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ON NATURAL OPERATORS ON SECTORFORM FIELDS 

JAN K U R E K , Lublin 

(Received February 18, 1988) 

Summary. We determine all natural operators of the following types: firstly from 1-sectorforrn 
bundle to 2-sectorform bundle, secondly from 1-sectorform bundle to 3-sectorform bundle and 
thirdly from 2-sectorform bundle to 3-sectorform bundle. We deduce that the fundamental 
operator here is the differential of sectorform fields. 

Keywords: Natural operator, k-sectoribrm. 

AMS Classification: 58A20. 

The concept of a k-sectorform introduced by J. E. White is generalization of the 
classical 1-form to the case of the k-times iterated tangent bundle, [7], The aim of 
this paper is to determine all natural operators of the following types: firstly from 
1-sectorform bundle to 2-sectorform bundle, secondly from 1-sectorform bundle 
to 3-sectorform bundle and thirdly from 2-sectorform bundle to 3-sectorform bundle. 
We deduce that the fundamental operator here is the differential of sectorform fields 
introduced by J. E. White, [7], and I. Kolar, [2]. In the paper, we use a general 
method for finding all natural operators of certain types developed by I. Kolaf in [3]. 

The author is grateful to Professor I. Kolaf for suggesting the problem, for valuable 
remarks and useful discussions. 

1. Let M be a smooth manifold. 
Let 

(1.1) pM: TM - M, pTM: T(TM) - TM, ...,pTk_lM: T(Tk_,M) - Th-_M 

be the tangent bundles. Consider an iterated tangent bundle 

(1.2) TkM:= T(T(...TM)). 

k— tunes 

There exist k vector bundle structures on TkM over Tk-tM 

(1.3) TrpTk_r_lM: TkM -> Tk^M , r = 0 , 1 , . . . , k - 1 

with projections pTk_lM, TpTk_lM, .., Tk_xpM. 
A classical 1-form on the manifold M can be interpreted as a linear map TM -> R 

with respect to the vector bundle structure pM: TM -> M. This concept can be 
generalized as follows [7], 
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Definition 1. A map Qk x: (TkM)x —> R linear with respect to all k vector bundle 
structures (1.3) is called a k-sectorform on M at x. 

Elements of the iterated tangent bundle TkM are called k-sectors and can be 
expressed in the form 

(1.4) A = 
ÔЃ 

д_ 

дtl 
C(t*,...,t4) 

for a suitable smooth local map (: Rk -+ M. 

The coordinate functions of a local chart cp = (x ' ) l = 1 > „ on M induce the co­
ordinate functions of a local chart \j/k = (x^ _ A J , / = 1, ..., n, X{ E {0, J}, / = 1,... 
..., k, on TkM defined by 

, ^(x'-oCO 1 , . . . ,^)) 

= A. + ... + Xk. 

(1.5) 
(ÕЃ)X 

(0 0) 

with / 
Let 

(1.6) qt: TtM -> M 

denote the fibre bundle of all k-sectorforms on M. Then a k-sectorform field on M 
is a section Qk: M -> T*M and the value Qk at a point x can be considered as a map 
&k,x: (TkM)x -> R. Any k-sectorform .Ofc on M has the following form in the induced 
coordinates on TkM for k = 1, 2, 3: 

(1.7) Qx = e / x _ , 

(1.8) Q2 = Cixi_ + bux[0x
J

01 , 

(1.9) D 3 = E ^ i , . + ^ v x i 1 0 x 0 0 1 + C l V x . 0 1 x 0 1 0 + 

+ ^O'̂ Oll^lOO + ^ijfcxiooxoioxooi • 

A coordinate change x1 = x'(xJ) on M induces a coordinate change of the induced 
coordinates (x^ < J L J on TkM. In this way we obtain the coordinate changes on TkM 
in the following forms for k = 1, 2, 3: 

(1.10) 

(1.11) 

(1.12) 

= e:a
J; 

= c -ãJ. ^jui •> 

Bij = bk,a\a) + cka)} , 

E, = E,a\, 

B,j =Blma\aJ + E,á\j, 

C,j = C,ma\aJ + E,a\j , 

Bij = D,ma\aJ + E,a\j , 

Am = A,mna\am
}a

n
k + B,má\ka

m
} + C,ma)ka

m + D,ma\ja? + E,a\Jk 
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provided 

(1.13) ß£ 
õxJ 

ÜІЪ = 
ő V З v ř 

diví = 
ô3x 

J ôxJ ôxk ' J ôxJ õxk õx 

The differential of a real valued function / : M -> R is the second component of the 
tangent map Tf: TM -> TR = R x R9 i.e. Sf = pr2 o Tf9 where pr2: R x R -> R is 
the projection on the second factor. The differential Sco of the 1-form co on M, 
interpreted as a linear map TM -> R, is a 2-sectorform field 5a> = pr2 o Tc0 inter­
preted as a map O*co: T2M -> R. In general, we have 

