Časopis pro pěstování matematiky

Vladimír Volenec
GS-quasigroups

Časopis pro pěstování matematiky, Vol. 115 (1990), No. 3, 307--318
Persistent URL: http://dml.cz/dmlcz/118398

Terms of use:

© Institute of Mathematics AS CR, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

GS-QUASIGROUPS

Vladimir Volenec, Zagreb
(Received October 18, 1985, revised version November 22, 1988)

Summary. A quasigroup (Q, \cdot) is said to be a GS-quasigroup iff $a a=a, a(a b \cdot c) \cdot c=b$, $a .(a . b c) c=b$ for any $a, b, c \in Q$. A geometrical terminology can be introduced in any GSquasigroup followed by some "geometrical" results. There is a GS-quasigroup (Q, \cdot) iff there is a commutative group $(Q,+)$ and its automorphism φ such that the identity $(\varphi \circ \varphi)(a)-\varphi(a)-$ $-a=0$ holds.

Keywords: GS-quasigroup, parallelogram space.
AMS-classification: 20N.

1. INTRODUCTION

First of all, let us prove a lemma:
Lemma. In any cancellative groupoid ($Q, \cdot \cdot$) the identities

$$
\begin{equation*}
a(a b \cdot c) \cdot \dot{c}=b, \quad a \cdot(a \cdot b c) c=b \tag{1}
\end{equation*}
$$

are equivalent. Any cancellative groupoid with these two identities is a quasigroup.
Proof. According to (1) we have the identity $[a \cdot(a \cdot b c) c] c=b c$, which yields (1)'. Conversely, by (1)' we obtain $a[a(a b \cdot c) \cdot c]=a b$, which implies (1). For every $a, b \in Q$ there are $x, y \in Q$ such that $a x=b$ and $y a=b$. Indeed, we can take $x=$ $=(a \cdot b a) a$ and $y=a(a b \cdot a)$ because of (1)' and (1).

A quasigroup (Q, \cdot) is said to be a golden section quasigroup or shortly a GSquasigroup iff it satisfies the identities (1), (1)' and moreover the identity of idempotency

$$
\begin{equation*}
a a=a \tag{2}
\end{equation*}
$$

Example 1. Let $(G,+)$ be a commutative group which possesses an automorphism φ such that

$$
\begin{equation*}
(\varphi \circ \varphi)(a)-\varphi(a)-a=0 . \tag{3}
\end{equation*}
$$

If we define an operation - on the set G by

$$
\begin{equation*}
a b=a+\varphi(b-a) \tag{4}
\end{equation*}
$$

then (G, \cdot) is a GS-quasigroup. Let us prove this statement. For any $a, b \in G$ the equations $a x=b$ and $y a=b$ are equivalent, because of (4), to the equations $a+\varphi(x-a)=b$ and $y+\varphi(a)-\varphi(y)=b$. The first equation has the unique solution $x=a+\varphi^{-1}(b-a)$ and the second equation can be written in the form $\varphi(y)+(\varphi \circ \varphi)(a)-(\varphi \circ \varphi)(y)=\varphi(b)$, i.e. by (3) in the form $(\varphi \circ \varphi)(a)-y=$ $=\varphi(b)$, and has the unique solution $y=(\varphi \circ \varphi)(a)-\varphi(b)$. Obviously (4) implies (2). By virtue of (4) we obtain after some arrangements

$$
a b \cdot c=(\varphi \circ \varphi)(a)-2 \varphi(a)+a-(\varphi \circ \varphi)(b)+\varphi(b)+\varphi(c)
$$

Because of (3) this becomes

$$
a b \cdot c=2 a-\varphi(a)-b+\varphi(c)
$$

Therefore, we have

$$
a(a b \cdot c) \cdot c=2 a-\varphi(a)-[2 a-\varphi(a)-b+\varphi(c)]+\varphi(c)=b
$$

We shall show later that Example 1 is a characteristic example of GS-quasigroups, i.e. that any GS-quasigroup can be derived from a commutative group as in Example 1.

