C, r\ + gt) cz Q° with the property tf(Adj fi') = 4. This proves 
to be an even more restrictive requirement. In particular, the conditions (76), (77) 
must be satisfied, too. So we conclude that there are nontrivial requirements on 
the function h in any case. 

43. Aside. The last result is in contradiction with the so called Darboux method 
as presented in [2]. This method was invented for solving the equation of the type 
/(yi> •••> y'n) = 0 (' = d/dx) and proceeds as follows. 

(i) Functions y't(x) (i = 1 , . . . , n — l) are chosen quite arbitrarily and y^(x) is 
calculated from the given equation (we suppose df\dy'n # 0). 

(ii) New auxiliary functions Y{ = yt — xy\ (i = 1, . . . , n) are introduced. 
(iii) A function u(x) is arbitrarily chosen. 
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(iv) We denote 

Á = 

n • . . Yn 

УÍ • . . ? : 

Уľ • .. *?> 
(v) By means of the equations u(x) = A(x), u'(x) = A'(x), ..., u(n 1}(x) = 

= A^"1^*), the functions Y t(x),..., Yn(n) are expressed in terms of the functions 
y'[{x),...,y^x),...,y[2"-i\x),...,y[2,,-1\x),u(x),...,u^-1\x). This is possible 
since Y[ = — xy'[, cf. (ii). 

(vi) Using (v) and (ii), one arrives at the formulae yt(x) = Yt(x) + x y'^x) giving 
an explicit expression for y,(x) in terms of quite arbitrary functions yi(x),..., y'„- l v x), 
u(x) and their derivatives. 

But in fact, the method fails even for the simplest case n = 2,f(y'iy y'2) = (y i) 2 + 
+ (yi)2 resolved already by Euler. The point is that the above chain ( i ) . . . (vi) 
cannot be run in the reverse order: (v) implies only Yt = zy[ with a function z + — x. 

EXPLICIT SOLVABILITY WITH QUADRATURE 

44. Preliminaries. We are interested in factordiffieties of the diffiety 0 = 
= {dv - h(t, u0,..., ua) dt, dut — ui+i dt; i = 0, 1,...} on the underlying space I 
with the coordinates t,v,u0,ux,.... Clearly fi(0) = 1 and JF(Q) is generated by 
the vector field 

X = d + h djdv = djdt + Z I I I + 1 djdut + h djdv. 

If we use the abbreviations n = dv — h dt, St = dut — ui+l dt, 5 = ltdjdui9h 

ht = dhjduhfv = dfjdv, the formula playing the role of the previous (27), (54), (57) 
reads as follows: 

(78) d{ = dt A TtJ1-1 + Xfl + ght) 9t + XSp A 9t + 

+ (Xg dt + Sg- lfl9t) A n , 

where £ = Yfl9t + gn. As usual, we are interested in submodules 3 a 0 with the 
property /(Adj 3) ^ f(3) + 2. Since the story is already long enough, only the cases 
a ^ 3 will be analyzed. In order to make the exposition more interesting, the previous 
scheme of reasoning will not be followed with much servility. 

45. Some results on diffietics. We interrupt the main subject for a moment to 
mention some properties of filtrations and morphisms of general diffieties Q and 0 
under the supposition fi(Q) = n(0) = 1. The results presented in this section are 
only slight (but very essential) modifications of the ideas in [3] and call for a thorough 
analysis and generalizations in a separate paper. However, we pursue only a modest 
goal, to clarify the arguments in the subsequent exposition. 
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(i) Let (1), (9) be semi-involutive filtrations, let K be the lowest index satisfying 
Q° c QK. Assume K = 1. There exists oeQ0 with co $ QK~l. If X e Jf, X + 0, 
then clearly jS^cue.Q1, £?xa>$QK, hence J?xco$Q0 and the semi-involutiveness 
of (9) implies J^co £ QK for any I = 1. But n(Q) = 1, thus the classes of the forms 
J?xo), <£XOJ, ... are free generators of the module QJQ°, cf. the semi-involutiveness 
of (1). Consequently QKjQ° = {0}, QK = Q°. 

