Časopis pro pěstování matematiky

Jan Kurek
On natural operators on sectorform fields

Časopis pro pěstování matematiky, Vol. 115 (1990), No. 3, 232--239
Persistent URL: http://dml.cz/dmlcz/118402

Terms of use:

© Institute of Mathematics AS CR, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

ON NATURAL OPERATORS ON SECTORFORM FIELDS

Jan Kurek, Lublin

(Received February 18, 1988)

Abstract

Summary. We determine all natural operators of the following types: firstly from 1-sectorform bundle to 2 -sectorform bundle, secondly from 1 -sectorform bundle to 3 -sectorform bundle and thirdly from 2 -sectorform bundle to 3 -sectorform bundle. We deduce that the fundamental operator here is the differential of sectorform fields.

Keywords: Natural operator, k-sectorform.
AMS Classification: 58A20.
The concept of a k-sectorform introduced by J. E. White is generalization of the classical 1 -form to the case of the k-times iterated tangent bundle, [7]. The aim of this paper is to determine all natural operators of the following types: firstly from 1 -sectorform bundle to 2 -sectorform bundle, secondly from 1 -sectorform bundle to 3 -sectorform bundle and thirdly from 2 -sectorform bundle to 3 -sectorform bundle. We deduce that the fundamental operator here is the differential of sectorform fields introduced by J. E. White, [7], and I. Kolář, [2]. In the paper, we use a general method for finding all natural operators of certain types developed by I. Kolář in [3].

The author is grateful to Professor I. Kolář for suggesting the problem, for valuable remarks and useful discussions.

1. Let M be a smooth manifold.

Let

$$
\begin{equation*}
p_{M}: T M \rightarrow M, p_{T M}: T(T M) \rightarrow T M, \ldots, p_{T_{k-1} M}: T\left(T_{k-1} M\right) \rightarrow T_{k-1} M \tag{1.1}
\end{equation*}
$$

be the tangent bundles. Consider an iterated tangent bundle

$$
\begin{equation*}
T_{k} M:=\underbrace{T(T(\ldots T M))}_{k-\text { times }} . \tag{1.2}
\end{equation*}
$$

There exist k vector bundle structures on $T_{k} M$ over $T_{k-1} M$

$$
\begin{equation*}
T_{r} p_{T_{k-r-1} M}: T_{k} M \rightarrow T_{k-1} M, \quad r=0,1, \ldots, k-1 \tag{1.3}
\end{equation*}
$$

with projections $p_{T_{k-1} M}, T p_{T_{k-2} M}, \ldots, T_{k-1} p_{M}$.
A classical 1-form on the manifold M can be interpreted as a linear map $T M \rightarrow R$ with respect to the vector bundle structure $p_{M}: T M \rightarrow M$. This concept can be generalized as follows [7].

Definition 1. A map $\Omega_{k . x}:\left(T_{k} M\right)_{x} \rightarrow R$ linear with respect to all k vector bundle structures (1.3) is called a k-sectorform on M at x.

Elements of the iterated tangent bundle $T_{k} M$ are called k-sectors and can be expressed in the form

$$
\begin{equation*}
A=\left.\left.\frac{\partial}{\partial t^{k}}\right|_{0} \ldots \frac{\partial}{\partial t^{1}}\right|_{0} \zeta\left(t^{1}, \ldots, t^{k}\right) \tag{1.4}
\end{equation*}
$$

for a suitable smooth local map $\zeta: R^{k} \rightarrow M$.
The coordinate functions of a local chart $\varphi=\left(x^{i}\right)_{i=1, \ldots, n}$ on M induce the coordinate functions of a local chart $\psi_{k}=\left(x_{\lambda_{1} \ldots i_{k}}^{i}\right), i=1, \ldots, n, \lambda_{l} \in\{0,1\}, l=1, \ldots$ \ldots, k, on $T_{k} M$ defined by

$$
\begin{equation*}
x_{\lambda_{1} \ldots \lambda_{k}}^{i}(A)=\left.\frac{\partial^{|\lambda|}\left(x^{i} \circ \zeta\left(t^{1}, \ldots, t^{k}\right)\right)}{\left(\partial t^{1}\right)^{\lambda_{1}} \ldots\left(\partial t^{\lambda_{k}}\right)^{\lambda_{k}}}\right|_{(0, \ldots, 0)} \tag{1.5}
\end{equation*}
$$

