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114(1989) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 4, 374—380 

CARDINAL INVARIANTS OF BITOPOLOGICAL SPACES 

R. D. KOPPERMAN, New York, P. R. MEYER, Bronx 

(Received April 25, 1987) 

Summary. A non-symmetric distance function (see [7]) or quasiuniformity (see [2]) on a set X 
gives rise to two topologies on X; spaces with two topologies, called bitopological spaces, were 
introduced in [6] and [9]. We seek to extend the theory of cardinal functions to bitopological 
spaces, and obtain bounds on several of these functions involving the quasiuniform weight, 
a non-symmetric analogue of Juhasz's uniform weight (see [4]). 

AMS (MOS) Numbers: Primary, 54A25 (Cardinality Properties); secondary, 54E15 (Uniform 
structures and generalizations), 54E35 (Metrizability). 

1. SOME CARDINAL FUNCTIONS ON BITOPOLOGICAL SPACES 

If cp is a cardinal function on a topological space (X, T), we often abbreviate 
cp(X, T) to (p(X) or cp(T) when no confusion can arise. We are primarily interested 
in the following (standard) functions (from [5] unless otherwise indicated): w(T) 
(weight of T) = least cardinality of a base for T, d(T) (density of T) = least cardi
nality of a T-dense subset of X, c(T) (cellularity of T) = sup of the cardinalities of 
pairwise disjoint sets of open sets in T, s(T) (spread), L(T) (Lindelof degree), h(T) 
(height), n(T) (net weight), z(T) (width), and e(T) (extent-see [1]) = sup{|CJ: 
C c X closed and discrete in T}. Those not defined in the previous sentence are 
mentioned only in passing. If cp is any cardinal function on a topological space, 
then her cp(X, T) = sup {cp(Y, T\ Y): Y c X} is called the hereditary cp of (X, T). 

In addition to the above, we are interested in cardinal invariants related to metriza-
tion. Hodel's metrization number is m(T) = smallest infinite cardinal m such that 
there is a base for T which is the union of m discrete collections (see [3]). Other 
invariants related to metrization have been defined externally to the topology: 
the uniform weight u(T) of Juhasz [4] is the smallest possible cardinality of a base 
of a uniformity from which T arises. 

The Mrowka number M(T) ( = the smallest cardinal of a set of pseudometrics 
from which Tarises — see [10]) is essentially the same as the uniform weight (precise
ly, w(T) CO = M(T) CO). Another definition of the same cardinal may be made in terms 
of continuity spaces (see [7]) since u(T) is the least cardinal of a base for the set of 
positives in a symmetric continuity space from which Tarises. An internal charac-
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terization of this invariant is given in [8]; m(T) = w(T), but it is not presently 
known whether the two are always equal for completely regular spaces. 

Theorem. If T is an arbitrary topology and cp is any of the cardinal invariants 
in the first paragraph, then c(T) A e(T) S <p(T) = w(T). If T is metrizable, then 
<p(T) = w(T)for each (p. 

Note that if XB = (X, Ti9 T2) is a bitopological space then the join Tt v T2 is 
a third topology on X determined by XB. This topology is completely regular in the 
case we consider below and plays a central role in our work. 

Given a cardinal function </>, the following considerations often lead to a definition 
of a bitopological analogue for (p, which we shall call b(p. (p is called isotone if (p(T) g 
g (p(T) whenever Tand T are topologies on the same set and T c T; anti-isotone 
is defined correspondingly. For the functions listed above, c, d, e, L, n, s, h, and z 
are isotone. If (p is isotone then so is her cp. If cp is isotone and Tt, T2 are topologies 
on X then <p(Tt) (p(T2) ^ <p(Tl v T2). We have found that for the cardinal functions 
listed above, (p(Tx v T2) and (p(Tx) (p(T2) are both candidates for b(p(XB), and 
since our objective is to find an upper bound for these invariants, it is appropriate 
for our purposes to define: If (p is an isotone cardinal function and XB = (X, Tx, T2) 
a bitopological space then b(p(XB) = cp(Tt v T2). 