Definition 2. ([2], [7]). The second component SQk: Tk+iM —> R of the tangent 
map TOfc:T*+1M-> TR, 

(1.14) dQk = pr2oTQk 

is called the differential of the k-sectorform field Qk: M -> T*M. 
If sectorform fields r^ e C°°T*M, Q2eCcoT*M are of the form .Qi = eLx\9 

Q2 = CfXJi + bi,oc!0xol5 then their differentials SQ^C^T^M, S2QieCcoT*M, 

8Qi = efXn + eijx[0x
J
01 , 

5 Qt = eiXtll + ^ij^ito^ooi + go x io i xo io + 

+ îĵ lOO^Oll + go"fcxiooxoioxooi > 

002 = CiXm + CfJX110X0()1 + Oiy îoî OlO + 

•+" ^ijX100X01i + îjfex100;X010:)C001 • 

Let £: R -> M or £: R2 -> M be a suitable smooth local map defining an element 
of TM or TTM respectively, by 

dl 

SQ2 e CXTXM are of the form 

(1.15) 

(1.16) 

(1.17) 

(1.18) 
dí 

É(í) є TM, 

(1-19) - x 
V ' ЪЃ 

C(Í». ' 2 ) . 
(0,0) дť 

C(tS <2) 
(0,0) дt1 õť W.ň-

(0,0) 

Consider a canonical injection fc: TM -> TTM defined by 

o St1 8t2
 ( 0 j 0 ) 

(1.20) 
ôt1 Фl.ñ. 

In local coordinates on TM or T2M the canonical injection k: TM -> T2M is of the 
form 

k: (x09 Xi) i—* (x00 = x0, x10 = 0, x0 1 = 0, x ^ = x x j . 

For a 2-sectorform Q2 e T*M we get an underlying 1-sectorform defined by Qt = 
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= Q2ok. In local coordinates, for the 2-sectorform Q2 = CiXl
u + bijX\0xoi the 

underlying 1-sectorform is Qx = ctx\. 
Consider the projections 

(1.21) pTM o pTTM, TpM o pTTM, TpM o T2pM: T3M -> TM , 

(1.22) T2pM, TpTM, pTTM: T3M -> T2M . 

Then, for a given 1-sectorform Qt e T*M and a 2-sectorform Q2 e T*2M of the form 
(1.7) and (1.8), we obtain the 3-sectorforms 

(1.23) Q1 o pTM o pTTM ® Q2 o T2pM = (eiXl
i00) (cjXJ

oll + b,fcxoioxooi) > 

(1.24) Qx o pTM o pTTM ® Qt o TpM o pTTM ® Q1Q TpM o T2pM = 

= (eiXlOo) \ejXOlo) \ekX00l) • 

Thus, we can define the following inclusions of tensor products of a 1-sectorform 
bundle and a 2-sectorform bundle to a 3-sectorform bundle or of three copies of 
a 1-sectorform bundle to a 3-sectorform bundle 

(1.25) T*M ® T*M -> T*3M by (1.23), 

(L26) T*M ® T*M ® T*M -> T3*M by (1.24) . 

2. In this part we determine all natural operators from a 1-sectorform bundle 
to a 2-sectorform bundle. 

Theorem 1. All natural operators T*M -> T*M form a 3 parameter family 

(2.1) Cf = (lj + v) ei, bij = iieu + veji + A^e,., /i, v, A e K , 

where (e(, etj) or (ch b^) denote the canonical coordinate on the first jet prolongation 
JlT*M or T^M, respectively. 

Proof. I. The first order operators F: T*M -> T*M are in bijection with the 
natural transformations F: J1 T*M -> T*M and the L^-equivariant maps of standard 
fibres F: ( ^ T * ! ^ -> (T*2R%. The group L2

n acts on the fibre (J*T*R% in the form 

(2.2) et = ^ k a j , eu = ekla\a) + ^ka^.. 

We denote by (a), a)k) the coordinates of the inverse element a" 1 to an element 
ae L2

n with coordinates (a), a)k). The group L2
n acts on the fibre (T*R% by the formula 

(i.u). 
First, consider equivariancy with respect to homotheties: a) = kd), d)k = 0 for 

a map F: (JiT*R% -> (T*R% of the form 

F'- ci = Gi(ei> eu) > bij = fij(ei, eij). 

This gives a homogeneity condition: 

235 



(2.3) k g{eh e0) = g{keh k2e<7), 

k2ffj(eh eu) = fij(keh k2e0). 

