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Some results on the product of distributions

and the change of variable

Emin Özcaḡ, Brian Fisher

Abstract. Let F and G be distributions in D′ and let f be an infinitely differentiable
function with f ′(x) > 0, (or < 0). It is proved that if the neutrix product F ◦G exists and
equals H, then the neutrix product F (f) ◦ G(f) exists and equals H(f).

Keywords: distribution, neutrix product, change of variable

Classification: 46F10

In the following, we let N be the neutrix, see van der Corput [1], having domain
N ′ = {1, 2, . . . , n, . . . } and range the real numbers, with negligible functions finite
linear sums of the functions

nλ lnr−1 n, lnr n : λ > 0, r = 1, 2, . . .

and all functions which converge to zero in the normal sense as n tends to infinity.
We will use n or m to denote a general term in N ′ so that if {an} is a se-

quence of real numbers, then N– limn→∞ an means exactly the same thing as
N – limm→∞ am.
Note that if {an} is a sequence of real numbers which converges to a in the

normal sense as n tends to infinity, then the sequence {an} converges to a in the
neutrix sense as n tends to infinity and

lim
n→∞

an = N– lim
n→∞

an

We now let ρ(x) be a fixed infinitely differentiable function having the following
properties:

(i) ρ(x) = 0 for |x| ≥ 1,
(ii) ρ(x) ≥ 0,
(iii) ρ(x) = ρ(−x),

(iv)
∫ 1
−1 ρ(x) dx = 1.

Putting δn(x) = nρ(nx) for n = 1, 2, . . . , it follows that {δn(x)} is a regular sequence
of infinitely differentiable functions converging to the Dirac delta-function δ(x).
Now let D be the space of infinitely differentiable functions with compact support

and let D′ be the space of distributions defined on D. Then, if F is an arbitrary
distribution in D′, we define

Fn(x) = (F ∗ δn)(x) = 〈F (t), δn(x − t)〉
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for n = 1, 2, . . . . It follows that {Fn(x)} is a regular sequence of infinitely differen-
tiable functions converging to the distribution F (x).
The following definition for the product of two distributions was given in [2].

Definition 1. Let F and G be distributions in D′ and let Gn = G ∗ δn. We say
that the neutrix product F ◦G of F and G exists and is equal to the distribution H
on the interval (a, b) if

(1) N – lim
n→∞

〈FGn, φ〉 = 〈H,φ〉

for all functions φ in D with support contained in the interval (a, b). If

lim
n→∞

〈FGn, φ〉 = 〈H,φ〉,

we simply say that the product F.G exists and equals H .

Note that if we put Fm = F ∗ δm, we have

〈FGn, φ〉 = N– lim
m→∞

〈FmGn, φ〉

and so the equation (1) could be replaced by the equation

(2) N – lim
n→∞

[

N– lim
m→∞

〈FmGn, φ〉
]

= 〈H,φ〉.

The next definition for the change of variable in distributions was given in [3].

Definition 2. Let F be a distribution in D′ and let f be a locally summable func-
tion. We say that the distribution F (f(x)) exists and is equal to the distribution H
on the interval (a, b) if

N – lim
n→∞

∫

∞

−∞

Fn(f(x))φ(x) dx = 〈H,φ〉

for all test functions φ in D with support contained in the interval (a, b), where

Fn(x) = (F ∗ δn)(x).

The following theorem was proved in [5].

Theorem 1. Let F be a distribution in D′ and let f be an infinitely differen-

tiable function with f ′(x) > 0, (or < 0), for all x in the interval (a, b). Then the
distribution F (f(x)) exists on the interval (a, b).

Further, if F is the p-th derivative of a locally summable function F (−p) on the

interval (f(a), f(b)), (or f(b), f(a)), (g inverse of f), then

〈F (f(x)), φ(x)〉 =(−1)p
∫ f(b)

f(a)
F (−p)(x)[g′(x)φ(g(x))](p) dx =(3)

=(−1)p
∫

∞

−∞

F (−p)(f(x))f ′(x)

[

1

f ′(x)

d

dx

]p [

φ(x)

f ′(x)

]

dx(4)
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for all φ in D with support contained in the interval (a, b).