The weight is neither isotone nor anti-isotone, but satisfies the inequality 
wfa) w(T2) = w(Tt v T2). The same is true for the net weight. For these cardinal 
invariants b(p is defined by b(p(X, Tx, T2) = (p(T{) (p(T2). This corresponds to the fact 
that a bibase for a bitopological space is a base for each topology, thus its cardinality 
must be the sum of theirs. 

We have now defined b(p for all the cardinal functions q> considered so far, except 
for u, m, and M. The following properties are immediate for such (p: 

(1) b(p(X, Tu T2) = (p(X, 7\) (p(X, T2) (p(X, Tt v T2). 

(2) b(p(X, T, T) = (p(X, T). 

(3) if (pt _̂  cp2 then bcp± — b(p2. 

From (1) it follows that the known partial ordering of those topological cardinal 
functions and the results of the above theorem extend to the analogous bitopological 
invariants. 

A bisubspace of a bitopological space is defined in the obvious way. For XB = 
= (X, T1? T2), S a X, let SB = (S, Tl | S, T2 | S). For any bitopological invariant 
b(p we define her b(p by analogy with the usual topological definitions of hereditary 
cardinal invariants: her b(p(XB) = sup {b(p(SB): S c X}. Here are some immediate 
consequences: 

(4) her bcp _ b(p; if (p = <p' then her b(p ^ her b(p', 

(5) if (p satisfies (l) then her b(p = b(her (p) (the proof uses (TA v T2) | S = 
= (r. | s) v (T2 | s)). 

375 



We find it appropriate to define bitopological cardinal invariants related to M and u 
as follows: bq(XB) = least cardinality of a base for a quasiuniform space (X, °U) 
such that Tx = To («) ( = {P: if x e P then for some U e W, {Y: (x, y) e U} c P}) 
and T2 = TO («*) ( «* == {I/"1 : U e ^ } - see [2] for more details). This is also the 
least cardinality of a base of a set of positives in a continuity space X = (K, d, A, P) 
for which Tx = TO (K) ( = {P: if x e P then for some r e ? , Nr(x) c P}, where 
Nr(x) = {y: d(x9 y) = r}) and T2 = TO (K*) (K* = (X, d*, A, P) is the dual of X, 
where d*(x, y) = d(y9x)\ see [7]). Q(KB) = least cardinality of a set of quasi-
metrics D such that TO (D) = Tx. Note that (Sr>d(x): x e K, r > 0, d e D} is an open 
subbase for TO (D), where Sr>d(x) = {>>: </(x, >•) < r}; thus if let 2~N = 
= {2"*: fc = 1,2,...} and for F c= 2~N x D finite, X G X define SF(x) = f|{SM(x): 
(r, d) G F}. then {Sf(x): F a 2~N x D finite, x e K } is a base for To (D). We'also 
use the notation, {d*: d e D] = D* (again d*(x9 y) = d(y,x))9 and notice that 
To (D*) = T2. It is simple to show that these numbers are related in the same way 
as their topological (symmetric) analogues. 

As is well known, Tv v T2 is a completely regular topology when XB is obtained 
from a quasiuniformity, continuity space, or set of quasimetrics, due to the following 
considerations: With notation as in the last paragraph, let °US = { F c X x X: for 
some Ue^, Un U_1 c: V}, (a uniformity) and ds = d + d* for quasimetrics or 
continuity functions, Xs = (K, cf, A, P) (a symmetric continuity space), Ds = 
= {ds: d e D] (a set of pseudometrics). If K denotes U, K, or D, then To (Ks) = 
= To (K) v To (K*) (for continuity spaces simply note that for each r e P, N*(x) c= 
c Nr(x) n N*(x) cz N2r(x); the other arguments are similar). Thus Tx v T2 is 
completely regular since it arises from a uniformity, symmetric continuity space, 
or set of pseudometrics. 