Example 2. Let $(F,+, \cdot)$ be a field in which the equation

$$
\begin{equation*}
q^{2}-q-1=0 \tag{5}
\end{equation*}
$$

has a solution q and let $*$ be an operation on the set Q defined by

$$
\begin{equation*}
a * b=(1-q) a+q b \tag{6}
\end{equation*}
$$

The identity $\varphi(a)=q a$ obviously defines an automorphism φ of the commutative group $(F,+)$ and (5) implies (3). The equality (6) can be written in the form $a * b=$ $=a+\varphi(b-a)$ and the result of Example 1 implies that $(F, *)$ is a GS-quasigroup.

Example 3. Let $(C,+, \cdot)$ be the field of complex numbers and $*$ an operation on the set C defined by (6), where $q=\frac{1}{2}(1+\sqrt{ } 5)$ or $q=\frac{1}{2}(1-\sqrt{ } 5)$. Then the equality' (5) holds and the result of Example 2 implies that $(C, *)$ is a GS-quasigroup. This quasigroup has a beautiful geometrical interpretation which provides motivation for studying the GS-quasigroups and defining geometrical notions in them. Let us regard complex numbers as points of the Euclidean plane. For any two different points a, b the equality (6) can be written in the form

$$
\frac{a * b-a}{b-a}=q
$$

which means that the point $a * b$ divides the pair a, b in the ratio q. If $q=\frac{1}{2}(1+\sqrt{ } 5)$ or $q=\frac{1}{2}(1-\sqrt{ } 5)$, then the point b or a divides the pair $a, a * b$ or the pair $b, a * b$, respectively, in the ratio of the golden section, which justifies the term of GS-quasi-
groups. Any identity in the GS-quasigroup $(C, *)$ can be interpreted as a geometrical theorem which, of course, can be proved directly, but the theory of GS-quasigroups gives a better insight into the mutual relations of such theorems. For example, Figure 1 gives an illustration of the identity (1) in the quasigroup $(C, *)$ with $q=$

Fig. 1
$=\frac{1}{2}(1+\sqrt{ } 5)$ [and also of the identity (1)' in the quasigroup ($C, *$) with $q=$ $\left.=\frac{1}{2}(1-\sqrt{ } 5)\right]$, where the sign \cdot is used instead of the sign $*$ (we shall use the same in all figures). All figures shall be represented in the above-mentioned quasigroup. Nevertheless, if we interchange the role of the elements x and y in all "products" of the form $x * y$, then we obtain in the same figures illustrations of the quasigroup $(C, *)$ with $q=\frac{1}{2}(1-\sqrt{ } 5)$.

2. ELEMENTARY PROPERTIES

The following result is obvious.

Theorem 1. If the operation - on the set Q is defined by the equivalence

$$
a \cdot b=c \Leftrightarrow b a=c
$$

i.e. by the identity $a \cdot b=b a$, then (Q, \cdot) is a GS-quasigroup iff (Q, \cdot) is a $G S$ quasigroup.

Further, we have

Theorem 2. In any GS-quasigroup (Q, \cdot) the mediality holds, i.e. we have the identity

$$
\begin{equation*}
a b \cdot c d=a c \cdot b d \tag{7}
\end{equation*}
$$

Proof. We have successively

$$
\begin{aligned}
& a c \cdot(a b \cdot c d) d={ }^{(1)^{\prime}} a[a b \cdot(a b \cdot c d) d] \cdot(a b \cdot c d) d={ }^{(1)} b={ }^{(1)^{\prime}} \\
& =a c \cdot(a c \cdot b d) d,
\end{aligned}
$$

which yields (7).
Corollary. In any GS-quasigroup ($Q, \cdot)^{\prime}$ the elasticity and left and right distributivity hold, i.e. we have the identities

$$
\begin{equation*}
a b \cdot a=a \cdot b a \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
a \cdot b c=a b \cdot a c, \quad a b \cdot c=a c \cdot b c \tag{9}
\end{equation*}
$$