with $|\lambda|=\lambda_{1}+\ldots+\lambda_{k}$.
Let

$$
\begin{equation*}
q_{k}: T_{k}^{*} M \rightarrow M \tag{1.6}
\end{equation*}
$$

denote the fibre bundle of all k-sectorforms on M. Then a k-sectorform field on M is a section $\Omega_{k}: M \rightarrow T_{k}^{*} M$ and the value Ω_{k} at a point x can be considered as a map $\Omega_{k, x}:\left(T_{k} M\right)_{x} \rightarrow R$. Any k-sectorform Ω_{k} on M has the following form in the induced coordinates on $T_{k} M$ for $k=1,2,3$:

$$
\begin{align*}
\Omega_{1} & =e_{i} x_{1}^{i}, \tag{1.7}\\
\Omega_{2} & =c_{i} x_{11}^{i}+b_{i j} x_{10}^{i} x_{01}^{j}, \\
\Omega_{3} & =E_{i} x_{111}^{i}+B_{i j} x_{110}^{i} x_{001}^{j}+C_{i j} x_{101}^{i} x_{010}^{j}+ \\
& +D_{i j} x_{011}^{i} x_{100}^{j}+A_{i j k} x_{100}^{i} x_{010}^{j} x_{001}^{k} .
\end{align*}
$$

A coordinate change $x^{i}=x^{i}\left(\bar{x}^{j}\right)$ on M induces a coordinate change of the induced coordinates $\left(x_{\lambda_{1} \ldots \lambda_{k}}^{i}\right)$ on $T_{k} M$. In this way we obtain the coordinate changes on $T_{k} M$ in the following forms for $k=1,2,3$:

$$
\begin{align*}
\bar{e}_{i} & =e_{j} \tilde{a}_{i}^{j} \tag{1.10}\\
\bar{c}_{i} & =c_{j} \tilde{a}_{i}^{j}, \\
\bar{b}_{i j} & =b_{k l} \tilde{a}_{i}^{k} \tilde{a}_{j}^{l}+c_{k} \tilde{a}_{i j}^{k}, \\
\bar{E}_{i} & =E_{l} \tilde{a}_{i}^{l}, \\
\bar{B}_{i j} & =B_{l m} \tilde{a}_{i}^{l} \tilde{a}_{j}^{m}+E_{l} \tilde{a}_{i j}^{l}, \\
\bar{C}_{i j} & =C_{l m} \tilde{a}_{i}^{l} \tilde{a}_{j}^{m}+E_{l} \tilde{a}_{i j}^{l}, \\
\bar{D}_{i j} & =D_{l m} \tilde{a}_{i}^{l} \tilde{a}_{j}^{m}+E_{l} \tilde{a}_{i j}^{l}, \\
\bar{A}_{i j k} & =A_{l m n} \tilde{a}_{i}^{l} \tilde{a}_{j}^{m} \tilde{a}_{k}^{n}+B_{l m} \tilde{a}_{i k}^{l} \tilde{a}_{j}^{m}+C_{l m} \tilde{a}_{j k}^{l} \tilde{a}_{i}^{m}+D_{l m} \tilde{a}_{i j}^{l} \tilde{a}_{k}^{m}+E_{l} \tilde{a}_{i j k}^{l}
\end{align*}
$$

provided

$$
\begin{equation*}
\tilde{a}_{j}^{i}=\frac{\partial x^{i}}{\partial \bar{x}^{j}}, \quad \tilde{a}_{j k}^{i}=\frac{\partial^{2} x^{i}}{\partial \bar{x}^{j} \partial \bar{x}^{k}}, \quad \tilde{a}_{j k l}^{i}=\frac{\partial^{3} x^{i}}{\partial \bar{x}^{j} \partial \bar{x}^{k} \partial \bar{x}^{l}} . \tag{1.13}
\end{equation*}
$$

The differential of a real valued function $f: M \rightarrow R$ is the second component of the tangent map $T f: T M \rightarrow T R=R \times R$, i.e. $\delta f=p r_{2} \circ T f$, where $p r_{2}: R \times R \rightarrow R$ is the projection on the second factor. The differential $\delta \omega$ of the 1 -form ω on M, interpreted as a linear map $T M \rightarrow R$, is a 2-sectorform field $\delta \omega=p r_{2} \circ T \omega$ interpreted as a map $\delta \omega: T_{2} M \rightarrow R$. In general, we have