2. THE MAIN RESULTS 

Recall that if / : X - Y, XB = (X, T1? T2), YB = (K, Tt', T2), then / is pairwise 
continuous iff for each i e {1, 2} , / i s continuous from T,. to T/. A bitopological space 
(K, T1? T2) is pairwise completely regular if whenever x e P e Tt there is a n / : K -> 
-> [0, 1] such that f(x) = 1, / = 0 off P, and / is pairwise continuous from 
(X, Th T3_;) to [0, 1]B = ([0, 1], LO, UP), where LO = {(a, oo): a e [ - c o , oo]}, 
and UP = { ( - co , a): aG[-co,co]} (see [6] or [9]). A bitopological space is 
pairwise T0 if for each pair xl9 x2 of distinct points in X there is an / e {l, 2} and 
a P G Tx u T2 such that xt- G P and x3_ f ^ P. Thus if KB is pairwise completely regular 
then Tx v T2 is completely regular, and if XB is also pairwise T0 then Tx v T2 is 
Tychonoff. We now state the result mentioned in the introduction and give an 
example which shows that it cannot be sharpened. Proof of the result is given at the 
end of the paper. 
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1. Theorem. If (p is any of the listed functions except M, m, u: 
(a) bcp + bq = bw for pairwise T0, pairwise completely regular bitopological 

spaces; 
(b) cp + u = w for Tychonoff topological spaces. 

Example. The Sorgenfrey line (the reals, R, topologized with base {(a, b\: 
a,be R}) has w = u = n = \R\ > o, c = d = e = L=h = s = z = co; this topo
logy arises from the quasimetric So (x, y) = x — y if x = y, = 1 if x < y. From the 
dual quasimetric SO* comes the other Sorgenfrey topology with base {[a, b): a, be R}. 
Since this is a quasimetric space, bq = co as well. The join of these topologies is the 
discrete topology, so bc is the cardinality of the continuum. Thus for the Sorgenfrey 
line, bc + bq = c + u, but bc > c and bq < u. The latter inequality shows that 
the Sorgenfrey topology, while normal and quasimetrizable, is not metrizable. 

The following lemma helps us to establish some properties of bq: 

2. Lemma, (a) If & is any set of subsets of X, Tx is the topology generated by $, 
and T2 the topology generated by &c = {X — B: B e &}, then X# is pairwise com
pletely regular. In particular, if & is a base for a topology Tx on X there is a topo
logy T2 on X such that XB is pairwise completely regular. If the topology Tx 

satisfies the T^separation property, then T2 can be taken to be the discrete topology 
onX. 

(b) The following are equivalent: 
(i) (X, T) is completely regular, 

(ii) (X, T, T) is pairwise completely regular. 
(c) If To(X) = TO(K*) then To(X) = To(Xs). 

Proof, (a) For any finite F c. B define fF, gF by fF(y) = 1 if y e (\F, = 0 other
wise, gf(y) = 0 if y e UF, = 1 otherwise. Thenfp *[(#, + co)] = X if a < 0, = f)F 
if 0 ^ a < 1, = 0 if a ^ 1, so fF is continuous from Tt to LO; similarly fF is con
tinuous from T2 to UP, gF from T2 to LO and from Tt to UP. If x e P e Tx then for 
some finite subset F of B, x e f)F <= P, so fF: X -> [0, 1] is continuous from Tx to 
LO and from T2 to UP,fF(x) = 1 andff = 0 off f]F, thus off P; gF works similarly 
for T2. 

The proof of (b) is straightforward, and (c) is immediate from our observation 
that To(Xs) = To(X) v TO(K*). 

Let x denote the neighborhood character ( = sup {inf {\BX\: Bx a neighborhood 
base about x}: x eX}; see [5]). The proof of 3(a) was suggested by a proof due to 
Engelking ([1], p. 115). Also we define q(X, T) to be the least cardinality of a base 
of a quasiuniformity °tt such that T = TO(^). 