Proof. Follows by (7) and (2).
Because of Theorem 2 we can apply all results of [3].
Theorem 3. In any GS-quasigroup (Q, \cdot) the identities

$$
\begin{equation*}
a(a b \cdot b)=b, \quad(b \cdot b a) a=b \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
a(a b \cdot c)=b \cdot b c, \quad(c \cdot b a) a=c b \cdot b \tag{10}
\end{equation*}
$$

and the equivalencies

$$
\begin{equation*}
a b=c \Leftrightarrow a=c \cdot c b, \quad a b=c \Leftrightarrow b=a c \cdot c \tag{12}
\end{equation*}
$$

hold.
Proof. We have successively

$$
a(a b \cdot c) \cdot c={ }^{(1)} b={ }^{(1)} b(b b \cdot c) \cdot c={ }^{(2)}(b \cdot b c) c
$$

which implies (11). Now, (10) follows from (11) because of (2). The identities (10)' and (11)' follow from (10) and (11) by Theorem 1. Moreover, by (10)' and (10) we have $(c \cdot c b) b=c$ nad $a(a c \cdot c)=c$ and therefore the equality $a b=c$ is equivalent to $a=c \cdot c b$ and $b=a c \cdot c$.

In the sequel, let (Q, \cdot) by any GS-quasigroup.
Theorem 4. Any three of the four equalities

$$
\begin{align*}
a b & =d \tag{13}\\
a e & =f \\
d c & =e \\
f c & =b
\end{align*}
$$

imply the remaining equality (Fig. 1).
Proof. The substitutions $b \leftrightarrow e, d \leftrightarrow f$ imply the substitutions (13) $\leftrightarrow(14)$ and $(15) \leftrightarrow(16)$. Therefore, it is sufficient to prove the implications (14) \& (15) \& (16) \Rightarrow
$\Rightarrow(13)$ and $(13) \&(14) \&(16) \Rightarrow(15)$. However, we have successively

$$
\begin{aligned}
& a b={ }^{(16)} a \cdot f c={ }^{(14)} a(a e \cdot c)={ }^{(15)} a \cdot(a \cdot d c) c={ }^{(1)^{\prime}} d \\
& d c={ }^{(13)} a b \cdot c={ }^{(16)}(a \cdot f c) c={ }^{(14)} a(a e \cdot c) \cdot c={ }^{(1)} e
\end{aligned}
$$

Theorem 5. Any two of the four equalities

$$
\begin{equation*}
a b=c \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
d c=b \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
a c=d \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
d b=a \tag{20}
\end{equation*}
$$

imply the remaining two equalities (Fig. 2).

Fig. 2

Proof. The substitutions $a \leftrightarrow d, b \leftrightarrow c$ imply the substitutions (17) $\leftrightarrow(18)$ and $(19) \leftrightarrow(20)$. Therefore, it is sufficient to prove the first of the two implications

$$
\begin{equation*}
(17) \&(18) \Rightarrow(19), \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
(17) \&(18) \Rightarrow(20) ; \tag{22}
\end{equation*}
$$

for the proof of the implication $(19) \&(20) \Rightarrow(17) \&(18)$ it suffices to prove the implication
$(19) \&(20) \Rightarrow(18)$
and for the proof of the implications

$$
\begin{equation*}
(17) \&(19) \Rightarrow(18) \&(20), \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
(17) \&(20) \Rightarrow(18) \&(19) \tag{25}
\end{equation*}
$$