Definition 2. ([2], [7]). The second component $\delta \Omega_{k}: T_{k+1} M \rightarrow R$ of the tangent map $T \Omega_{k}: T_{k+1} M \rightarrow T R$,

$$
\begin{equation*}
\delta \Omega_{k}=p r_{2} \circ T \Omega_{k} \tag{1.14}
\end{equation*}
$$

is called the differential of the k-sectorform field $\Omega_{k}: M \rightarrow T_{k}^{*} M$.
If sectorform fields $\Omega_{1} \in C^{\infty} T^{*} M, \Omega_{2} \in C^{\infty} T_{2}^{*} M$ are of the form $\Omega_{1}=e_{i} x_{1}^{i}$, $\Omega_{2}=c_{i} x_{11}^{i}+b_{i j} x_{10}^{i} x_{01}^{j}$, then their differentials $\delta \Omega_{1} \in C^{\infty} T_{2}^{*} M, \delta^{2} \Omega_{1} \in C^{\infty} T_{3}^{*} M$, $\delta \Omega_{2} \in C^{\infty} T_{3}^{*} M$ are of the form

$$
\begin{align*}
\delta \Omega_{1} & =e_{i} x_{11}^{i}+e_{i j} x_{10}^{i} x_{01}^{j}, \tag{1.15}\\
\delta^{2} \Omega_{1} & =e_{i} x_{111}^{i}+e_{i j} x_{110}^{i} x_{001}^{j}+e_{i j} x_{101}^{i} x_{010}^{j}+ \\
& +e_{i j} x_{100}^{i} x_{011}^{j}+e_{i j k} x_{100}^{i} x_{010}^{j} x_{001}^{k}, \\
\delta \Omega_{2} & =c_{i} x_{111}^{i}+c_{i j} x_{110}^{i} x_{001}^{j}+b_{i j} x_{101}^{i} x_{010}^{j}+ \\
& +b_{i j} x_{100}^{i} x_{011}^{j}+b_{i j k} x_{100}^{i} x_{010}^{j} x_{001}^{k} .
\end{align*}
$$

Let $\xi: R \rightarrow M$ or $\zeta: R^{2} \rightarrow M$ be a suitable smooth local map defining an element of $T M$ or $T T M$ respectively, by

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{0} \xi(t) \in T M \tag{1.18}
\end{equation*}
$$

$$
\begin{equation*}
\left.\frac{\partial}{\partial t^{1}}\right|_{(0,0)} \zeta\left(t^{1}, t^{2}\right),\left.\quad \frac{\partial}{\partial t^{2}}\right|_{(0,0)} \zeta\left(t^{1}, t^{2}\right),\left.\frac{\partial^{2}}{\partial t^{1} \partial t^{2}}\right|_{(0,0)} \zeta\left(t^{1}, t^{2}\right) . \tag{1.19}
\end{equation*}
$$

Consider a canonical injection $k: T M \rightarrow T T M$ defined by

$$
\begin{equation*}
k:\left.\left.\frac{\partial}{\partial t^{1}}\right|_{0} \xi\left(t^{1}\right) \mapsto \frac{\partial^{2}}{\partial t^{1} \partial t^{2}}\right|_{(0,0)} \xi\left(t^{1} \cdot t^{2}\right) . \tag{1.20}
\end{equation*}
$$

In local coordinates on $T M$ or $T_{2} M$ the canonical injection $k: T M \rightarrow T_{2} M$ is of the form

$$
k:\left(x_{0}^{i}, x_{1}^{i}\right) \mapsto\left(x_{00}^{i}=x_{0}^{i}, x_{10}^{i}=0, x_{01}^{i}=0, x_{11}^{i}=x_{1}^{i}\right) .
$$

For a 2 -sectorform $\Omega_{2} \in T_{2}^{*} M$ we get an underlying 1 -sectorform defined by $\Omega_{1}=$
$=\Omega_{2} \circ k$. In local coordinates, for the 2 -sectorform $\Omega_{2}=c_{i} x_{11}^{i}+b_{i j} x_{10}^{i} x_{01}^{j}$ the underlying 1 -sectorform is $\Omega_{1}=c_{i} x_{1}^{i}$.

