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ON NATURAL OPERATORS ON SECTORFORM FIELDS
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Summary. We determine all natural operators of the following types: firstly from 1-sectorform
bundle to 2-sectorform bundle, secondly from 1-sectorform bundle to 3-sectorform bundle and
thirdly from 2-sectorform bundle to 3-sectorform bundle. We deduce that the fundamental
operator here is the differential of sectorform fields.

Keywords: Natural operator, k-sectorform.

AMS Classification: 58A20.

The concept of a k-sectorform introduced by J. E. White is generalization of the
classical 1-form to the case of the k-times iterated tangent bundle, [7]. The aim of
this paper is to determine all natural operators of the following types: firstly from
1-sectorform bundle to 2-sectorform bundle, secondly from 1-sectorform bundle
to 3-sectorform bundle and thirdly from 2-sectorform bundle to 3-sectorform bundle.
We deduce that the fundamental operator here is the differential of sectorform fields
introduced by J. E. White, [7], and I. Koléf, [2]. In the paper, we use a general
method for finding all natural operators of certain types developed by 1. Koléf in [3].

The author is grateful to Professor I. Kolaf for suggesting the problem, for valuable
remarks and useful discussions.

1. Let M be a smooth manifold.’

Let
(1.1) DPum: ™ — M, Prm: T(TM) g T]\’I, ey ka-nM: T(n—lM) - Tk—lM
be the tangent bundles. Consider an iterated tangent bundle
(1.2) TM := T(T(... TM)).
i times

There exist k vector bundle structures on T,M over T,_ ;M
(1.3) ’I;'ka-r—lM: TkM - Tk—'lM s, = 0, 1, ceey k - 1
with projections pr, _,m> TPr-,p5 « -5 Tim1Pu-
A classical 1-form on the manifold M can be interpreted as a linear map TM — R

with respect to the vector bundle structure p,: TM — M. This concept can be
generalized as follows [7].
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Definition 1. A map ©, ,: (T,M), — R linear with respect to all k vector bundle
structures (1.3) is called a k-sectorform on M at x.

Elements of the iterated tangent bundle TyM are called k-sectors and can be
expressed in the form

(14)  a=2 .

C t
otk "o (s 1)
for a suitable smooth local map {: R* - M.
The coordinate functions of a local chart ¢ = (x');_, _, on M induce the co-
ordinate functions of a local chart Y, = (x}, ;). i=1,...,n 2,€{0,1},1=1,...
., k, on T,M defined by

; B ﬁ[il(xl' o C(tl k )
(15) xll--~iy<(A) - (ctl)ll ark)lk

-s0)
with |2] = A, + ... + A

Let
(1.6) q: TAM > M

denote the fibre bundle of all k-sectorforms on M. Then a k-sectorform field on M
is a section Q;: M — T¥M and the value Q, at a point x can be considered as a map
Q (TkM)x — R. Any k-sectorform @, on M has the following form in the induced
coordinates on T,M for k = 1,2, 3:

(1~7) Q = eixi B
(1.8) Q, = cixiy + bijxilox{n ,
(1.9) Q; = Exxiyy + Bix{o%hos + CijXioiXhio +

i j i j k
+ DijXp11%100 + AijxX100X010%001 -

A coordinate change x' = x/(¥) on M induces a coordinate change of the induced
coordinates (xil...z,‘) on ;M. In this way we obtain the coordinate changes on T,M
in the following forms for k = 1, 2, 3:

(1.10) éi = eJd{,
(111) & =cdl,

b;; = buata; + ¢ay;,
(1'12) Ei = Eld:'s

B;; = B,,a; a; + Eaj;,

o

i = C,,,,a,-aj + E,d

ijo

]

~l ~
ij = Dlma'aj + Elaij,
il
ijk = Almn mak + Blm ka + Clm a + Dlm ak + Elauk

Lk
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provided

i 6x" i 62x" N a3xi
1.13 d‘ ="— ﬁ' = —, dl = -,
(1.13) T awox M oxd ok o%!

ox7’
The differential of a real valued function f: M — R is the second component of the
tangent map Tf: TM — TR = R x R, i.e. 8f = pr, o Tf, where pr,: R x R - R is
the projection on the second factor. The differential dw of the 1-form w on M,
interpreted as a linear map TM — R, is a 2-sectorform field dw = pr, - Tw inter-
preted as a map dw: T,M — R. In general, we have