Using the equation (3), it was proved that if f had a single simple zero at the
point x = x1 in the interval (a, b), then

(5) δ(s)(f(x)) =
1

|f ′(x1)|

[

1

f ′(x)

d

dx

]s

δ(x− x1)

on the interval (a, b) for s = 0, 1, 2, . . . , showing that the Definition 2 is in agreement

with the definition of δ(s)(f(x)) given by Gel’fand and Shilov [6].
The problem of defining the product F (f) ◦G(g) was considered in [4]. Putting

F (f) = F1 and G(g) = G1, the product F1 ◦G1 = H1 is of course defined by the
equation

N– lim
n→∞

[

N– lim
m→∞

〈F1mG1n, φ〉
]

= 〈H1, φ〉,

for all φ in D, where F1m = F1 ∗ δm and G1n = G1 ∗ δn.
However, it was pointed out that since the distributions F (f) and G(g) were

defined by the sequences {Fm} and {Gn}, the product F (f)◦G(g) should be defined
by these sequences, leading to the following definition.

Definition 3. Let F and G be distributions in D′, let f and g be locally summable
functions and let Fm = F ∗ δm and Gn = G ∗ δn. We say that the neutrix product
F (f) ◦ G(g) of F (f) and G(g) exists and is equal to the distribution H on the
interval (a, b) if Fm(f)Gn(g) is a locally summable function on the interval (a, b)
and

N– lim
n→∞

[

N– lim
m→∞

〈Fm(f)Gn(g), φ〉
]

= 〈H1, φ〉,

for all φ in D with support contained in the interval (a, b).

The following two examples were given in [4] and show that the neutrix product
F (f) ◦ G(g) can be equal to, but is not necessarily equal to the neutrix product
F1 ◦G1.

Example 1. Let F = x
1/2
+ , G = δ

′(x), f = x2+ and g = x+. Then

F (f) = F1 = x+, G(g) = G1 =
1

2
δ′(x)

and

F (f) ◦G(g) = −
1

2
δ(x) = F1 ◦G1.

Example 2. Let F = x
−1/2
+ , G = δ(x), f = x and g = x

1/2
+ . Then

F (f) = F1 = x
−1/2
+ , G(g) = G1 = 0

and
F (f) ◦G(g) = δ(x) 6= 0 = F1 ◦G1.

The following theorem was, however, proved in [4].
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Theorem 2. Let F and G be distributions in D′, let f be a locally summable

function and let g be an infinitely differentiable function. If the distributions F (f) =
F1 and G(g) = G1 exist and the neutrix product F (f) ◦G(g) exists on the interval
(a, b), then

F (f) ◦G(g) = F1 ◦G(g)

on the interval (a, b). In particular, if g(x) = x, then

F (f) ◦G(g) = F1 ◦G1

on the interval (a, b).

In this theorem, F1 ◦G(g) was used to denote the distribution defined by

N– lim
n→∞

〈F1Gn, (g), φ〉.

We now prove the following theorem.

Theorem 3. Let F and G be distributions in D′ and let f be an infinitely differen-

tiable function with f ′(x) > 0, (or < 0), for all x in the interval (a, b). If the neutrix
product F ◦G exists and is equal to H on the interval (f(a), f(b)), (or (f(b), f(a))),
then

F (f) ◦G(f) = H(f)

on the interval (a, b).

Proof: Note first of all that the distributions F (f) and G(f) exist on the interval
(f(a), f(b)), (or (f(b), f(a))), by Theorem 1.
We will suppose that f ′(x) > 0 and that g is the inverse of f on the interval (a, b).

Letting φ be an arbitrary function in D with support contained in the interval (a, b)
and making the substitution t = f(x), we have

∫

∞

−∞

Fm(f(x))Gn(f(x))φ(x) dx =

∫

∞

−∞

Fm(t)Gn(t)φ(g(t))g
′(t) dt =

=

∫

∞

−∞

Fm(t)Gn(t)ψ(t) dt,

where ψ(t) = φ(g(t))g′(t) is a function in D with support contained in the interval
(f(a), f(b)). It follows that

N – lim
n→∞

[

N– lim
m→∞

〈Fm(f)Gn(f), φ〉
]

= 〈H,ψ〉

for all φ or ψ.
Further, on making the substitution t = f(x), we have

∫

∞

−∞

Hn(t)ψ(t) dt =

∫

∞

−∞

Hn(t)φ(g(t))g
′(t) dt =

=

∫

∞

−∞

Hn(f(x))φ(x) dx

and so

N– lim
n→∞

〈Hn, ψ〉 = 〈H(f), φ〉.

The result of the theorem follows. �
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Theorem 4. Let F and G be distributions in D′ and let f be an infinitely differ-

entiable function with f ′(x) > 0, (or < 0), for all x in the interval (a, b). If the
neutrix products F ◦ G and F ◦ G′, (or F ′ ◦ G), exist on the interval (f(a), f(b)),
(or (f(b), f(a))), then

[F (f) ◦G(f)]′ = [F (f)]′ ◦G(f) + F (f) ◦ [G(f)]′

on the interval (a, b).