Consider the projections

$$
\begin{align*}
& p_{T M} \circ p_{T T M}, T p_{M} \circ p_{T T M}, T p_{M} \circ T_{2} p_{M}: T_{3} M \rightarrow T M \tag{1.21}\\
& T_{2} p_{M}, T p_{T M}, p_{T T M}: T_{3} M \rightarrow T_{2} M \tag{1.22}
\end{align*}
$$

Then, for a given 1-sectorform $\Omega_{1} \in T^{*} M$ and a 2 -sectorform $\Omega_{2} \in T_{2}^{*} M$ of the form (1.7) and (1.8), we obtain the 3 -sectorforms

$$
\begin{align*}
& \Omega_{1} \circ p_{T M} \circ p_{T T M} \otimes \Omega_{2} \circ T_{2} p_{M}=\left(e_{i} x_{100}^{i}\right)\left(c_{j} x_{011}^{j}+b_{j k} x_{010}^{j} x_{001}^{k}\right), \tag{1.23}\\
& \Omega_{1} \circ p_{T M} \circ p_{T T M} \otimes \Omega_{1} \circ T p_{M} \circ p_{T T M} \otimes \Omega_{1} \circ T p_{M} \circ T_{2} p_{M}= \tag{1.24}\\
& =\left(e_{i} x_{100}^{i}\right)\left(e_{j} x_{010}^{j}\right)\left(e_{k} x_{001}^{k}\right) .
\end{align*}
$$

Thus, we can define the following inclusions of tensor products of a 1-sectorform bundle and a 2 -sectorform bundle to a 3 -sectorform bundle or of three copies of a 1 -sectorform bundle to a 3-sectorform bundle

$$
\begin{array}{ll}
T^{*} M \otimes T_{2}^{*} M \rightarrow T_{3}^{*} M & \text { by } \\
T^{*} M \otimes T^{*} M \otimes T^{*} M \rightarrow T_{3}^{*} M & \text { by } \tag{1.26}
\end{array}
$$

2. In this part we determine all natural operators from a 1 -sectorform bundle to a 2 -sectorform bundle.

Theorem 1. All natural operators $T^{*} M \rightarrow T_{2}^{*} M$ form a 3 parameter family

$$
\begin{equation*}
c_{i}=(\mu+v) e_{i}, \quad b_{i j}=\mu e_{i j}+v e_{j i}+\lambda e_{i} e_{j}, \quad \mu, v, \lambda \in R \tag{2.1}
\end{equation*}
$$

where $\left(e_{i}, e_{i j}\right)$ or $\left(c_{i}, b_{i j}\right)$ denote the canonical coordinate on the first jet prolongation $J^{1} T^{*} M$ or $T_{2}^{*} M$, respectively.

Proof. I. The first order operators $F: T^{*} M \rightarrow T_{2}^{*} M$ are in bijection with the natural transformations $F: J^{1} T^{*} M \rightarrow T_{2}^{*} M$ and the L_{n}^{2}-equivariant maps of standard fibres $F:\left(J^{1} T^{*} R^{n}\right)_{0} \rightarrow\left(T_{2}^{*} R^{n}\right)_{0}$. The group L_{n}^{2} acts on the fibre $\left(J^{1} T^{*} R^{n}\right)_{0}$ in the form

$$
\begin{equation*}
\bar{e}_{i}=e_{k} \tilde{a}_{i}^{k}, \quad \bar{e}_{i j}=e_{k l} \tilde{a}_{i}^{k} \tilde{a}_{j}^{l}+e_{k} \tilde{a}_{i j}^{k} \tag{2.2}
\end{equation*}
$$

We denote by ($\tilde{a}_{j}^{i}, \tilde{a}_{j k}^{i}$) the coordinates of the inverse element a^{-1} to an element $a \in L_{n}^{2}$ with coordinates $\left(a_{j}^{i}, a_{j k}^{i}\right)$. The group L_{n}^{2} acts on the fibre $\left(T_{2}^{*} R^{n}\right)_{0}$ by the formula (1.11).

First, consider equivariancy with respect to homotheties: $\tilde{a}_{j}^{i}=k \delta_{j}^{i}, \tilde{a}_{j k}^{i}=0$ for a map $F:\left(J^{1} T^{*} R^{n}\right)_{0} \rightarrow\left(T_{2}^{*} R^{n}\right)_{0}$ of the form

$$
F: c_{i}=g_{i}\left(e_{i}, e_{i j}\right), \quad b_{i j}=f_{i j}\left(e_{i}, e_{i j}\right)
$$