$(18) \&(20) \Rightarrow(17) \&(19)$ and $(18) \&(19) \Rightarrow(17) \&(20)$ it is sufficient to prove the implications (24) and (25). We have successively

$$
\begin{aligned}
& a c={ }^{(2)} a \cdot c c==^{(17)} a(a b \cdot c)={ }^{(18)} a \cdot(a \cdot d c) c==^{(1)^{\prime}} d, \\
& d c={ }^{(2)} d d \cdot c={ }^{(19)}(d \cdot a c) c==^{(20)} d(d b \cdot c) \cdot c={ }^{(1)} b,
\end{aligned}
$$

which proves the implications (21) and (23). Further, we obtain

$$
\begin{aligned}
& d c \cdot b={ }^{(19)}(a c \cdot c) b={ }^{(17)}(a \cdot a b)(a b) \cdot b={ }^{(9)} a(a b \cdot b) \cdot b={ }^{(1)} \\
& =b={ }^{(2)} b b, \\
& d \cdot a c={ }^{(17)} d(a \cdot a b)={ }^{(20)} d \cdot(d b)(d b \cdot b)={ }^{(9)^{\prime}} d \cdot(d \cdot d b) b={ }^{(1)^{\prime}} \\
& =d==^{(2)} d d,
\end{aligned}
$$

which implies the equalities (18) and (19), i.e. the implications (17) \& (19) $\Rightarrow(18)$ and $(17) \&(20) \Rightarrow(19)$ hold. The first of these implications together with (22) proves (24) and the second together with (23) proves (25).

3. PARALLELOGRAMS

In any GS-quasigroup (Q, \cdot) we shall introduce a geometrical terminology motivated by Example 3. The elements of the set Q are called points.

We shall say that the points a, b, c, d form a parallelogram and write $\operatorname{Par}(a, b, c, d)$ iff there are two points p and q such that $a p=b q$ and $d p=c q$ [3, Corollary 1].

In [3] it was proved that (Q, Par) is a parallelogram space, i.e the quaternary relation Par $\subset Q^{4}$ has the following properties:
1° For any three points a, b, c there is exactly one point d such that $\operatorname{Par}(a, b, c, d)$.
2° If (e, f, g, h) is any cyclic permutation of (a, b, c, d) or of (d, c, b, a), then $\operatorname{Par}(a, b, c, d)$ implies $\operatorname{Par}(e, f, g, h)$.
$3^{\circ} \operatorname{Par}(a, b, c, d)$ and $\operatorname{Par}(c, d, e, f)$ imply $\operatorname{Par}(a, b, f, e)$.
Let us prove
Theorem 6. For any points a, b, c we have $\operatorname{Par}(a, b, c, a \cdot b(c a \cdot a))$ (Fig. 3).

Fig. 3

Proof. It is sufficient to prove the equalities $a p=b q,[a \cdot b(c a \cdot a)] p=c q$ with $p=a b \cdot b, q=b$. We have successively

$$
\begin{aligned}
& a(a b \cdot b)={ }^{(10)} b={ }^{(2)} b b, \\
& {[a \cdot b(c a \cdot a)](a b \cdot b)={ }^{(7)}(a \cdot a b)[b(c a \cdot a) \cdot b]={ }^{(8)}}
\end{aligned}
$$

$$
\begin{aligned}
& =(a \cdot a b)[b \cdot(c a \cdot a) b]={ }^{(7)} a b \cdot[a b \cdot(c a \cdot a) b]={ }^{(9)^{\prime}} \\
& =[a \cdot a(c a \cdot a)] b={ }^{(8)}[a \cdot(a \cdot c a) a] b={ }^{(10)^{\prime}} c b .
\end{aligned}
$$

By virtue of 1° Theorem 6 gives an alternative definition of parallelograms:

$$
\begin{equation*}
\operatorname{Par}(a, b, c, d) \Leftrightarrow d=a \cdot b(c a \cdot a) . \tag{26}
\end{equation*}
$$

On the other hand, we can start with this definition (26) and prove the properties $1^{\circ}-3^{\circ}$. The property 1° is obvious. Further, let $\operatorname{Par}(a, b, c, d)$, i.e. $a \cdot b(c a \cdot a)=d$. For the proof of 2° it is sufficient to prove $\operatorname{Par}(b, c, d, a)$ and $\operatorname{Par}(c, b, a, d)$, i.e. $b \cdot c(d b \cdot b)=a$ and $c \cdot b(a c \cdot c)=d$. However, we have successively