3. Theorem, (a) bq g bw for pairwise completely regular bitopological spaces. 
(b) For any topology T, bq(T, T) = u(T). 
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(c) x ^ <1 ^ vv/0r arbitrary topological spaces. 
(A) X = q = u = w holds for completely regular topologies. 

Proof, (a) We give our proof essentially in terms of quasimetrics; it could easily 
be reformulated in terms of quasiuniformities or continuity spaces. Thus we find a set 
D of quasimetrics such that To(D) = Tl9 To(D*) = T2, and \D\ = w(Tx) w(T2). 

For i = 1, 2, let B{ be a base for Tt of minimal cardinality. Let E = {(R, S, i): 
i = 1, 2, R, S e Bt, and for some pairwise continuous / : (X, Tt, T3_j) -• [0, i]B, 

/[-R] c (.5,1] a n d / [ X — S] = {0}}. For each ke E choose such an/ fc, and define 
dk(x, y) = max {fk(xj - fk(y), 0} if i = 1, = max {fk(y) - fk(x), 0} if i = 2. Finally, 
let D = {dk: k e E); this choice of D requires \D\ = \BX\ \B2\ = w(Tt) w(T2). 

We now check that Tt = To(D), T2 = To(D*): if x e Q e Tx let S e Buxe S c Q, 
and by pairwise complete regularity find / : XB -> [0,1]B pairwise continuous and 
such that / (x) = 1 a n d / = 0 off 5. Since x e / _ 1 [ ( 0 , 1]] e Tx let £ e Bl9 x e R c 
c / _ 1 [ ( - 5 , l ] ] ; clearly / [ R ] c ( .5 ,1] , / [ X - 5] = {0}, so e' = (*, 5, 1) e E, 
d = de,eD. Thus S.5fd(x) = {y: d(x,y) < .5} = {y:f.{y) > .5} c 5 c Q. This 
shows Tx c To(D), and a very similar proof shows T2 c To(D*). Next suppose 
x e g e To(D); we find Qx e Tx such that xe Qx c g, showing Q to be a ^-neigh
borhood of each of its points, thus open in Ty. By definition of To(D) we have some 
finite F c 2~N x D such that SF(x) c Q. Since this SF(x) satisfies our conditions, 
To(D) c Tl9 and again To(D*) c T2 is shown similarly. 

Proof of the converse, and proofs of (b), (c), (d) are clear. 

Proof of 1: It suffices to prove (a) since (b) then follows from 3 (b). For (a) it 
suffices to show that bw = be + bq and bw = be + bq. In the following lemma we 
show that bd = be + bq and bd = be + bq, and we now show that bw = bd + bq, 
completing the proof. It remains to note that w(Tt) = bq(XB) bd(XB). Let Y be 
bidense in XB (dense in X with respect to the topology Tx v T2), and let Tx = 
= To(D), T2 = To(D% |y | = bd(XB), D of minimal possible cardinality. Let 
Bx = {SF(y): F c 2'N x D finite, ye y} , B2 = {SF(y): F c 2~N x D* finite, 
j e Y ) , where SF(y) is defined as in the next-to-last paragraph of Section 1. Then 
f-B.-l = co\D\ \Y\ = bd(XB) bq(XB), so it will do to show that Bt is a base for Th 

i.e., for each xeX, F finite as above, there i s a y e Y such that x e SF/2(y) c 5F(x), 
where let F/2 = {(rj2, d): (r, d) e F). Since Y is bidense and To(Ds) = Tx v T2, 
given x e l there is a y e Y such that for each (r, d)e F, ds(x, y) = r/2, thus x e 
e SF/i(y) and if z e Sf/2(j;), (r, d) G F then d(x, z) = ds(x, y) + ds(y, z) < r, so 

sF,i(y) c ^W-

4. Lemma. For any pairwose T0 bitopological space XB we have: bd(XB) ^ 

= bq(XB) + bc(XB),and bd(XB) = bq(XB) + be(XB). 