This gives a homogeneity condition:

$$
\begin{align*}
& k g_{i}\left(e_{i}, e_{i j}\right)=g_{i}\left(k e_{i}, k^{2} e_{i j}\right), \tag{2.3}\\
& k^{2} f_{i j}\left(e_{i}, e_{i j}\right)=f_{i j}\left(k e_{i}, k^{2} e_{i j}\right) .
\end{align*}
$$

We need the following

Lemma [4]. Let $g\left(x^{i}, y^{p}, \ldots, z^{t}\right)$ be a smooth function defined on $R^{m} \times R^{n} \times \ldots$ $\ldots \times R^{p}$ and let $a>0, b>0, \ldots, c>0, d$ be real numbers such that $k^{d} g\left(x^{i}, y^{p}, \ldots, z^{t}\right)=g\left(k^{a} x^{i}, k^{b} y^{p}, \ldots, k^{c} z^{t}\right)$ for every real number k. Then g is the sum of polynomials of degrees $\breve{\zeta}_{\underline{G}}$ in x^{i}, η in y^{p}, \ldots, ζ in z^{t} satisfying $a \xi+b \eta+\ldots$ $\ldots+c \zeta=d$.
By this lemma, functions g_{i} or $f_{i j}$ must be polynomials of degrees r_{1}, r_{2} or s_{1}, s_{2} with respect to $e_{i}, e_{i j}$ satisfying

$$
\begin{equation*}
1=r_{1}+2 r_{2}, \quad 2=s_{1}+2 s_{2} \tag{2.4}
\end{equation*}
$$

The first equation (2.4) has the only solution $r_{1}=1, r_{2}=0$, i.e. g_{i} is linear in e_{i} and is independent of $e_{i j}$. The second equation (2.4) has two solutions $s_{1}=0$, $s_{2}=1$ and $s_{1}=2, s_{2}=0$, i.e. $f_{i j}$ is the sum of a polynomial of degree 1 in $e_{i j}$ and of a polynomial of degree 2 with respect to e_{i}.

Now we shall use the classical description of all invariant tensors, i.e. those elements of $\otimes^{p} R^{n} \otimes \otimes^{q} R^{n *}$ which are invariant with respect to all linear isomorphims of R^{n} [1], [3], [5]. The non-zero invariant tensors exist only for $p=q$ and are of the form

$$
\begin{equation*}
\sum_{\sigma \in S(p)} k_{\sigma} I_{\sigma(1)}^{1} \otimes \ldots \otimes I_{\sigma(p)}^{p}, \quad k_{\sigma} \in R \tag{2.5}
\end{equation*}
$$

where $I_{\beta}^{\alpha}=\left[\delta_{j}^{i}\right]$ denotes the identity tensor in $R_{\alpha}^{n} \otimes R_{\beta}^{n *}$ and R_{α}^{n} or $R_{\beta}^{n *}$ is the α-th or β-th component in $\otimes^{p} R^{n}$ or $\otimes^{q} R^{n *}$, respectively. Using invariant tensors we deduce that g_{i} and $f_{i j}$ are of the form

$$
\begin{align*}
g_{i} & =\tau \delta_{i}^{j} e_{j} \tag{2.6}\\
f_{i j} & =\mu \delta_{i}^{k} \delta_{j}^{l} e_{k l}+v \delta_{j}^{l} \delta_{j}^{k} e_{k l}+\lambda \delta_{i}^{k} \delta_{j}^{l} e_{k} e_{l}
\end{align*}
$$

Considering equivariancy with respect to the kernel of the projection $L_{n}^{2} \rightarrow L_{n}^{1}$ i.e. $\tilde{a}_{j}^{i}=\delta_{j}^{i}$ and $\tilde{a}_{j k}^{i}$ arbitrary, we get $\tau=\mu+\nu$. This yields (2.1).
II. An r-th order operator $F: T^{*} M \rightarrow T_{2}^{*} M$ corresponds to an L_{n}^{r+1}-equivariant map $F:\left(J^{r} T^{*} R^{n}\right)_{0} \rightarrow\left(T_{2}^{*} R^{n}\right)_{0}$. Equivariancy of F with respect to homotheties $\tilde{a}_{j}^{i}=k \delta_{j}^{i}, \tilde{a}_{j k_{1} \ldots k_{s}}^{i}=0, s=1, \ldots, r$, gives

$$
\begin{align*}
& k g_{i}\left(e_{i}, e_{i j_{1}}, \ldots, e_{i j_{1} \ldots j_{r}}\right)=g_{i}\left(k e_{i}, k^{2} e_{i j_{1}}, \ldots, k^{r+1} e_{i j_{1} \ldots j_{r}}\right) \tag{2.7}\\
& k^{2} f_{i j}\left(e_{i}, e_{i j_{1}}, \ldots, e_{i j_{1} \ldots j_{r}}\right)=f_{i j}\left(k e_{i}, k^{2} e_{i j_{1}}, \ldots, k^{r+1} e_{i j_{1} \ldots j_{r}}\right)
\end{align*}
$$