Definition 2. ([2], [7]). The second component 62;: T;+;M — R of the tangent
map TQ: T, 1M — TR,

(1.14) 8Q, = pryo TQ,

is called the differential of the k-sectorform field Q,: M — T;M. :

If sectorform fields Q, € C*T*M, Q,e C*T3M are of the form 2, = e;xi,
Q, = ¢;xiy + byxiox)y, then their differentials 62, € C*T3M, 6°Q, € C*T3M,
8Q, € C*TM are of the form

(1.15) 0Q, = exiy + e;XioXhy s

(1.16) 8%Q, = exiyy + eijxiuox{)ox + eijxilolx{)w +
+ eijxiooxf;u + eijkxioox{nox:‘)ol s

(1.17) 0Q, = cxiyy + CijXi1oXbor + biXiotXhio +
+ b.‘jxioox{)u + bijpxiooXh10%X601 -

Let £&: R — M or {: R> - M be a suitable smooth local map defining an element
of TM or TTM respectively, by

w18) Y enemm,
dt|,
w1 2 own, 2 e, (e, 2.
91| 0,0) 9t%{(0,0) at' 0t?| 4,0
Consider a canonical injection k: TM — TTM defined by
120) k2 gy L] g ).
oty ot' 1% 0,0,

In local coordinates on TM or T,M the canonical injection k: TM — T,M is of the
form

(d o S R i _ P i
k: (x§, x{) = (x60 = X6, x50 = 0, X1 = 0, Xi; = xi).

For a 2-sectorform Q, e T53M we get an underlying 1-sectorform defined by Q, =
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= Q, 0 k. In local coordinates, for the 2-sectorform , = ¢;xi, + b,’jxiox(];l the
underlying 1-sectorform is 2, = ¢;xi.

Consider the projections
(1-21) Pram o Prrms TP o Provs TP o Toput TsM » TM
(1-22) T2pm> TPrms Prrvt TsM —> TOoM .
Then, for a given 1-sectorform 2, € T*M and a 2-sectorform Q, € T3M of the form
(1.7) and (1.8), we obtain the 3-sectorforms
(1-23) Qi opryo Prrm ® 230 Topy = (eixioo) (ij'ci)u + bjkx(j)lox’(‘ml) >
(1-24) Qo prao Prrv ® Ly o Tpyo pProm ® 240 Tpyr o Topu =

= (eixioo) (ejxf;lo) (ekx’(‘)()l) .

Thus, we can define the following inclusions of tensor products of a 1-sectorform

bundle and a 2-sectorform bundle to a 3-sectorform bundle or of three copies of
a l-sectorform bundle to a 3-sectorform bundle

(1.25) T*M @ TiM - TiM by (1.23),
(1.26) T*M ® T*M ® T*M — TiM by (1.24).

2. In this part we determine all natural operators from a 1-sectorform bundle
to a 2-sectorform bundle.

Theorem 1. All natural operators T*M — TiM form a 3 parameter family
(2.1 ci=(u+v)e, bij=upe;+ve;+ leej, pv,AeR,
where (e;, e;;) or (c;, b;;) denote the canonical coordinate on the first jet prolongation

JYT*M or TiM, respectively.

Proof. I. The first order operators F: T*M — T3M are in bijection with the
natural transformations F: J'T*M — T3M and the L2-equivariant maps of standard
fibres F: (J'T*R"), - (T3R")o. The group L? acts on the fibre (J'T*R"), in the form

- ~k - ~k ~1 ~k
(2.2) e" = ekai N eij = eklaia] + eka,-j .

We denote by (ai, a},) the coordinates of the inverse element a™! to an element

a € L2 with coordinates (a}, aj;). The group L? acts on the fibre (T'3R"), by the formula

(1.11).

First, consider equivariancy with respect to homotheties: ”J‘: = kél‘I, [il‘:k = 0 for
a map F: (J'T*R"), - (T3R"), of the form

Fic;= gi(ei’ eij) » by =fij(ei, eu) .

This gives a homogeneity condition:
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(2.3) kgieiey) = gdkes k),
szfj(ei’ eij) = fij("'ei- kzeij) .
We need the following

Lemma [4]. Let g(x', y?, ..., z') be a smooth function defined on R™ x R" x ...