(ii) Given two semi-involutive filtrations of the same diffiety, one of these filtra
tions is a c-normal prolongation of the other for an appropriate c (immediately 
from (i)). 

(iii) Since a normal prolongation of a Cartan filtration is again a Cartan filtration, 
there exists a unique Cartan filtration of a given diffiety which is the finest one in 
the sense that any other Cartan filtration of the diffiety is its c-normal prolongation 
for an appropriate c = 0. 

(iv) Let (1) be a Cartan filtration. Then /(Adj -3°) = KQ°) + 2 ( s e e (36))> h e n c e 

S(Q°) = /(Der Q°) + 1 (use point (iv), Section 25). The completely integrable case 
Q° = Der Q° is not interesting (it implies Q = Q°), so that we will assume £(Q°) = 
= /(Der Q°) + 1 in future. Now, let us look at the module Der2(Q°). Obviously 
/(Der Q°) = /(Der2 Q°) + 2 (a consequence of (iv) Section 25). The equality 
/(Der Q°) = /(Der2 Q°) means Der Q° = Der2 Q°, that is, (35) with e = 1 is valid 
for the module Q° instead of 3. Denoting c = /(Q°), we have Q° = {dvl,..., dvc _ 1 , 
dy0 — yx dx\ (cf. (41) for the module Q°) and according to Theorem 11, the diffiety Q 
is isomorphic to the diffiety 0 from Section 30 with the constant b = /(.Q0) — 1. 

(v) Continuing the preceding point, we shall consider the case /(Der Q°) = 
= /(Der2 Q°) + 1. Then we have the equalities 

(79) /(Q°) = /(Der Q°) + 1 = /(Der2 Q°) + 2 

identical with the initial part of the chain (35). One can easily find that the reasoning 
in Section 25 gives also the initial part of the relations (38) and (39), that is, 

(80)1>2 /(Adj Der Q°) = /(Der Q°) + 2 , Adj(Der Q°) ZD Q° . 

Moreover, a combination of arguments of Sections 10 and 25 leads to several im
portant conclusions: first, according to (80)1? there are some free generators of the 
module Der Q° of the kind 

(81)° dyk
0 - hk dyc

Q - P dx (k = 0, .., c - 1; c - 1 = /(Der Q0)) , 

where y0>-.->yo> x a r e adjoint variables to the module DerQ 0 and we suppose 
dx £ Q°; note that hk, hk are certain functions expressible in terms of these adjoint 
variables (compare this with the particular case m — c = fi(Q) = 1 of (18)°). 
According to (80)2, the forms (81)° together with an appropriate form of the type 
dyc

0 — yi dx freely generate the module Q°. Clearly y{ belongs to the adjoint variables 
of the module Q° but not of Der Q°. Altogether we have free generators 

(81)1 d/0 - gk dx (k = 1 , . . . , c - 1; gk = hky\ + hk), dyc
0 - y{ dx 
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to the module Q° exactly corresponding to the family (18)1. Continuing in this way, 
we shall look at the next module Ql using (17). It follows that there is a form of the 
type dy\ — yc

2 dx generating together with (81)1 the module Q{. The new function yc
2 

appearing here belongs to the adjoint variables of the module Ql
9 but not of Q°. 

Quite analogously, owing to the semi-involutiveness, one can see that the forms 

(81)I + 1 dyk
0-g

kdx9 dyc
s-y

c
s+1dx (fc = 1, . . . , c - 1; s = 1, . . . , /) 

(where yc
+1 = Xyc

s9 X e J^(Q) is normalized by Xx = 1) are free generators of the 
module Ql (I ^ 1). Besides, note that the variables x9 yl9..., y09 y\9 yc

l9... may be 
chosen for coordinates on the underlying space J. 