By our lemma, functions g_{i} are independent of $e_{i j_{1} \ldots j_{s}}, s=1, \ldots, r$ and $f_{i j}$ are independent of $e_{i j_{1} \ldots j_{p}}, p=2, \ldots, r$. Hence, we have the case I. By Slovak's theorem, [6], every natural operator on $T^{*} M$ has finite order. This proves Theorem 1.

The geometrical interpretation of the 3-parameter family (2.1) of natural operators $F: T^{*} M \rightarrow T_{2}^{*} M$ is

$$
\begin{array}{llll}
F: \Omega_{1} \mapsto \delta \Omega_{1} & \text { for } & \mu=1, & v=0, \tag{2.8}\\
F: \Omega_{1} \mapsto \delta \Omega_{1} \circ \iota_{M} & \text { for } & \mu=0, & v=1, \\
F: \Omega_{1} \mapsto \Omega_{1} \circ p_{T M} \otimes \Omega_{1} \circ T p_{M}, & \mu=0, & v=0, & \lambda=1,
\end{array}
$$

where $\delta: T^{*} M \rightarrow T_{2}^{*} M$ is the differential defined by (1.15) and $\iota_{M}: T_{2} M \rightarrow T_{2} M$ is the canonical involution.
3. In this part we determine all natural operators from a 1 -sectorform bundle $T^{*} M$ to a 3-sectorform bundle $T_{3}^{*} M$.

Theorem 2. All natural operators $F: T^{*} M \rightarrow T_{3}^{*} M$ form a 10-parameter family of the form

$$
\begin{align*}
E_{i} & =\left(\mu_{1}+\mu_{2}+\mu_{3}\right) e_{i}, \tag{3.1}\\
B_{i j} & =\left(\mu_{1}+\mu_{2}\right) e_{i j}+\mu_{3} e_{j i}+\left(v_{5}+v_{6}\right) e_{i} e_{j}, \\
C_{i j} & =\left(\mu_{1}+\mu_{3}\right) e_{i j}+\mu_{2} e_{j i}+\left(v_{3}+v_{4}\right) e_{i} e_{j}, \\
D_{i j} & =\mu_{1} e_{i j}+\left(\mu_{2}+\mu_{3}\right) e_{j i}+\left(v_{1}+v_{2}\right) e_{i} e_{j}, \\
A_{i j k} & =\mu_{1} e_{i j k}+\mu_{2} e_{j i k}+\mu_{3} e_{j i k}+v_{1} e_{i} e_{j k}+v_{2} e_{i} e_{k j}+ \\
& +v_{3} e_{j} e_{i k}+v_{4} e_{j} e_{k i}+v_{5} e_{k} e_{i j}+v_{6} e_{k} e_{j i}+\lambda e_{i} e_{j} e_{k},
\end{align*}
$$

for any $\mu_{p}, v_{a}, \lambda \in R, p=1,2,3, a=1,2, \ldots, 6$ where $\left(e_{i}, e_{i j}, e_{i j k}\right)$ and $\left(E_{i}, B_{i j}, C_{i j}\right.$, $D_{i j}, A_{i j k}$) are the canonical coordinates on the second jet prolongation $J^{2} T^{*} M$ and $T_{3}^{*} M$, respectively.

Proof. I. The second order operators $F: T^{*} M \rightarrow T_{3}^{*} M$ are in bijection with the natural transformations $F: J^{2} T^{*} M \rightarrow T_{3}^{*} M$ and the L_{n}^{3}-equivariant maps of standard fibres $F:\left(J^{2} T^{*} R^{n}\right)_{0} \rightarrow\left(T_{3}^{*} R^{n}\right)_{0}$. The latter map is of the form

$$
\begin{array}{rlr}
E_{i}=g_{i}\left(e_{i}, e_{i j}, e_{i j k}\right), & B_{i j}=f_{i j}\left(e_{i}, e_{i j}, e_{i j k}\right), \tag{3.2}\\
C_{i j} & =h_{i j}\left(e_{i}, e_{i j}, e_{i j k}\right), & D_{i j}=r_{i j}\left(e_{i}, e_{i j}, e_{i j k}\right), \\
A_{i j k} & =s_{i j k}\left(e_{i}, e_{i j}, e_{i j k}\right) . &
\end{array}
$$