Proof. For both inequalities, let D be a set of quasimetrics of minimal cardinality 
such that XB = (X, To(D), To(D*)) (if there is no such D then bq(XB) = oo, so there 
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is nothing to show), and for each finite F <= 2~N x Ds let YF c X be maximal for 

which S(F) = {SF(y): y e YF} is a set of disjoint sets and if y, y' e y and SF(y) = 

= SF(y') then y = / . Next let S = U{S(F): F a 2~N x Ds finite}, y = [){YF: 

F cz2~N x Ds finite}. 

The first inequality now follows from the following two facts: (1) choice requires 

that |V| = \S\ ^ \D\ coc(To(D) v TO(D*)) = bq(XB) + bc(KB). (2) Y is bidense: if 

Q e To(D) v TO(L>*) is non-empty, we must show that Yn Q is non-empty. Choose 

xe Q; then for some finite F c 2~N x Ds, SF(x) c Q. If j e Y then S ^ x ) n 
n SF/2(y) = 0 since if z is in their intersection and (r, d)e F then since d e Ds, 

d(x, j ) g <1(x, z) + d(z>y) = r / 2 + rl2 = r - B u t this contradicts the maximality 

of S(r) or our choice of Y. 

The second inequality follows from these facts: (1) each YF is discrete in TO(L>) v 

v TO(L>*). (2) YF is closed in TO(L>) v To(D*); first notice that if z e K then SF(z) 

contains at most one of the y e YF: by symmetry if y, y' e SF(z) then z e SF(y) n 
n SF(y% contradicting the discreteness of SF and choice of YF. Since XB is pairwise T0, 

TO(D) v TO(D*) is Tychonoff, so there is a join-open set Q containing z but not 

this y, and Q n SF(z) does not intersect YF. (3) Thus |Y f | g e(TO(D) v TO(D*)) ^ 

g be(KB) for each finite F a 2~N x Ds. But Yis bidense so bd(XB) = d(TO(D) v 

v TO(D*)) = | y | g |D| co sup {|yF|: F <~2~N x Ds finite} = bO(KB) + be(XB). 
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Souhrn 

KARDINÁLNÍ INVARIANTY BITOPOLOGICKÝCH PROSTORÚ 

R . D . KOPPERMAN, P . R . MEYER 

Nesymetrická vzdálenost (viz [7]) nebo kvaziuniformita (viz [2]) na množin X generuje dv 
topologie na X. Prostoгy se dv ma topologiemi, tzv. bitopologické pгostory, byly zavedeny v [61 
a [9]. Cílem autorů je rozšířit teoгii kaгdinálních funkcí na tyto prostory a stanovit meze pro 
n kolik takových funkcí pomocí kvaziunifoгmní váhy, jež je nesymetгickou analogií Juhaszovy 
uniformní váhy (viz [4]). 

Резюме 

КАРДИНАЛЬНЫЕ ИНВАРИАНТЫ БИТОПОЛОГИЧЕСКИХ ПРОСТРАНСТВ 

К. О. КОРРЕКМА^ Р. Я. МЕУЕК. 

Несимметричное расстояние (см. [7]) или квазиравномерная структура (см. [2]) на мно
жестве А'порождает две топологии на X. Пространства с двумья топологиями, т.н. битополо-
гические пространства были введены в [6] и [9]. Целью авторов является распространение 
теории кардинальных функций на эти пространства и установление оценок для нескольких 
таких функций при помощи квазиравномерного веса, который является несимметрическим 
аналогом равномерного веса Юхаса (см. [4]). 

Ашкогз' аАЛгеззез: К. I). Коррегтап, ОераПтеп! оГ Матпета11С8 Сну Со\\е&е оГ №\У Уогк, 
№УУ Уогк, NV 10031; Р. К. Меуег, Оераг1теп1 оГ Машетайсз Не^еП ЕеЬтап Со11е§е 
Вгопх, NУ 10468, ША. 
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