(vi) Summarizing the results of the preceding point we draw the following con
clusions: If (1) is a Cartan filtration satisfying (79), then the new filtration (9) 
defined by 

S° = Der .Q°, Ql = Q1'1 (l = l) 

is again a Cartan filtration. This follows directly from the explicit expressions (81) 
for the generators. Consequently, (79) cannot be true if (l) is the finest Cartan 
filtration so that necessarily /(Der Q°) = /(Der2 Q°) + 2 in this case. 

(vii) We shall derive some preparatory results needed in the most interesting con
cluding point (viii) to follow. Two diffieties will be considered at the same time. Let 

(82) 0*: 0 ° c 0 l c ... c 0l c ... c 0 = \J0l 

be a Cartan filtration of 0, let 3 c 0 be a finitely generated submodule, and K the 
lowest index satisfying 3 c 0K. Assume 1C _• 1. One can see that there exist two 
vector fields X9 Ye 0KL linearly independent modulo the space Adj 3L. (indeed, 
in the other case 3 c Der 0K = 0K~l as follows from point (iv) Section 25 applied 
to the definition of the module Der 0K.) Assume moreover /(Adj 3) = / (£) + 2. 
Then clearly 0KL c 3L = {X, 7, Adj 3L) and the equalities t(0K) = /(Der 0K) + 
+ 1 = /(Der2 0K) + 2 (valid for every Cartan filtration provided K = 1) imply 
the inequalities 

{(3) = /(Der 3) + 1 = /(Der2 3) + 2 . 

(Look at the vectors generating the modules Der 39 Der2 3 using (iv) Section 25.) 
(viii) Let Q be a factordiffiety of 09 let (1) be the finest Cartan filtration, (82) 

a Cartan filtration, r.I->J the relevant morphism. Then either i*Q° c (9°, 
or the diffiety Q is isomorphic to the diffiety 0 from Section 30 with the constant 
b = t(Q°) — 1. Proof. Let the inclusion be not true and choose 3 = i*Q°. Then 
(vii) may be applied. Since 1* is injective and (79) cannot hold, we obtain either 
Q° = Der G0, or Der Q° = Der2 Q°. Then point (iv) concludes the proof. 

46. The nearest order cases a ^ 2 will be mentioned here, but let us recall the 
problem in a manner employing the achievements of Section 45: We look for the 
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factordiffieties Q of the diffiety 0 from Section 44. Let (82) be the Cartan filtration 
with terms 

Ql = {dv - h(t, w0, ...,ua)dt, duj - uJ+ldt; j = 0, ...,a + / - 1} , 

let (1) be the finest Cartan filtration of Q. Omitting the simple case of Q isomorphic 
to the diffiety 0 from Section 30 (which is already easy for us), we have i*Q° a 0° 
with an injective e* (cf. (viii) Section 45). So it is sufficient to deal only with the 
submodules S = i*Q° c 0 ° , which essentially simplifies the problem. We need 
<f(Adj S) ^ £(S) + 2, of course, exactly as before. 

If a < 0, that is, h = h(t), then dv — h dt is a multiple of a differential dw and 
0 = {dw, duj — uj+1 dt; j = 0,1, . . .} is only the diffiety from Section 30 with 
6 = 1. 

If a = 0, that is, h = h(t, u0) with dhjdu0 =|= 0, then 0 is even isomorphic to the 
diffiety 0 from Section 18. 

If a = 1, that is, h = h(f, w^Wj) with 3h/Gw1 =t= 0, then 0 ° = {dv — h dt, 
dw0 - wx dt}, <?(0°) = /(Der 0°) + 1 = <f(Der2 0°) + 2 and Der2 0 ° = {0} so 
that we have the chain (35) for the module 0 ° (instead of S) with the constant e = 2. 
Hence 0° = {dy0 — yt dx, dyx — y2 dx} for appropriate functions x,y0,y1,y2 

(cf. (42)) and 0 is again isomorphic to the diffiety from Section 18. 