. X R? and let a >0, b>0,...,¢c>0, d be real numbers such that
k*g(x', y?, ..., 2') = g(k°x', k"y?, ..., k°z") for every real number k. Then g is the
sum of polynomials of degrees & in x', nin y?,...,{ in z*' satisfying aé + by + ...
o+l =d.

By this lemma, functions g; or f;; must be polynomials of degrees ry, r, or s, s,
with respect to e;, e;; satisfying

(24) l=r, +2r,, 2=s5,+2s,.

The first equation (2.4) has the only solution r; = 1, r, = 0, i.e. g; is linear in ¢;
and is independent of e;;. The second equation (2.4) has two solutions s, = 0,
s, = land s, = 2,5, =0, i.e. f;; is the sum of a polynomial of degree 1 in e;; and
of a polynomial of degree 2 with respect to e;.

Now we shall use the classical description of all invariant tensors, i.e. those ele-
ments of ®” R" ® ®7 R"* which are invariant with respect to all linear isomorphims
of R"[1], [3], [5]- The non-zero invariant tensors exist only for p = q and are of the
form
(2:5) Y kI ®...QI%,, k,eR,

oeS(p)
where I = [5}] denotes the identity tensor in R} ® R}* and R} or R}* is the a-th
or B-th component in ®? R" or ®? R"*, respectively. Using invariant tensors we
deduce that g; and f;; are of the form

(26) g; = Téfej s

fl'_i = ﬂé’:(s;ekl + \’5;’-(5'}@, + ).6’;5;31‘6[ .
Considering equivariancy with respect to the kernel of the projection L? — L! i.e.
a; = 6} and aj, arbitrary, we get T = u + v. This yields (2.1).

II. An r-th order operator F: T*M — T3M corresponds to an L.*'-equivariant
map F:(J'T*R"), — (T3R"),. Equivariancy of F with respect to homotheties

a; = ké}, @y, .. =0,s=1,...r, gives
(2.7) kgiei, eijys .- s €ij,. ) = gikes, KPeyj, .., K ey, ),
K21 (eir €igys +oos €iju. ) = fif(kes, KPesiy s K4 ey ).
By our lemma, functions g, are independent of e;, ;,s=1,...,r and f;;

are independent of e;;,. ;.p = 2,...,r. Hence, we have the case I. By Slovak’s
theorem, [6], every natural operator on T*M has finite order. This proves Theorem 1.
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The geometrical interpretation of the 3-parameter family (2.1) of natural operators
F: T*M - T3M is

(2.8) F:Q, 60, for u=1, v=0, A=0,
F:Q,—-62,0ty for w=0, v=1, 2=0,
F:Q—=>Q oprm®LioTpy, p=0, v=0, 2=1,

where 6: T*M — T3M is the differential defined by (1.15) and ty: T,M — T, M is
the canonical involution.

3. In this part we determine all natural operators from a l-sectorform bundle
T*M to a 3-sectorform bundle T3M.

Theorem 2. All natural operators F: T*M — TiM form a 10-parameter family
of the form )

(3.1) E; = (u +p2+ p3)e,
Bi; = (uy + 1) e + paei + (vs + ve) €ie;
Cij = (uy + u3)eij + paei + (vs + vy) eej,
Dy = pe; + (2 + p3) e + (vi + v2) ese;,
Aije = taeiji + Paeji + Haejiu + Vi€ + vaeie; +
+ viejen + vaeje; + vsee; + veere;; + Aeeje,
forany pp, v, A€eR, p=1,2,3,a=1,2,...,6 where (e,-, eij» eijx) and (E,-, B;;, Cyj,

D,-j,A;jk) are the canonical coordinates on the second jet prolongation J*T*M
and T3M, respectively.

Proof. I. The second order operators F: T*M — T3M are in bijection with the
natural transformations F: J?T*M — TiM and the L}-equivariant maps of standard
fibres F: (J2T*R"), > (T3R")o. The latter map is of the form

(3-2) E, = gi(ei’ €ij» eijk) > B;; = fij(en €ij» eijk) s
Cij = hij(eia €ij> eijk) s D;; = rij(ei’ €ijs eijk) )
Aijk = Sijk(ei: €ij» eijk) .