$$
\begin{aligned}
& b[b \cdot c(d b \cdot b)]={ }^{(9)} b[b c \cdot b(d b \cdot b)]={ }^{(8)} b[b c \cdot(b \cdot d b) b]={ }^{(11)^{\prime}} \\
& =b \cdot(b c)(b d \cdot d)={ }^{(9)}(b \cdot b c) \cdot b(b d \cdot d)={ }^{(10)}(b \cdot b c) d= \\
& =(b \cdot b c)[a \cdot b(c a \cdot a)]={ }^{(7)} b a \cdot[b c \cdot b(c a \cdot a)]={ }^{(9)} \\
& =b[a \cdot c(c a \cdot a)]={ }^{(10)} b \cdot a a={ }^{(2)} b a
\end{aligned}
$$

which implies $b \cdot c(d b \cdot b)=a$, and we obtain

$$
\begin{aligned}
& c \cdot b(a c \cdot c)={ }^{(9)} c b \cdot c(a c \cdot c)=^{(8)} c b \cdot(c \cdot a c) c={ }^{(9)^{\prime}} \\
& =[c \cdot(c \cdot a c) \dot{c}][b \cdot(c \cdot a c) c]==^{(1)^{\prime}} a[b \cdot(c \cdot a c) c]={ }^{(11)^{\prime}} \\
& =a \cdot b(c a \cdot a)=d
\end{aligned}
$$

Now, let $\operatorname{Par}(a, b, c, d)$ and $\operatorname{Par}(c, d, e, f)$, i.e. $a \cdot b(c a \cdot a)=d, c \cdot d(e c \cdot c)=f$. Then

$$
\begin{aligned}
& f=c \cdot d(e c \cdot c)={ }^{(9)} c d \cdot c(e c \cdot c)={ }^{(8)} c d \cdot(c \cdot e c) c={ }^{(11)^{\prime}} \\
& =c d \cdot(c e \cdot e)={ }^{(7)}(c \cdot c e) \cdot d e={ }^{(11)} e(e c \cdot e) \cdot d e={ }^{(8)} \\
& =(e \cdot e c) e \cdot d e={ }^{(9)^{\prime}}(e \cdot e c) d \cdot e=(e \cdot e c)[a \cdot b(c a \cdot a)] \cdot e={ }^{(7)} \\
& =(e a)[e c \cdot b(c a \cdot a)] \cdot e==^{(7)}(e a)[e b \cdot c(c a \cdot a)] \cdot e==^{(10)} \\
& =(e a)(e b \cdot a) \cdot e={ }^{(9)^{\prime}}(e \cdot e b) a \cdot e={ }^{(9)^{\prime}}(e \cdot e b) e \cdot a e={ }^{(8)} \\
& =e(e b \cdot e) \cdot a e={ }^{(11)}(b \cdot b e) \cdot a e={ }^{(7)} b a \cdot(b e \cdot e)={ }^{(9)^{\prime}} \\
& =b(b e \cdot e) \cdot a(b e \cdot e)={ }^{(10)} e \cdot a(b e \cdot e),
\end{aligned}
$$

i.e. $\operatorname{Par}(e, a, b, f)$, wherefrom by 2° we obtain $\operatorname{Par}(a, b, f, e)$.

Let us prove some theorems about parallelograms.
Theorem 7. For any points a, b we have $\operatorname{Par}(a, a, b, b)$.
Proof. We have

$$
a \cdot a(b a \cdot a)={ }^{(8)} a \cdot(a \cdot b a) a==^{(1)^{\prime}} b
$$

Theorem 8. Any two of the three statements $\operatorname{Par}(a, b, c, d), \operatorname{Par}(e, f, g, h)$ and $\operatorname{Par}(a e, b f, c g, d h)$ imply the remaining statement.