Look at the case a = 2, that is, h = h(t, u0, ul9 u2) with dh\du2 4= 0. Then the 
inclusion S c 0 ° may be proper or not. If S =# 0 ° , then /(£) < {(0°) = 3, hence 
4 ~ ) = 2 and <f(Adj £) = 4-?) + 2 = 4. Since <f(£) = <f(Der S) + 1 (cf. the begin
ning of (iv) Section 45 for the module S instead of Q°), (35) is valid with e ^ 2 for 
the module S and Q proves to be isomorphic to the diffiety from Section 30. In the 
other case L*Q° = 0°, the diffieties Q and 0 are isomorphic and we have a trivial 
case of a factordiffiety of 0. 

47. The lowest nontrivial case occurs if a = 3, that is, h = h(t,u0,..., w3) with 
dh/du3 4= 0. In this case 6>° = {ft, S0,Q1, 92}, cf. the notation introduced in Section 
44, and our aim is to find submodules S c 0 ° with <f(Adj S) ^ t(S) + 2. Clearly 
£(S) ^ <f((9°) = 4 and we may promptly omit the extremal cases £(S) = 4 (Q is 
isomorphic to (9) and ^(S) = 1 (which is very easy). If t(S) = 2, then /(Adj S) ^ 4 
and one can easily prove the existence of a chain (35) with e ^ 2 so that there are 
generators (41) and Q is isomorphic to the diffiety from Section 30 with an appropriate 
constant b. It follows that only the case /(S) = 3 may be of certain interest. 

Assuming t(S) = 3, we have three linearly independent generators of the module S, 
linear combinations of the forms n, &0, 9l9 92. Let us recall the fundamental principle: 
if £ G S, then £ = djdt ~1 df belongs to Adj S, and if even £' e E, then £" = djdt 1 
"I d£' e Adj IE, and so on. Following this principle and looking at (78), one can find 
only three types (say: A, B, C) of these submodules with the relevant generators as 
follows: 
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A: £0 = 3i + A > , £± = S 2 + / 9 i + X / . 3 0 , 7 r , 

B: 9099l9 Z = g32 + n (g + 0), 

C: £0 and £x are as above, £ = 0#o + 7t (g 4= 0). 

Here / and g are appropriate functions and it is supposed that n <fc E in the cases 
B, C. The corresponding modules Adj S are generated by the forms from S together 
with the forms 

A: d t + ( . . . ) , Z2 = 33+fS2 + 2Xf.31+X2f.S09 

B: dt + ( . . . ) , 33(or, alternatively, £' = (g + h3) S3 + (Xg + h2) 92), 

C: dt + ( . . . ) , £2 as above (or £' = gSt + Xg . S0 + Ifc,S|)-

We shall now consider these cases separately to derive canonical forms for the gener
ators. We should like to employ the method of cross-sections (cf. Section 24) since 
it proves to be the most effective one. To this aim, some preliminary information 
concerning the functions / , g is needed. 

48. The subcase A. The calculations will be made using the basis n9 dt9 3 0 , £0, £l9 

f2> S4, #s> ••• of the space <PX and the dual basis denoted by d\dn9djdt9 d\d$09 

3/3<i;0,... for the vector fields. Since n e E and dn = dt A -Sftjd;, we have 

3/df 2 1 dn = dt e Adj S , 3/df ~| dyr = I M . e Adj S . 

On the other hand one can directly find a decomposition of the type 

Ma + M 2 + M i + Mo = Hi + Q£i + R£o + s s 0 , 

where P, Q9 R are unimportant coefficients (which need not be specified), but the 
last one necessarily vanishes: 

(83) 0 = 5 = - h 3 K 2 / + 2h3(K/)2 + 

+ (h2 - Ai + (*2 - hz(l + / ) ) / ) Xf+h0 

(since, as we know, S M * + Adj S). 
Assume / = /(f, v9 w0, ..., wm) with df\dum + 0. There is a summand 

— h3um+2 df\dum in (83) and the functions h l 5 . . . , h3 can be expressed only in terms 
of the variables t, w0 , . . . , w3. So we conclude m + 2 g 3, hence m ^ 1 and / = 
= / (^ ,^ t / 0 ,w 1 ) . 