We need the following 

Lemma [4]. Let g(x\ yp, ..., z') be a smooth function defined on Rm x Rn x ... 
... x Rp and let a > 0, b > 0, ..., c > 0, d be real numbers such that 
kd g(x\ yp, ..., zx) = g(kV, khyp, ..., kV) for every real number k. Then g is the 
sum of polynomials of degrees c in x\ n in yp,..., C in z* satisfying a£, + bi] + ... 
... + c{ = d. 

By this lemma, functions gt or fXJ must be polynomials of degrees ri9 r2 or s l5 s2 

with respect to eh etJ satisfying 

(2.4) 1 = n + 2r2 , 2 = sl + 2s2 . 

The first equation (2.4) has the only solution r1 = 1, r2 = 0, i.e. gt is linear in e{ 

and is independent of e{J. The second equation (2.4) has two solutions sx = 0, 
s2 = 1 and sl = 2, s2 = 0, i.e.f7 is the sum of a polynomial of degree 1 in e{J and 
of a polynomial of degree 2 with respect to e{. 

Now we shall use the classical description of all invariant tensors, i.e. those ele­
ments of ® p Rn ® ®q Rn* which are invariant with respect to all linear isomorphims 
of Rn [ l ] , [3], [5], The non-zero invariant tensors exist only for p = q and are of the 
form 

(2.5) X M i a ) ® . - ® J ^ , k°eR> 
aeS(p) 

where 1$ = [<5j] denotes the identity tensor in K" ® Rn
p* and K" or Rn

p* is the a-th 
or /?-th component in ®p Rn or ®*K"*, respectively. Using invariant tensors we 
deduce that gt andf7 are of the form 

(2.6) g, = zSjej , 

fa = vfi&W + vS'jfykl + Xdld^e,. 

Considering equivariancy with respect to the kernel of the projection L2 -• Ll
n i.e. 

dj = <5j and aJk arbitrary, we get T = [i + v. This yields (2A). 
II. An r-th order operator F: T*M -> T2M corresponds to an L^+1-equivariant 

map F: (JrT*Rn)0 -* (T*Rn)0. Equivariancy of F with respect to homotheties 
aj = k(5j, ajkl...k, = 0, s = 1, ..., r, gives 

(2.7) kgfa, eiJl9..., eiJlmmJr) = gt(keh k2eih,..., kr+1eiJ^Jr) , 

k%(eh eiJi9..., e,7l..Jr) = fij(keh k2eUli..., V+1etJl„mJr) . 

By our lemma, functions gf. are independent of etJl Js, s = 1,. . . , r and f7 

are independent of eiJlmmjp, p = 2, ..., r. Hence, we have the case I. By Slovak's 
theorem, [6], every natural operator on T*M has finite order. This proves Theorem 1. 

236 



The geometrical interpretation of the 3-parameter family (2.1) of natural operators 
F: T*M -> T*M is 

(2.8) F: Ql\-^5Q1 for /.< = 1 , v = 0 , k = 0 , 

F: Ql\^SQloiM for /i = 0 , v = 1 , A = 0 , 

F: .Qi h-> .Qj o prM ® Qt o TpM , /i = 0 , v = 0 , A = 1 , 

where (): T*M -> T|M is the differential defined by (1A5) and iM: T2M -> T2M is 
the canonical involution. 

3, In this part we determine all natural operators from a 1-sectorform bundle 
T*M to a 3-sectorform bundle T*2M. 

Theorem 2. All natural operators F: T*M -> T*M form a \0-parameter family 
of the form 

(3.1) K/ = (Mi + H2 + ̂ ^ i , 

5 i y = (A*I + ^2) ^,7 + Wji + (v5 + v e) *,-*/ , 

Cfi = 0"i + A-3) 1̂7 + r^/i + (V3 + v
4) eieJ , 

£>ij = Vieij + 0*2 + ^3) */* + (vi + v2) ^ ; > 

Aljk = Vleijk + Wjik + A /̂ifc + Vl̂ î /fc + ^2eiekj + 

+ V3^^ifc + ^Aejeki + ^5ekeij + V6ekeji + ^eiejek , 

for any fip9 va,XeR9 p = 1, 2, 3, a = 1, 2 , . . . , 6 where (eh eij9 eijk) and (Eh Bij9 Cij9 

Dij9Aijk) are the canonical coordinates on the second jet prolongation J2T*M 
and T*M9 respectively. 