Proof. By (7) we obtain successively

$$
\begin{aligned}
& a e \cdot[b f \cdot(c g \cdot a e)(a e)]=a e \cdot[b f \cdot(c a \cdot g e)(a e)]= \\
& =a e \cdot[b f \cdot(c a \cdot a)(g e \cdot e)]=a e \cdot[b(c a \cdot a) \cdot f(g e \cdot e)]= \\
& =[a \cdot b(c a \cdot a)][e \cdot f(g e \cdot e)]
\end{aligned}
$$

and it becomes obvious that any two of the three equalities $a \cdot b(c a \cdot a)=d$, $e \cdot f(g e \cdot e)=h$ and $a e \cdot[b f \cdot(c g \cdot a e)(a e)]=d h$ imply the remaining equality.

Theorem 9. For any points a, b, c, d we have $\operatorname{Par}(a b, c b, c d, a d)$.
Proof. According to Theorem 7 and the property 2° we have $\operatorname{Par}(a, c, c, a)$ and $\operatorname{Par}(b, b, d, d)$, wherefrom by Theorem $8 \operatorname{Par}(a b, c b, c d, a d)$ follows.

Theorem 10. For any point p the statements $\operatorname{Par}(a, b, c, d), \operatorname{Par}(a p, b p, c p, d p)$ and $\operatorname{Par}(p a, p b, p c, p d)$ are equivalent.

Proof. By Theorem 7 we have $\operatorname{Par}(p, p, p, p)$ and the statement of our theorem follows by Theorem 8.

Theorem 11. If a, b, c are any three points and $d=a c, e=a b, f=e c, g=d f$, then $\operatorname{Par}(a, b, d, f), \operatorname{Par}(b, e, f, g), \operatorname{Par}(a, e, d, g)$ hold (Fig. 4).

Fig. 4

Proof. We must prove the statements $\operatorname{Par}(a, b, a c, a b \cdot c), \operatorname{Par}(b, a b, a b \cdot c$, $(a \cdot a b) c), \operatorname{Par}(a, a b, a c,(a \cdot a b) c)$ because of $f=e c=a b \cdot c$ and

$$
g=d f=a c \cdot(a b \cdot c)={ }^{(9)^{\prime}}(a \cdot a b) c
$$

However, we have successively

$$
\begin{aligned}
& a[b \cdot(a c \cdot a) a]={ }^{(9)} a b \cdot[a \cdot(a c \cdot a) a]={ }^{(8)} a b \cdot[a(a c \cdot a) \cdot a]={ }^{(1)} \\
& =a b \cdot c, \\
& b \cdot(a b)[(a b \cdot c) b \cdot b]={ }^{(9)} b \cdot[a b \cdot(a b \cdot c) b](a b \cdot b)={ }^{(11)} \\
& =b \cdot(c \cdot c b)(a b \cdot b)={ }^{(9)} b(c \cdot c b) \cdot b(a b \cdot b)={ }^{(8)} \\
& =b(c \cdot c b) \cdot(b \cdot a b) b={ }^{(7)} b(b \cdot a b) \cdot(c \cdot c b) b==^{(10)^{\prime}} \\
& =b(b \cdot a b) \cdot c={ }^{(8)} b(b a \cdot b) \cdot c={ }^{(11)}(a \cdot a b) c, \\
& a[a b \cdot(a c \cdot a) a]={ }^{(8)} a[a b \cdot(a \cdot c a) a]={ }^{(11)^{\prime}} a \cdot(a b)(a c \cdot c)={ }^{(9)} \\
& =(a \cdot a b) \cdot a(a c \cdot c)={ }^{(10)}(a \cdot a b) c .
\end{aligned}
$$

Now, if $c=a b=e$, then we have two equalities $a b=c$ and $a c=d$ of Theorem 5 and $f=e c=c c=c$ because of (2). Therefore $\operatorname{Par}(a, b, d, f)$ implies the following theorem:

Theorem 12. By the hypothesis of Theorem 5 we have $\operatorname{Par}(a, b, d, c)$ (Fig. 2).
Corollary. For any points a, b we have $\operatorname{Par}(a, b, a \cdot a b, a b)$.

4. MIDPOINTS

We shall say that b is a midpoint of the pair of points a, c and write $M(a, b, c)$ iff $\operatorname{Par}(a, b, c, b)$.

