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On a class of locally Butler groups

Ladislav Bican

Abstract. A torsionfree abelian group B is called a Butler group if Bext(B, T ) = 0 for any
torsion group T . It has been shown in [DHR] that under CH any countable pure subgroup
of a Butler group of cardinality not exceeding ℵω is again Butler. The purpose of this note
is to show that this property has any Butler group which can be expressed as a smooth
union ∪α<µBα of pure subgroups Bα having countable typesets.

Keywords: Butler group, generalized regular subgroup

Classification: 20K20

All groups in this paper are abelian. If p is a prime and x an element of a tor-
sionfree group G then hG

p (x) is the p-height of x in G and t
G(x) = t(x) is the type

of x in G. The typeset t(G) of G is the set of types of all non-zero elements of G.
The corank of a pure subgroup H of G is the rank of G/H . If Π is a set of primes
and T is a torsion group then we say that T is Π-primary if Tp = 0 for all p 6∈ Π.

If S is a subset of a torsionfree group G , then 〈S〉G∗ denotes the pure subgroup
generated by S. A subgroup H of G is said to be a generalized regular subgroup of
G if G/H is torsion and for each rank one pure subgroup J of G, (J/J ∩H)p = 0
for almost all primes p. A torsionfree group G is said to be locally completely
decomposable if, for each prime p, the localization Gp = Zp ⊗ G is completely
decomposable. For the unexplained terminology and notations see [F1].

A torsionfree group B is said to be a Butler group if Bext(B, T ) = 0 for all
torsion groups T , where Bext is the subfunctor of Ext consisting of all balanced-
exact extensions. It is known [BS] that this definition coincides with the familiar
one if B has finite rank, i.e., a pure subgroup of a completely decomposable group,
or, equivalently [B], a torsionfree homomorphic image of a completely decomposable
group of finite rank.
Following [FV] we shall call a torsionfree group locally Butler if any its pure

subgroup of finite rank is Butler. Dugas [D] proved that any Butler group, the
cardinality of which does not exceed ℵ1 is locally Butler. In this paper we are going
to generalize this result by showing that the same property has any Butler group
B expressible as a smooth union ∪α<µBα of pure subgroups Bα with countable
typesets. Doing this we also give for this class of groups an affirmative answer
concerning the problems (1) and (2) formulated in [A].

Lemma 1. Let X be a subgroup of a torsionfree group G with G/X torsion and
J ≤ G be of rank one. If H is a subgroup of G such that (X + J) ∩ H/X ∩ H
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is Π-primary for some set of primes Π, then there is a subgroup K of J such that
J/K is Π-primary and (X +K) ∩H = X ∩H .

Proof: Decompose J/X ∩ J into L/X ∩ J ⊕ K/X ∩ J , where L/X ∩ J is the
Π-primary part of the torsion group J/X ∩ J . Now consider the homomorphism
ψ : (X + J) ∩H → J/X ∩ J given for h = x+ j by the formula ψh = j +X ∩ J .
Obviously, ψ is well-defined and it naturally induces the monomorphism φ : (X +
J) ∩H/X ∩H → J/X ∩ J . By hypothesis, Imψ = Imφ ≤ L/X ∩ J and so the
results follow easily from the inclusion ψ((X +K) ∩H) ≤ K/X ∩ J . �

Lemma 2. Let H be a corank one pure subgroup of a torsionfree group G with
countable typeset. If K is a generalized regular subgroup of H , then there is a gen-
eralized regular subgroup L of G such that L ∩H = K.

Proof: Obviously, there is an ordinal λ ≤ ω such that { tG(g) | g ∈ G \ H } =
{ ti | i < λ }. For each i < λ take a rank one pure subgroup Ji of G such that
t(Ji) = ti and Ji ∩H = 0. Using the induction, we are going to show that for each
i < λ there is a generalized regular subgroupKi of Ji such that Li = K+K1+...+Ki

meets H in K.
For n = 1 we have (K⊕J1)∩H = K⊕ (J1∩H) = K and so we can set K1 = J1.

Assume that for some 1 < n < λ the subgroup Ln−1 = K + K1 + ... + Kn−1

with Ln−1 ∩ H = K has been defined. Denoting Xn = K1 + ... + Kn−1 + Jn

we have (Ln−1 + Jn) ∩H/Ln−1 ∩H = (K +Xn) ∩ H/K = K + (Xn ∩H)/K ≃
(Xn ∩H)/Xn ∩K.
Now Xn/Xn ∩H ≃ (Xn +H)/H is torsionfree, H being pure in G, and conse-

quently Xn ∩H is a finite rank Butler group. Moreover, for 0 6= x ∈ Xn ∩K, the

natural embedding induces the monomorphism 〈x〉Xn∩H
∗ /〈x〉Xn∩K

∗ → 〈x〉H∗ /〈x〉
K
∗

and so [B1] gives that the factor-group Xn ∩H/Xn ∩ K has a finite number of
non-zero primary components, only. A simple application of Lemma 1 gives the
existence of Kn ≤ Jn with the desired properties.
Setting L = K +Σi<λKi = ∪i<λLi we have L∩H = (∪i<λLi)∩H = ∪i<λ(Li ∩