Proof. I. The second order operators F: T*M -> T%M are in bijection with the 
natural transformations F: J2T*M -> T*M and the L^-equivariant maps of standard 
fibres F: (J2T*Rn)0 -> (T*Rn)0. The latter map is of the form 

(3.2) Et = gi(eh eij9 eijk) , Bu = fu(eh eij9 eijk) , 

CU = hu(eh eu> eijk) , Dij = ru(eh eij9 eijk) , 

Aijk = sijk(eh eip eijk) -

The group L\ acts on the standard fibre of the second jet prolongation (J2T*Rn)0 

in the form 

(3.3) e{ = exa\, 
eU = eima\aJ + exa

l
u , 

hjk = eimna\djan + elma\ajk + elmal
ua™ + elma\kaj + exa

l
m 

and on the fibre (T%Rn)0 by the formula (1.12). 
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Considering equivariancy of (3.2) with respect to the homotheties a) = kd)9 al
jk = 0, 

fijki = 0 a n d using the lemma, we arrive at the following facts. Functions fij9 hij9 ru 
are linear in ei} and quadratic in er Functions sijk are linear in eijk9 bilinear in ei9 eu 
and of the third degree in e(. Using the classical description of invariant tensors, we 
obtain the components of F in the form 

(3.4) gt =aei9 

fij = Peu + yeji + eeiej > 

hu = Pieu + yieji + e^exej, 

ru = Pieu + y2eji + e^ej, 
sUk = Pieijk + Li2ejik + ii3eklJ + vleiejk + v2etekj + 

+ v*ejeik + v4e,eu + v5ekeu + v6ekejt + Xe{ejek. 

Equivariancy of the operators (3.4) with respect to the kernel of the projection 
L\ -> Ln i.e. dj = 5j and a)k9 a)kl are arbitrary, gives the following relations for 
parameters 

(3.5) a = jUj + \i2 + fi3, 

P = l*i + l*2> y = P* > £ = v5 + v6 , 

Pi = 1*1 + 1*3 , 7i = Hi > fii = v3 + v4 , 

Pi = Mi , y2 = Vi + Vi > £2 = Vi + v2 . 

Thus, we get a 10-parameter family (3.1) of natural operators. 
II. The r-th order operators F: T*M -> T%M correspond to the Lr+ ^equivariant 

maps F: (JrT*Rn)Q -> (T*Rn)0. Equivariancy of the operator F with respect to the 
homotheties a) = k8)9 dl

jklks = 0, s = 1 , . . . , r, gives independency of F of the 
coordinates eiji jp, p = 3 , . . . , r. Hence, the r-th order operators are reduced to the 
case I for every r > 2. By Slovak's theorem, [6] every natural operator on T*M has 
finite order. This proves Theorem 2. 

The geometrical interpretation of the 10-parameter family (3.1) of natural operators 
F: T*M -> T%M is 

(3.6) F: Qx H-> d2Qi 

for pLx = 1 and all the others are 0 , 

(3.7) F: Qi h-* Qt 0 pTM 0 pTTM ® 8QX 0 T2pM 

for Vj = 1 and all the others are 0 , 

(3.8) F: Q1\-^Ql0 pTM 0 pTTM ® Qt 0 TpM 0 pTTM ® Qt o TpM 0 T2pM 

for k = 1 and all the others are 0 . 

The remaining cases are derived from (3.6) and (3.7) by applying the canonical 
action of the symmetric group S3 of 3 letters on T2M [7], 
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Theorem 3. All natural operators T2M -> T3M form a 22-parameter family 
containing the 10-parameter family (3.1) Of natural operators T*M -> T*M 
defined on the underlying 1-sectorform fields, a 6-parameter family consisting 
of the differential (1.17) combined with the action of S3 on T3M, and a 6-parameter 
family consisting of the tensor product (V23) of the 2-sectorform with the underlying 
1-sectorform combined with the action of S3 on T3M. 

Proof is quite similar to those of Theorems 1 and 2, and we will not perform it 
explicitly here. 
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Souhrn 

PŘIROZENÉ OPERÁTORY NA POLÍCH SEKTORFORM 

JAN KŮREK 

Určují se všechny přirozené operátory s 1-sektorform bandlu do 2-sektorform bandlu a s 1-
sektorform bandlu do 3-sektorform bandlu a takó z 2-sektorform bandlu do 3-sektorform bandlu. 
Dokazuje se, že hlavním operátorem je v tomto případě diferenciál pole sektorform, 

Pe3K>Me 

HATyPAJILHBIE OnEPATOPBI HA nOJLHX CEKTOPOOPM 

JAN KŮREK 

OnpeAejuHOTCfl Bce HaTypajibHtie onepaTOpbi cjieAyKHHHx THnoB. H3 paccjioeHHH l-ceKiop(j)OpM 
B paccjioeHHe 2-ceKTOp$opM, H3 paccjioerom 1-ceKTOp4)opM B paccjioeHHe 3-ceKTOpO(j)OM H H3 
paccjioeHHíi 2-ceKTop(J)opM B paccjioeHHe 3-ceKTOp<j)OpM. noKa3biBaeTCH, *rro rnaBHbíM onepaTopoM 
B 3TOM cjiynae ABJieTCH /j,H<j)(j)epeHHHaji noun ceKTOp<j>opM. 
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