The properties $1^{\circ}, 2^{\circ}$ and Theorem 7 immediately imply
Theorem 13. For any points a, b there is exactly one point c such that $M(a, b, c)$. $M(a, b, c)$ implies $M(c, b, a)$. For any point a we have $M(a, a, a)$.

Theorem 14. The statement $M(a, b, c)$ holds iff $c=b a \cdot b$.
$\operatorname{Proof.} \operatorname{Par}(a, b, c, b)$ is equivalent with $\operatorname{Par}(b, a, b, c)$, i.e. with $c=b \cdot a(b b \cdot b)$. Because of (2) and (8) this equality can be written in the form $c=b a \cdot b$.

Theorem 15. From $a e=c, a f=b, c g=f, M(b, d, c), h g=d$ it follows that $b g=e, d h=a, M(a, h, g)($ Fig. 5).

Fig. 5

Proof. From $a e=c, a f=b, c g=f$ and Theorem 4 we conclude $b g=e$. Further, we obtain

$$
\begin{aligned}
& a[(h g \cdot h)(b g) \cdot g]={ }^{(7)} a[(h g \cdot b)(h g) \cdot g]= \\
& =a \cdot(d b \cdot d) g=a \cdot c g=a f=b={ }^{(1)^{\prime}} a \cdot(a \cdot b g) g
\end{aligned}
$$

which implies $h g \cdot h=a$. This equality proves the statement $M(g, h, a)$ and the equality $d h=a$.

In the case of the quasigroup $(C, *)$ Theorem 15 proves a result from [1]:
If two cevians divide the opposite sides (from the common vertex) of a triangle in the ratio of golden section, then their intersection divides them in the same ratio and the midpoint of the common vertex and this intersection divides in the same ratio the third cevian through the intersection.

We will say that (Q, \cdot) is a GS-quasigroup with unique halving iff for any two points a, c there is exactly one point b such that $M(a, b, c)$ holds.
D. Vakarelov [2] has axiomatized the notion of the central symmetry by an idempotent medial quasigroup with the operation \square such that the identity ($a \square b$) \square $\square b=a$ holds. Therefore, the next theorem naturally holds.

Theorem 16. If (Q, \cdot) is a GS-quasigroup with unique halving and \square the operation on the set Q defined by $a \square b=b a . b$, then (Q, \square) is a quasigroup of Vakarelov.

Proof. By Theorem 14 we have the equivalence

$$
a \square b=c \Leftrightarrow M(a, b, c) .
$$

However, (Q, \cdot) is a GS-quasigroup with unique halving and Theorem 13 holds. Therefore, it follows that (Q, \square) is an idempotent quasigroup. Moreover, we have

$$
\begin{aligned}
& (a \square b) \square(c \square d)=(d c \cdot d)(b a \cdot b) \cdot(d c \cdot d)={ }^{(7)} \\
& =(d c \cdot b a)(d b) \cdot(d c \cdot d)={ }^{(7)}(d b \cdot c a)(d b) \cdot(d c \cdot d)={ }^{(7)} \\
& =(d b \cdot c a)(d c) \cdot(d b \cdot d)={ }^{(7)}(d b \cdot d)(c a \cdot c) \cdot(d b \cdot d)= \\
& =(a \square c) \square(b \square d), \\
& (a \square b) \square b=b(b a \cdot b) \cdot b={ }^{(1)} a .
\end{aligned}
$$

Corollary. If (Q, \cdot) is an arbitrary GS-quasigroup, then (Q, \square) is a left quasigroup of Vakarelov.

5. CHARACTERIZATION OF GS-QUASIGROUPS

Let us return to any GS-quasigroup (Q, \cdot). Let O be any given point. We define an addition of points by the equivalence

$$
\begin{equation*}
a+b=c \Leftrightarrow \operatorname{Par}(O, a, c, b) \tag{27}
\end{equation*}
$$

i.e. $\operatorname{Par}(O, a, a+b, b)$ for any points a, b.