Let us now look at the formula 

dtx = dt A £2 + 5/ A 3 , + <5(X/) A 90 + 71 A ( / ^ + (Xf)v S 0) , 

a particular case of (78). As one can see, 

d\d^2 -i dit = d\dz2 n O"(X/) A s0 + (...) = /„fc3s0 + (...) 

with the summand ( . . . ) e Adj S. This implies /„ = 0, hence/ ="/(*, «0, Hi). 
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At this stage, the cross-section w0 = const, can be applied. Denoting by tildes the 
results of constraining (at least partly, whenever necessary for better understanding), 
we obtain the generators 

ft = dv — h dt, cf0 = dwx — (w2 + w,/) dt, 

? t = dw2 + /dw 1 - (w3 + w 2 /+ utXf)dt = 

= dw2 - (w3 + ux(Xf - f2)) dt + fl0 . 

In terms of the variables t = t9 v = v9 v0 = wt, vt = w2 + uj9 v2 = u3 + 
+ ux(Xf — / 2 ) , the generators are expressed as 

dv — /i dt, dv0 — Ui dt, dvt — v2 dt, 

where h is a function of *, wx, w2, w3, that is, of the variables t9 v09 vx, v2. It follows 
that the factordiffiety Q is isomorphic to the diffiety from Section 44 but with 
another function h under the sign of quadrature with the lowered order a = 2. 

49. The subcase B leads to the same results, but simpler arguments are sufficient. 
The calculations can be made in the basis dt, 909 9l9 £, 929 93 , . . . for the differential 
forms and the dual basis djdt, djd&0,... for the vector fields. Clearly df = djdt 1 
"1 d92 e Adj S. Moreover, 

5' = (g + h2) 33 + (Xg + h2) S2 e Adj S = {S0, 9U df, S2} , 

hence g + h3 = 0. Then the cross-section w3 = const. = c immediately applies 
and gives the generators 

30 = 9o > 5X = Sx , f = - h 3 S 3 + 7i = dv - h3 dw2 - (h - ch3) dt. 

Replacing v by the new variable w = v — Jh3 dw2 (a primitive function of h3 with 
respect to w2), one can see that the last generator of the module S may be replaced 
by a form of the type dw — E df, where h" is a certain function of f, w0, w1? w2. It 
follows that the conclusions are exactly the same as in the preceding case A. 

50. The remaining subcase C is the most interesting one and will conclude this 
paper. For the reader's convenience, let us recall the main part of the problem: 
In the space of variables f, v, w0, ul9..., we consider the module S generated by the 
forms 
(84) f0 = 9 i + A ) > Zi = $2+f$i+Xf.909 t; = gS0 + n9 

and we are interested in necessary and sufficient conditions on the functions / , g 
(g 4= 0) which ensure ^(Adj S) ^ 5. We shall use the basis 

dt9 # 0 > C> so> Sl> ^2> ^4> $5> ••• 

and the relevant dual basis of vector fields, where 

(85) f2 = djdt "I d^ = 93 + f92 + 2Xf.9, + X2f.% e Adj S . 
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In terms of this basis, the formula (78) easily gives 

d£ = df A £' + 80 A S0 + f A g A , dfo = d* A £t + 8f A S0 + { A ft,S0 , 

d^ = d* A i2 + 5f A (£0 - /S0) + W A S0 + 

+ (« - ^ o ) A (M0 + ((A/). - // .) S0) . 