The group L_{n}^{3} acts on the standard fibre of the second jet prolongation $\left(J^{2} T^{*} R^{n}\right)_{0}$ in the form

$$
\begin{align*}
& \bar{e}_{i}=e_{l} \tilde{a}_{i}^{l} \tag{3.3}\\
& \bar{e}_{i j}=e_{l m} \tilde{a}_{i}^{l} \tilde{a}_{j}^{m}+e_{l} \tilde{a}_{i j}^{l}, \\
& \bar{e}_{i j k}=e_{l m n} \tilde{a}_{i}^{l} \tilde{a}_{j}^{m} \tilde{a}_{k}^{n}+e_{l m} \tilde{a}_{i}^{l} \tilde{a}_{j k}^{m}+e_{l m} \tilde{a}_{i j}^{l} \tilde{a}_{k}^{m}+e_{l m} \tilde{a}_{i k}^{l} \tilde{a}_{j}^{m}+e_{l} \tilde{a}_{i j k}^{l}
\end{align*}
$$

and on the fibre $\left(T_{3}^{*} R^{n}\right)_{0}$ by the formula (1.12).

Considering equivariancy of (3.2) with respect to the homotheties $\tilde{a}_{j}^{i}=k \delta_{j}^{i}, \tilde{a}_{j k}^{i}=0$, $\tilde{a}_{j k l}^{i}=0$ and using the lemma, we arrive at the following facts. Functions $f_{i j}, h_{i j}, r_{i j}$ are linear in $e_{i j}$ and quadratic in e_{i}. Functions $s_{i j k}$ are linear in $e_{i j k}$, bilinear in $e_{i}, e_{i j}$ and of the third degree in e_{i}. Using the classical description of invariant tensors, we obtain the components of F in the form

$$
\begin{align*}
g_{i} & =\alpha e_{i}, \tag{3.4}\\
f_{i j} & =\beta e_{i j}+\gamma e_{j i}+\varepsilon e_{i} e_{j}, \\
h_{i j} & =\beta_{1} e_{i j}+\gamma_{1} e_{j i}+\varepsilon_{1} e_{i} e_{j}, \\
r_{i j} & =\beta_{2} e_{i j}+\gamma_{2} e_{j i}+\varepsilon_{2} e_{i} e_{j}, \\
s_{i j k} & =\mu_{1} e_{i j k}+\mu_{2} e_{j i k}+\mu_{3} e_{k i j}+v_{1} e_{i} e_{j k}+v_{2} e_{i} e_{k j}+ \\
& +v_{3} e_{j} e_{i k}+v_{4} e_{j} e_{k i}+v_{5} e_{k} e_{i j}+v_{6} e_{k} e_{j i}+\lambda e_{i} e_{j} e_{k} .
\end{align*}
$$

Equivariancy of the operators (3.4) with respect to the kernel of the projection $L_{n}^{3} \rightarrow L_{n}^{1}$ i.e. $\tilde{a}_{j}^{i}=\delta_{j}^{i}$ and $\tilde{a}_{j k}^{i}, \tilde{a}_{j k l}^{i}$ are arbitrary, gives the following relations for parameters

$$
\begin{align*}
& \alpha=\mu_{1}+\mu_{2}+\mu_{3}, \tag{3.5}\\
& \beta=\mu_{1}+\mu_{2}, \quad \gamma=\mu_{3}, \quad \varepsilon=v_{5}+v_{6}, \\
& \beta_{1}=\mu_{1}+\mu_{3}, \quad \gamma_{1}=\mu_{2}, \quad \varepsilon_{1}=v_{3}+v_{4}, \\
& \beta_{2}=\mu_{1}, \quad \gamma_{2}=\mu_{2}+\mu_{3}, \quad \varepsilon_{2}=v_{1}+\nu_{2} .
\end{align*}
$$

Thus, we get a 10 -parameter family (3.1) of natural operators.
II. The r-th order operators $F: T^{*} M \rightarrow T_{3}^{*} M$ correspond to the L_{n}^{r+1}-equivariant maps $F:\left(J^{r} T^{*} R^{n}\right)_{0} \rightarrow\left(T_{3}^{*} R^{n}\right)_{0}$. Equivariancy of the operator F with respect to the homotheties $\tilde{a}_{j}^{i}=k \delta_{j}^{i}, \tilde{a}_{j_{1} \ldots k_{s}}^{i}=0, s=1, \ldots, r$, gives independency of F of the coordinates $e_{i j_{1} \ldots j_{p}}, p=3, \ldots, r$. Hence, the r-th order operators are reduced to the case I for every $r>2$. By Slovak's theorem, [6] every natural operator on $T^{*} M$ has finite order. This proves Theorem 2.