H) = K and it remains to show that L is generalized regular in G.
Take 0 6= g ∈ L arbitrarily. For g ∈ H , it is g ∈ L ∩H = K and consequently

the factor-group 〈g〉G∗ /〈g〉
L
∗ = 〈g〉H∗ /〈g〉

K
∗ has a finite number of non-zero primary

components, only.
So, let g 6∈ H . There is n < λ such that tG(g) = tn = t(Jn). Since r(G/H) = 1,

we have mg = x + h for some 0 6= m ∈ Z, x ∈ Kn and h ∈ K, H/K being

torsion. The set Π = {p | hG
p (mg) > hG

p (x)} ∪ {p | p|m} ∪ {p | (Jn/Kn)p 6=

0} ∪ {p | (〈h〉H∗ /〈h〉
K
∗ )p 6= 0} of primes is obviously finite and for each prime p 6∈ Π

we have hL
p (x) = hG

p (x) ≥ hG
p (mg), therefore h

G
p (mg) ≤ hG

p (h) = hK
p (h) ≤ hL

p (h)

and consequently hL
p (g) = h

L
p (mg) = h

L
p (x+h) ≥ hL

p (x)∩h
L
p (h) ≥ hG

p (mg) = h
G
p (g)

showing that 〈g〉G∗ /〈g〉
L
∗ is Π-primary and finishing therefore the proof. �

Lemma 3. Let G = ∪α<µGα be a smooth union of pure subgroups of a torsionfree

group G where µ is a limit ordinal. If, for each α < µ, Lα is a generalized regular

subgroup of Gα such that Lα ≤ Lβ and Lα ∩ G0 = L0 whenever α ≤ β < µ, then
L = ∪α<µLα is a generalized regular subgroup of G satisfying L ∩G0 = L0.
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Proof: If 0 6= g ∈ L is arbitrary, then g ∈ Lα for some α < µ and the inclusion

〈g〉Lα
∗ ≤ 〈g〉L∗ induces the epimorphism 〈g〉Gα

∗ /〈g〉Lα
∗ → 〈g〉G∗ /〈g〉

L
∗ , from which the

assertion follows easily. �

Theorem 4. Let G = ∪α<µGα be a smooth union of pure subgroups Gα of a tor-

sionfree group G having countable typesets. If K is a generalized regular subgroup
of G0 then there is a generalized regular subgroup L of G such that L ∩G0 = K.

Proof: By transfinite induction based on Lemmas 2 and 3. �

Corollary 5. Let H be a pure subgroup of a torsionfree group G with countable
typeset. If K is a generalized regular subgroup of H then there exists a generalized
regular subgroup L of G such that L ∩H = K.

Corollary 6 [D]. Let H be a countable pure subgroup of a torsionfree group G of
cardinality ℵ1. IfK is a generalized regular subgroup ofH then there is a generalized
regular subgroup L of G such that L ∩H = K.

Now we are prepared to prove the main result giving a partial solution of the
problems (1) and (2) stated in [A].

Theorem 7. Let a torsionfree group G be a smooth union G = ∪α<µGα of pure

subgroups Gα with countable typesets. The following conditions are equivalent:

(i) G is locally completely decomposable and if L is a generalized regular sub-
group of G and H is a pure finite rank subgroup of G, then (H/H ∩L)p = 0
for almost all primes p;

(ii) G is locally completely decomposable and locally Butler.

Proof: Assume (i) and let H be a rank finite pure subgroup of G. There is
α < µ such that H ≤ Gα and consequently if K is a generalized regular subgroup
of H , Corollary 5 gives the existence of a generalized regular subgroup M of Gα

with M ∩ H = K. A simple application of Theorem 4 leads to the existence of
a generalized regular subgroup L of G satisfying L∩Gα =M and hence L∩H = K.
By hypothesis H/H ∩ L = H/K has only a finite number of non-zero primary
components and since H is locally completely decomposable by [F1, Th. 86.6], it is
Butler by [B1]. For the converse see [A]. �

Theorem 8. Any Butler group G expressible as a smooth union G = ∪α<µGα of

pure subgroups Gα with countable typesets is locally Butler.

Proof: By [A], any Butler group satisfies the condition (i) from Theorem 7. �

Corollary 9. Any Butler group with countable typeset is locally Butler.

Corollary 10 [D]. Any Butler group of cardinality ℵ1 is locally Butler.
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