Since % = djdt ~1 d£ = gSx + XgS0 + ZMi G AdJ S, t n e f o r m £' i s a linear com
bination of f0, £l9 $2, say, 

(86) gSx + XaS0 + M o + . " + M a = ^3(^3 + Hi + QZo) 

with unknown coefficients P, Q. Then, inserting (84), (85) into (86), one can eliminate 
P, Q and the existence of a relation of the type (86) proves to be equivalent to the 
identity 

(87) hX2f + (-3fe3/ + h2) Xf + h3/
3 - h2f

2 + h1f-h0-Xg+fg = 0 

which is of fundamental importance. This identity provides (a seemingly very 
complicated) partial differential equation for the function / and will be analyzed in 
a moment. 

In the meantime, let us return to the primary requirement *f(Adj E) ^ 5. As 
follows from the general theory of adjoint variables, beside the forms (84), (85) also 

(88) bg = a/aSo l d ^ 5f = a/5S0 "I d£0 , SXf = 5/5S0 I dft , 

(89) -fc3 At + ^ S0 = S/3£2 n d£ , 
dw3 

-dř + f ^ j + ^ s ^ a / ^ - i d ^ 

(and d/d£2 "I d£0 = dfjdu3S0, but it does not matter) belong to the module Adj E. 
(We omit some summands from the module Adj E to abbreviate the formulae.) 
This implies 

dgjdu^O (i = 4), df\dui = 0 (i = 3), 
that is, we have 
(90) g = g(t,v,u0,u1,u2,u3), f = f(t,v,u0,uuu2) 

since the summands with S; (i ^ 4) cannot be present in (88). Moreover, the forms 
(89) must be proportional: 

<91> ^ = h3(fL + (Xf)3) = h3(2f + h3fv). 
du3 \du2 ) \ du2 ) 

Conversely, the conditions (87), (90), (91) together imply 

Adj S = {£, £o» Ci, £2> h3 dt - dg\du3 . S0} 
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so that the requirement /(Adj 3) ^ 5 is satisfied (even with equality). We are going 
to look at these conditions in more detail. 

Inserting Xf = / + hfv, X
2f = X(Xf) into (87), one obtains a rather long expression 

which is a function of the variables t, v,u0,..., w4; cf. (90). However, the variable u4 

appears only in the group of terms uAr(df\du2 + h3fv — dgjdu3) which must vanish, 
of course. According to (91), we obtain dfjdu2 = 0, and (91) reduces to dgjdu3 = 
= (h3)

2fv. It follows that (90), (91) may be replaced by simpler relations 

(92) ls2 9 = $(h3)2fv du3 + G(f, v, u0, ux, u2), / = f(t, v, u0, ux) 

with a certain fixed primitive function but arbitrary G. 
Inserting (92) into (87), the arising expression is a function of the variables 

t, v, u0,..., w3 of a very special kind: It is a linear combination of certain functions 
depending on the variable u3 and expressible by h (as are, for instance, hh hth, 
j(h3)

2 du3, u3hh and so on) with coefficients expressible by the functions / and G 
and hence independent of u3. It follows that under some linear independence hypo
thesis on hhhih,... each coefficient must vanish, which permits to specify the 
functions / and G. If there are some linear relations between ht hth, ... , they may 
be taken into account with an analogous final effect. However, such relations are 
possible only for some particular (and very interesting) cases of the function h. To 
perform this program to the full extent is rather long. For this reason, we conclude 
the paper with two very particular examples h = e"3 and h = u\12. 

Let us denote f{ = dfjdut and analogously for fthfvhfihftt. Let us moreover put 

A = dft + ZUi + iUj+Jij + u2f0 - 3fdft + / 3 , 

B = 2dfv-3ffv, C=-dfv+ffv, D=-dG+fG. 

Assuming the function h = h(u3) independent of the variables t,v,u0,u1,u2 and 
abbreviating H = J(/i3)2 dw3 for a fixed primitive function, we obtain as a result 
of inserting (92) into (87) the equality 

(93) Ah3 + Bhh3 + CH + D + f,u3h3 - fvvhH + fvvh3h
2 - Gvh - G2u3 = 0. 