The geometrical interpretation of the 10-parameter family (3.1) of natural operators $F: T^{*} M \rightarrow T_{3}^{*} M$ is

$$
\begin{equation*}
F: \Omega_{1} \mapsto \delta^{2} \Omega_{1} \tag{3.6}
\end{equation*}
$$

for $\mu_{1}=1$ and all the others are 0 ,
$F: \Omega_{1} \mapsto \Omega_{1} \circ p_{T M} \circ p_{T T M} \otimes \delta \Omega_{1} \circ T_{2} p_{M}$ for $v_{1}=1$ and all the others are 0 ,
$F: \Omega_{1} \mapsto \Omega_{1} \circ p_{T M} \circ p_{T T M} \otimes \Omega_{1} \circ T p_{M} \circ p_{T T M} \otimes \Omega_{1} \circ T p_{M} \circ T_{2} p_{M}$ for $\lambda=1$ and all the others are 0 .

The remaining cases are derived from (3.6) and (3.7) by applying the canonical action of the symmetric group S_{3} of 3 letters on $T_{3} M$ [7].

Theorem 3. All natural operators $T_{2}^{*} M \rightarrow T_{3}^{*} M$ form a 22-parameter family containing the 10 -parameter family (3.1) of natural operators $T^{*} M \rightarrow T_{3}^{*} M$ defined on the underlying 1-sectorform fields, a 6-parameter family consisting of the differential (1.17) combined with the action of S_{3} on $T_{3} M$, and a 6-parameter family consisting of the tensor product (1.23) of the 2-sectorform with the underlying 1-sectorform combined with the action of S_{3} on $T_{3} M$.

Proof is quite similar to those of Theorems 1 and 2, and we will not perform it explicitly here.

References

[1] J. A. Dieudonné, J. B. Carrel: Invariant Theory, Old and New, Academic Press, New YorkLondon, 1971.
[2] I. Kolár: Lie derivatives of sectorform fields, to appear in Colloquium Mathematicum.
[3] I. Kolář: Some natural operators in differential geometry. Diff. Geom. and its Appl. Proceedings of the Conference, Brno 1986, 91-110, D. Reidel Publishing Company.
[4] I. Kolář, C. Vosmanská: Natural transformations of higher order tangent bundles and jet spaces. Časopis pěst. mat. 114 (1989), 181-186.
[5] D. Krupka, J. Janyška: Lectures on diffurential invariants. To appear in UJEP Brno (Czechoslovakia), 1988.
[6] J. Slovak: On the finite order of some operators. Diff. Geom. and its Appl., Proceedings of the Conference, Brno 1986, 283-294, D. Reidel Publishing Company.
[7] J.E. White: The methods of iterated tangents with applications to local Riemannian geometry. Pitman Press, 1982.

Souhrn
PŘIROZENÉ OPERÁTORY NA POLÍCH SEKTORFORM

Jan Kurek

Určují se všechny přirozené operátory s 1 -sektorform bandlu do 2 -sektorform bandlu a s 1sektorform bandlu do 3 -sektorform bandlu a také z 2 -sektorform bandlu do 3 -sektorform bandlu. Dokazuje se, že hlavním operátorem je v tomto prípadě diferenciál pole sektorform.

Резюме

НАТУРАЛЬНЫЕ ОПЕРАТОРЫ НА ПОЛЯХ СЕКТОРФОРМ

Jan Kurek

Определяются все натуральные операторы следующих типов: из расслоения 1-секторформ в расслоение 2-секторформ, из расслоения 1-секторформ в расслоение 3-секторофом и из расслоения 2 -секторформ в расслоение 3-секторформ. Показывается, что главным оператором в этом случае явлется дифференциал поля секторформ.

Author's address: Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, Plac Marii Curie Skłodowskiej 1, 20-031 Lublin, Polska.