Proof: The usual law
(F ◦G)′ = F ′ ◦G+ F ◦G′

for the differentiation of a product holds, see [2], and so the result of the theorem
follows immediately from Theorem 3. �

Theorem 5. Let f be an infinitely differentiable function with f ′(x) > 0, (or < 0),
for all x in the interval (a, b) and having a simple zero at the point x = x1 in

the interval (a, b). Then the neutrix products (f(x))r+ ◦ δ(s)(f(x)) and δ(s)(f(x)) ◦
(f(x))r+ exist and

(6) (f(x))r+ · δ(s)(f(x)) = δ(s)(f(x)) · (f(x))r+ = 0

for s = 0, 1, . . . , r − 1 and r = 1, 2, . . . and

(7)

(f(x))r+ ◦ δ(s)(f(x)) =δ(s)(f(x)) ◦ (f(x))r+ =

=
(−1)rs !

2(s− r) !

1

|f ′(x1)|

[

1

f ′(x)

d

dx

]s−r

δ(x− x1),

for r = 0, 1, . . . , s and s = r, r + 1, r + 2, . . . on the interval (a, b).

Proof: If g is an s times continuously differentiable function at the origin, then

the product g · δ(s) = δ(s) · g is given by

g(x) · δ(s)(x) = δ(s)(x) · g(x) =
s

∑

i=0

(−1)s+i
(

s

i

)

gs−i(0)δ(i)(x).

It follows that
xr
+ · δ(s)(x) = δ(s)(x) · xr

+ = 0

for s = 1, 2, . . . , r − 1 and r = 1, 2, . . . and the equation (6) follows immediately on
using Theorem 3.
It was proved in [2] that

xr
+ ◦ δ(s)(x) = δ(s)(x) ◦ xr

+ =
(−1)rs !

2(s− r) !
δ(s−r)(x),

for r, s = 0, 1, 2, . . . , s ≥ r, and it follows on using Theorem 3 that

(f(x))r+ ◦ δ(s)(f(x)) = δ(s)(f(x)) ◦ (f(x))r+ =
(−1)rs !

2(s− r) !
δ(s−r)(f(x)),

for r, s = 0, 1, 2, . . . . The equation (7) follows immediately on using equation (5).
�
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Example 3.

(8)
(x+ x2)r+ ◦ δ(r)(x+ x2) = δ(r)(x+ x2) ◦ (x + x2)r+ =

=
1

2
(−1)rr ![δ(x) + δ(x+ 1)],

(9)
(x+ x2)r+ ◦ δ(r+1)(x+ x2) = δ(r+1)(x+ x2) ◦ (x+ x2)r+ =

=
1

2
(−1)r(r + 1) ! [δ′(x) + 2δ(x) + δ′(x+ 1) + 2δ(x+ 1)]

for r = 0, 1, 2, . . . on the real line.

Proof: The function f(x) = x + x2 has simple zeros at the points x = 0,−1. It
follows from the equations (5) and (7) that

(x+ x2)r+ ◦ δ(r)(x + x2) =δ(r)(x+ x2) ◦ (x+ x2)r+ =

=
1

2
(−1)rr ! δ(x+ x2) =

=
1

2
(−1)rr ! [δ(x) + δ(x+ 1)],

proving the equation (8) for r = 0, 1, 2, . . . .
It again follows from the equations (5) and (7) that

(x+ x2)r+ ◦ δ(r+1)(x+ x2) =δ(r+1)(x+ x2) ◦ (x+ x2)r+ =

=
1

2
(−1)r(r + 1) !

1

1 + 2x
[δ′(x) + δ′(x+ 1)] =

=
1

2
(−1)r(r + 1) ! [δ′(x) + 2δ(x) + δ′(x + 1) + 2δ(x+ 1)],

proving the equation (9) for r = 0, 1, 2, . . . . �

Theorem 6. Let f be an infinitely differentiable function with f ′(x) > 0, (or < 0),
for all x in the interval (a, b) and having a simple zero at the point x = x1 in the

interval (a, b). Then the neutrix products (f(x))−r ◦ δ(s)(f(x)) and δ(s)(f(x)) ◦
(f(x))−r exist and

(f(x))−r ◦ δ(s)(f(x)) =
(−1)rs !

(r + s) !

1

|f ′(x1)|

[

1

f ′(x)

d

dx

]r+s

δ(x− x1),(10)

δ(s)(f(x)) ◦ (f(x))−r = 0,(11)

for r = 1, 2, . . . and s = 0, 1, 2, . . . on the interval (a, b).

Proof: It was proved in [2] that

x−r ◦ δ(s)(x) =
(−1)rs !