For a ,,quite general" function h, each coefficient must vanish which immediately 
gives / = f(t), G = const, exp ( j / dt) with the function / satisfying the ordinary 
differential equation 

(94) d 2 / / d t 2 - 3 / d / / d / + / 3 = 0 . 

Then the cross-section method leads to the same result as above: The diffiety Q 
is isomorphic to 0 from Section 44 but with the reduced order a = 2. 

Now, let us specify h = eM3. Then (93) turns into 

(95) i / „ e3"3 + (B + iC) e2tt3 + (A - Gv) e"3 + /1w3ett3 + G2u3 + D = 0 . 

The vanishing of the first, fourth, and the last but one coefficients easily gives / = 
= P(t, u0) v + Q(t, u0), G = G(t, v, u0). Moreover, a simple analysis of the con-
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condition A = Gv implies f0 = 0, P = 0, hence f = f(t) and then the condition 
turns into the equation d2f/dt2 — 3fdfjdt + f3 = Gv, that is, we have 

(96) g = G(t9 v, u0) - (f" - W + f3) v + R(t, u0) , 

according to (92)x. Only the last coefficient in (95) remains, and it reduces to Gt + 
+ uxG0 - fG = 0. Using (96), one can derive G0 = R0 = 0 (hence R = R(t)) 
and Gt = fG. Inserting (96) for the function G into the last condition, the final 
result is 

(/" ~ 3 / / ' + f 3 ) ' = / ( / " - 3 / / ' + / 3 ) , K = const. e"«>d<. 

In the particular case when (94) is valid, the resulting diffiety Q is exactly the same 
as in the case of a,,general" function h and is isomorphic to the diffiety <9 from Section 
44 with a reduced order. However, in other cases, the cross-section method can be 
applied with quite another conclusion (cf. the last example below). 

Finally, let us assume h = u3
/3. Then (93) turns into 

(97) (2fvv - G2) u3 + (|f! - Gv) u
2
3
/3 + ($B + JC) u1/3 + D + ^ t i j 1 ' 3 = 0 . 

The vanishing of D implies G2 = Gx = 0, hence G = G(t, v, u0). Then, the vanishing 
of the first coefficient in (97) means fvv = 0, that is,f = P(l, u0, ux) v + Q(t, u0, ux). 
But looking at the summand f3 in the condition A = 0 we immediately conclude 
P = Q, hence f = Q = f(t, u0, ux) and the third coefficient in (97) turns to zero. 
Due to the information already available, the second coefficient vanishes if 

(98) / = M(t, u0) ux + N(t, u0), G = |M( t , u0) v + R(t, u0), 

and only two coefficients in (97) remain. Now, (98) inserted into D = 0 easily gives 
M = (T(t) - u0)-\ N = ~T'(t)(T(t) - u0)-\ R = -C(u o ) (T (0 - u,)"1 with 
C, Tquite arbitrary functions (or M = 0 identically, but this assumption leads to the. 
same formulae as in the above case of a,,quite arbitrary" function h and is of little 
interests). So we have 

/ = ( « ! - T'(t))l(T(t) - f/0), 0 = (iv ~ C(u0))j(T(t) - u0) , 

as follows from (98), (92)^ Lastly, the requirement A = 0 leads (after some un
pleasant calculations) to the condition T" — 0, hence T(t) = at + b. (Note that the 
same result can be derived for the function h = u\12, but not for any other power 
of u3.) This result completely solves the problem. 

Let us mention the cross-sections. After applying u0 = const., one obtains the 
generators 

du! — (u2 + ui(u1 — a)l(at + d))dt, du2 — (u3 + uxu2\(at + d))dt, 

dv - (u3 /3 + ux(|v - c)l(at + d)) dt 

(d — b — const., c = C (const.)). They may be expressed more simply as 

dv! — v2 dt, dv2 — v3 dt, dv — h dt 
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if one uses the variables t, v0 = ui9 vt = u2 + MI(MI — a)j(at 4- d), v2 = M3 + 
+ M2(3MX — a)j(at + d) + 2wi((wj — a)j(at + d))2. But the function h (not specified 
here) depends also on the variable v and one cannot easily find out whether the 
relevant factordiffiety Q (with i*Q° = E) is isomorphic to the diffiety 0 from Section 
44 with a lowered order a. This is a typical equivalence problem for the system of 
three Pfaff 's equations in a five dimensional space, the problem completely discussed 
by Cartan in one of his most important (but not very popular) paper [13] on the 
theory of pseudogroups. It seems that the development of his ideas still belongs to 
the most urgent tasks. 