In [3] it is proved that $(Q,+)$ is a commutative group with the neutral element O.

Theorem 17. The mapping $\varphi: Q \rightarrow Q$ defined by $\varphi(a)=O a$ is an automorphism of the group $(Q,+)$ such that the identity (3) holds.

Proof. For any points a, b we have $\operatorname{Par}(O, a, a+b, b)$, which by Theorem 10 yields $\operatorname{Par}(O O, O a, O(a+b), O b)$, i.e. $\operatorname{Par}(O, O a, O(a+b), O b)$ because of (2). Therefore, by (27) we have $\varphi(a+b)=\varphi(a)+\varphi(b)$. Accoding to Corollary of Theorem 12 for any point a we have $\operatorname{Par}(O, a, O \cdot O a, O a)$, i.e. by (27) we have the equality $a+O a=O \cdot O a$, which can be written in the form (3).

Theorem 18. For any points a, b the equality (4) holds, where φ is the mapping defined by $\varphi(a)=O a$.

Proof. By Theorem 9 we have $\operatorname{Par}(O O, a O, a b, O b)$ and because of (2) we have $\operatorname{Par}(O, a O, a b, O b)$, i.e. by (27) we obtain the equality

$$
\begin{equation*}
a b=a O+O b . \tag{28}
\end{equation*}
$$

This equality and (2) immediately imply $a O=a-O a$, which substituted back into (28) gives $a b=a-O a+O b$. According to Theorem 17 this equality can be written in the form (4).

From Theorems 17 and 18 it follows that any GS-quasigroup can be derived as in Example 1, i.e. we have the following theorem.

Theorem 19. There is a GS-quasigroup (Q, \cdot) iff there is a commutative group $(Q,+)$ and its automorphism φ such that the identity (3) holds. If a commutative group $(Q,+)$ and its automorphism φ with the identity (3) are given, then the operation \cdot is defined by (4), and if a GS-quasigroup (Q, \cdot) and a element $O \in Q$ are given, then the operation + is defined by

$$
\begin{equation*}
a+b=\psi^{-1}(a) \cdot \varphi^{-1}(b) \tag{29}
\end{equation*}
$$

and O is the neutral element of the group $(Q,+)$, where φ, ψ are the bijections of the set Q defined by $\varphi(a)=O a, \psi(a)=a O$.

Indeed, the identity (29) follows from (28) if we substitute the variables a and b by $\psi^{-1}(a)$ and $\varphi^{-1}(b)$.

Theorem 19 gives a more precise version (in the case of a GS-quasigroup) of the well-known Toyoda's theorem about medial quasigroups. Moreover, here we have its "geometrical" proof.

References

[1] W. Janisch: Ein,weiterer Beitrag zur Lehre von den Ecktransversalen eines Dreiecks. Zeitschr* math. naturwiss. Unterr. 38 (1907), 51-54.
[2] D. Vakarelov: Algebrični osnovi na centralnata simetrija, vrteneto i homotetijata, Godišnik Univ. Sofija Mat. fak. 63 (1968-69), 121-166 (1970).
[3] V. Volenec: Geometry of medial quasigroups. Rad Jugoslav. Akad. Znan. Umjetn. 421 (1986), 79-91.

GS-QUASIGRUPY

Vladimir Volenec

Kvazigrupa ($Q,^{\bullet}$) se nazývá GS-kvazigrupa, jestliže platí $a a=a, a(a b \cdot c) \cdot c=b, a \cdot$ $\cdot(a \cdot b c) c=b$ pro všechna $a, b, c \in Q . V$ každé kvazigrupě lze zavést geometrickou terminologii, která vede ke,,geometrickým" výsledkům. GS-kvazigrupa (Q, \cdot) existuje právě když existuje komutativní grupa $(Q,+)$ a její automorfizmus φ takový, že platí identita $(\varphi \cdot \varphi)(a)-\varphi(a)-$ $=0$.

Author's address: Department of Mathematics, University of Zagreb, p.o. box 187, 41001 Zagreb, Yugoslavia.