(r + s) !
δ(r+s)(x),

δ(s)(x) ◦ x−r = 0

for r = 1, 2, . . . and s = 0, 1, 2, . . . . Equations (10) and (11) follow immediately as
in the proof of Theorem 6. �



Some results on the product of distributions and the change of variable 683

Example 4.

(x2 − 1)−1 ◦ δ(x2 − 1) = −
1

4
[δ′(x− 1) + δ(x− 1)− δ′(x+ 1) + δ(x + 1)],(12)

δ(s)(x2 − 1) ◦ (x2 − 1)−r = 0,(13)

for r = 1, 2, . . . and s = 0, 1, 2, . . . on the real line.

Proof: The function f(x) = x2 − 1 has simple zeros at the points x = ±1. It
follows from the equations (5) and (10) that

(x2 − 1)−1 ◦ δ(x2 − 1) =−
1

4x
[δ′(x− 1) + δ′(x+ 1)] =

=−
1

4
[δ′(x− 1) + δ(x− 1)− δ′(x + 1) + δ(x+ 1)]

proving equation (12). �

The equation (13) follows immediately from the equations (5) and (11) for r =
1, 2, . . . and s = 0, 1, 2, . . . .

Theorem 7. Let f be an infinitely differentiable function with f ′(x) > 0, (or
< 0), for all x in the interval (a, b) and having a simple zero at the point x =

x1 in the interval (a, b). Then the neutrix products (f(x))
λ
+ ◦ (f(x))−λ−r

−
and

(f(x))−λ−r
−

◦ (f(x))λ+ exist and

(14)

(f(x))λ+ ◦ (f(x))−λ−r
−

=(f(x))−λ−r
−

◦ (f(x))λ+ =

=−
π cosec(πλ)

2(r − 1) !

1

|f ′(x1)|

[

1

f ′(x1)

d

dx

]r−1

δ(x − x1),

for λ 6= 0,±1,±2, . . . and r = 1, 2, . . . on the interval (a, b)

Proof: It was proved in [2] that

xλ
+ ◦ x−λ−r

−
= x−λ−r

−
◦ xλ
+ = −

π cosec(πλ)

2(r − 1) !
δ(r−1)(x),

for λ 6= 0,±1,±2, . . . and r = 1, 2, . . . . Equation (14) follows immediately as in the
proof of Theorem 6. �

Example 5. Let f(x) = t be the inverse of the function g(t) = t+ t3 = x. Then

(f(x))λ+ ◦ (f(x))−λ−1
−

=(f(x))−λ−1
−

◦ (f(x))λ+ =(15)

=−
1

2
π cosec(πλ)δ(x),

(f(x))λ+ ◦ (f(x))−λ−2
−

=(f(x))−λ−2
−

◦ (f(x))λ+ =(16)

=−
1

2
π cosec(πλ)[δ′(x) + δ(x)],
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for λ 6= 0,±1,±2, . . . on the real line.

Proof:

g′(t) = 1 + 3t2 > 0

for all t, it follows that f ′(x) > 0 for all x and so on using the equation (3) with
p = 1, we have for all φ in D

〈δ(f(x)), φ(x)〉 =−

∫

∞

−∞

H(x)d[(1 + 3x2)φ(x + x3)] =

=−

∫

∞

−∞

d[(1 + 3x2)φ(x + x3)] = φ(0).

It follows that

(17) δ(f(x)) = δ(x).

Using the equation (3) again with p = 2, we have for all x in D

〈δ′(f(x)), φ(x)〉 =

∫

∞

0
d[(1 + 3x2)φ(x+ x3)]′ =

=− φ′(0)−

∫

∞

0
d[(1 + 3x2)φ(x+ x3)] =

=− φ′(0) + φ(0).

It follows that

(18) δ′(f(x)) = δ′(x) + δ(x).

It now follows from the equations (15) and (17) that

(f(x))λ+ ◦ (f(x))−λ−1
−

=(f(x))−λ−1
−

◦ (f(x))λ+ =

=−
1

2
π cosec(πλ)δ(f(x)) =

=−
1

2
π cosec(πλ)δ(x),

proving the equation (15) for λ 6= 0,±1,±2, . . . .
It again follows from the equations (14) and (18) that

(f(x))λ+ ◦ (f(x))−λ−2
−

=(f(x))−λ−2
−

◦ (f(x))λ+ =

=−
1

2
π cosec(πλ)δ′(f(x)) =

=−
1

2
π cosec(πλ)[δ′(x) + δ(x)],

proving the equation (16) for λ 6= 0,±1,±2, . . . . �
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