The group L3 acts on the standard fibre of the second jet prolongation (J2T*R"),
in the form

(3.3)

o
I

~1
= e4;,

1
ij o

QU

~l am o
ij = e,,,,aiaj + e, a
- ~l &

_ —_— sl m Sloam Al am ~1
Cijk = €mnGid; 4y + €,0;4; + €,a;;a, + €1,A;a; + €d;j;

and on the fibre (T3R"), by the formula (1.12).
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Considering equivariancy of (3.2) with respect to the homotheties d} = ké, at, =0,
d}k, = 0 and using the lemma, we arrive at the following facts. Functions f;;, h;;, rij
are linear in e;; and quadratic in e;. Functions s;; are linear in e;j, bilinear in e;, ¢i;
and of the third degree in e;. Using the classical description of invariant tensors, we

obtain the components of F in the form
(3.4) g: = oe;,
fij = Beij + vej; + eee;,
hij = Biey; + v1ej; + €1eie;,
rij = Baeij + y.€j; + e2e:¢;,
Sijk = Mi€iji + Maeji + Uz + vieey + vaee; +
+ viejey + Vvaejen; + Vsee;; + veere;; + Aeeje .

Equivariancy of the operators (3.4) with respect to the kernel of the projection
LY — L, ie. d =6} and a, aj,, are arbitrary, gives the following relations for
parameters

(3:3) o = py + py + U3,
B =p+us v =ps, &€ =Vs+ Vs,
By =wp +ps, V=4, & =V3 + Vg,
B=ny, Y2=H2 + H3, &=V +V,.

Thus, we get a 10-parameter family (3.1) of natural operators.

IL. The r-th order operators F: T*M — T3M correspond to the L,* '-equivariant
maps F:(J'T*R"), - (T3R"),. Equivariancy of the operator F with respect to the
homotheties @ = kd}, aj, ., =0, s=1,...,r, gives independency of F of the
coordinates e;;, ;. p = 3, ..., r. Hence, the r-th order operators are reduced to the
case I for every r > 2. By Slovak’s theorem, [6] every natural operator on T*M has
finite order. This proves Theorem 2.

The geometrical interpretation of the 10-parameter family (3.1) of natural operators
F: T*M - T3iM is

(3.6) F: Q, - 8%Q,
for p, =1 and all the others are 0,
(3.7) F: QIHQI‘O Prmeo PrT™ ® 691 o szM

for v, =1 and all the others are 0,

(3-8) F:Q Qi opraoprrs ® 24 0 Tppgo Prove ® 21 0 Tpy o ToPue
for A =1 and all the others are 0.

The remaining cases are derived from (3.6) and (3.7) by applying the canonical
action of the symmetric group S; of 3 letters on T3M [7].
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Theorem 3. All natural operators T3M — T3M form a 22-parameter family
containing the 10-parameter family (3.1) of natural operators T*M — TiM
defined on the underlying 1-sectorform fields, a 6-parameter family consisting
of the differential (1.17) combined with the action of S; on T;M, and a 6-parameter
family consisting of the tensor product (1.23) of the 2-sectorform with the underlying
1-sectorform combined with the action of S5 on TzM.

Proof is quite similar to those of Theorems 1 and 2, and we will not perform it
explicitly here.
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Souhrn

PRIROZENE OPERATORY NA POLICH SEKTORFORM
JAN KUREK
Uréuji se vSechny prirozené operatory s 1-sektorform bandlu do 2-sektorform bandlu a s 1-

sektorform bandlu do 3-sektorform bandlu a také z 2-sektorform bandlu do 3-sektorform bandlu.
Dokazuje se, Ze hlavnim operatorem je v tomto ptipadé diferencial pole sektorform.

Pe3rome

HATYPAJIBHBIE OITEPATOPBI HA ITOJISIX CEKTOP®OPM
JAN KUREK
OnpeaesisiFoTCsl BCe HATYpaJIbHbIE OMEPaTOPhI CJIE/IYIOIIMX TUIIOB: U3 pacciioenus 1-cek1opdopm
B pacciioeHue 2-cexTopdopm, U3 pacciioenust 1-cektopdopMm B paccioenue 3-cekTopodhoM u u3

paccnoeHust 2-cextopdopM B paccnoenne 3-cekropdopm. ITokasbiBaeTcs, YTO IITABHBIM ONEPATOPOM
B 3TOM cJjiyyae sBnercs auddepenumnan nons cexropGopm.
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