51. Added in proof. First, we use the opportunity to correct some misprints in [1], 
The inclusion (4^ should be opposite, the line 3579 should read ... 0 e <&l+1

9 3584 

should read ... cz &l
r*s\l9 the word ,,set" should be inserted between 3588_7, the 

formula (21) should be corrected to Xk:(MJ(X)k_1 M)c -^ (MJ(X)k_i M)c+1
9 the 

line 3649 should begin by (N n . . . , the bracket should be inserted into 36518 to 
give ... Ass MJM(Q)), the last term in 3687 should be ... <&l'k+1

9 the inequality at 
the end of 3775 should be J = c, the location of several indices to the letter M on 
the pages 379 — 381 should be easily repaired, and the reference 384 n should be to 
Section 8. Secondly, the Section 25 erroneously appears twice in [ l ] . The first 
appearance should be numbered 24 and the original Section 24 of [ l ] (devoted to 
Cauchy characteristics) must be cancelled (since the setting is a misleading one). 
Thirdly, the author found that the expression / " — 3 / / ' + f3 occuring in Section 50 
of the present paper turns into — v'"\v after the substitution / = — v'\v and moreover 
(which is the most surprising point!) it is identical with one of the basic operators 
of the Painleve theory (cf. [V. V. Goiubjev: Lectures on analytical theory of dif
ferential equations, Moskva —Leningrad 1950 (Russian), page 179, formula (I)]). 
Lastly, we should like to note with pleasure that the fundaments of the theory will 
be essentially clarified in the next part III (devoted to pseudogroups): the clumsy 
limits of spaces and mappings will be eliminated, a general concept of regularity 
will be introduced, and (owing to the corrected Cauchy characteristics) the axiom 
3)im will be omitted. 
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Souhrn 

O FORMÁLNÍ TEORII DIFERENCIÁLNÍCH ROVNIC II 

JAN CHRASTINA 

Jako aplikace nekonečných prodloužení diferenciálních rovnic, v Článku je navržena metoda 
pro studium Mongeova problému. Tento dávný problém (~ 1780) se týká toho, zda je možno 
řešit daný nedourčený systém obyčejných diferenciálních rovnic (více neznámých funkcí, než 
rovnic) pomocí explicitních vzorců algebraického typu obsahujících vyšší derivace některých 
libovolných (parametrických) funkcí. Navrhovaná metoda redukuje Mongeův problém na kla
sický problém ekvivalence Pfaffových systémů (a připouští mnohá zobecnění). 

Резюме 

О ФОРМАЛЬНОЙ ТЕОРИИ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ II 

^АN СНКА8ТША 

В качестве приложения бесконечных продолжений дифференциальных уравнений (диффиэт), 
в стате приводится метод исследования проблемы Монжа. Эта давняя проблема (~ 1780) 
касается вопроса, можно ли решить данную неопределённую систему обыкновенных диффе
ренциальных уравнений (больше неизвестных функций, чем уравнений) явными формулами 
алгебраического вида, содержащими высшие производные некоторых произвольных (пара
метрических) функций. Предлагаемый метод сводит проблему Монжа к классической пробле
ме эквивалентности систем Пфаффа (и допускает многие обобщения). 

Аи(ог\ч аМгехз: Ка1е6!га арНкоуапё та1ета11ку ШЕР, 1апабкоуо пат. 2а, 662 95 Вгпо. 
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