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On matrix points in Čech–Stone compactifications

of discrete spaces

A. Gryzlov

Abstract. We prove the existence of (2τ , τ)-matrix points among uniform and regular points

of Čech–Stone compactification of uncountable discrete spaces and discuss some properties
of these points.

Keywords: Čech–Stone compactification of discrete spaces, weak p-points, independent
matrix

Classification: 54D35, 54D40

The existence of weak p-points in ω∗ = βω \ω has been proved by K. Kunen [K],
he proved the existence of c-OK-points in ω∗. In [G1], [G2], the existence of so named
matrix points has been proved. Matrix points are c-0K-points and therefore are
weak p-points. In this article we discuss a problem of an existence of matrix points
in Čech–Stone compactification of an uncountable discrete space. By τ , we denote
cardinal and discrete space of cardinality τ , βτ is Čech–Stone compactification of
τ and τ∗ = βτ \ τ . Denote by U(τ) a set of uniform ultrafilters on τ and let R(τ)
be a set of regular ultrafilters on τ . Recall that the ultrafilter ξ ∈ τ∗ is said to be
regular, if there is a family ξ′ ⊆ ξ, |ξ′| = τ such that if ξ′′ ⊆ ξ′ and |ξ′′| = ω, then
⋂

ξ′′ = ∅.
We prove the existence of (2τ , τ)-matrix point in U(τ) andR(τ) (Theorem 1.4, 1.8)

for so named (2τ , τ)-independent matrix. These points are weak p-points, moreover
they are not limit points of subsets of τ∗ with countable Souslin number. We also
discuss some properties of these points.

Definition 1.1. An indexed family {Aαβ : α ∈ λ, β ∈ σ} of subsets of τ is called
a (λ, σ)-independent matrix on τ if

(1) for all distinct β1, β2 ∈ σ and α ∈ λ we have that |Aαβ1 ∩ Aαβ2 | < ω, and
(2) if α1, . . . , αn ∈ λ are distinct, then for all β1, . . . , βn ∈ σ |

⋂

{Aαiβi
: i ≤

n}| = τ .

It is well known that there is a (c, c)-independent matrix on ω [K], and the fine proof
of this fact is due to P. Simon. For cardinal τ, τ > ω, we can prove the following

Lemma 1.2. There is a (2τ , τ)-independent matrix on τ for τ > ω ([EK]).

Proof: For all δ, δ < τ , let us denote Sδ = {〈δ, K1, K2, f〉 : K1, K2 ⊆ δ, K1, K2

are finite, f ∈ K
P(K1)
2 }, where P(A) is a set of subsets of A.
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Let for β ∈ τ and Y ⊆ τ

Aδ
Y β ={〈δ, K1, K2, f〉 ∈ Sδ : K1 ∩ Y 6= ∅, K2 ∋ β, f(Y ∩ K1) = β},

and

AY β =
⋃

{Aδ
Y β : δ < τ}.

The family {AY β : Y ⊆ τ, β ∈ τ} is a (2τ , τ)-independent matrix. Really, let
Y ⊆ τ, β1, β2 ∈ τ, β1 6= β2. Then AY β1 ∩ AY β2 = ∅, otherwise there is an element

〈δ, K1, K2, f〉 such that K1 ∩ Y 6= ∅, K2 ∋ β1, K2 ∋ β2, and f ∈ K
P(K1)
2 for

which we have f(Y ∩ K1) = β1 and at the same time f(Y ∩ K1) = β2. Now let
Y1, . . . , Yn be distinct. We check that |

⋂

{AYiβi
: i ≤ n}| = τ for all β1, . . . , βn ∈ τ .

There is a set C ⊆ τ , |C| ≤ n such that sets Yi ∩ C (i = 1, . . . , n) are distinct
and non-void. Then for all δ < τ such that C ⊆ δ, {β1, . . . , βn} ⊆ C there is an

element 〈δ, K1, K2, f〉 defined as follows: K1 = C, K2 = {β1, . . . , βn}, f ∈ K
P(K1)
2

such that f(Yi ∩K1) = βi (i = 1, . . . , n), and therefore the element 〈δ, K1, K2, f〉 is
a point of AYiβi

for all i = 1, . . . , n. So, |
⋂

{AYiβi
: i ≤ n}| = τ . �

Note that by the proof of Lemma 1.2, a (2τ , τ)-independent matrix {Aαβ : α ∈
2τ , β ∈ τ} has the property:

(1′)
for all distinct β1, β2 ∈ τ and α ∈ 2τ

Aαβ1 ∩ Aαβ2 = ∅.

Further we will assume that the (2τ , τ)-independent matrix satisfies the prop-
erty (1′).
Note that the system of sets {Sδ : δ < τ} defined in the proof of the existence of

(2τ , τ)-independent matrix has the following property:
for all distinct α1, . . . , αn ∈ 2τ and β1, . . . , βn ∈ τ , there is δ0 ∈ τ such that for all
δ ∈ τ, δ0 < δ,

(
⋂

{Aαiβi
: i ≤ n}) ∩ Sδ =

⋂

{Aδ
αiβi
: i ≤ n} 6= ∅.

The family {Sδ : δ < τ} we will call the basic family for a (2τ , τ)-independent
matrix {Aαβ : α ∈ 2τ , β ∈ τ}. A (2τ , τ)-independent matrix {Aαβ : α ∈ 2τ , β ∈ τ}
gives us a family {A∗

αβ : α ∈ 2τ , β ∈ τ} of clopen sets of τ∗ = βτ \ τ , where

A∗
αβ = [Aαβ ]βτ ∩ τ∗, with the following properties:

(1) for all distinct β1, β2 ∈ τ and α ∈ 2τ , we have that A∗
αβ1

∩ A∗
αβ2
= ∅, and

(2) if α1, . . . , αn ∈ 2τ are distinct, then for all β1, . . . , βn ∈ λ

(
⋂

{A∗
αiβi
: i ≤ n}) ∩ U(τ) 6= ∅.

The family {A∗
αβ : α ∈ 2τ , β ∈ τ} we will call the (2τ , τ)-independent matrix in τ∗.
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Definition 1.3. A point x ∈ τ∗ is called a (λ, σ)-matrix point if there is a (λ, σ)-
independent matrix as just defined, such that for any sequence Γ = {Ui : i ∈ ω} of
neighbourhoods of x there is B(Γ) ⊆ λ with |B(Γ)| < λ such that x ∈ [

⋃

{Aαiβi
∩Ui :

i ∈ ω}], where {αi : i ∈ ω} ⊆ λ \ B(Γ) are distinct and {βi : i ∈ ω} ⊆ σ.

The existence of (c, c)-matrix points in ω∗ has been proved in [K]. For τ > ω, we
will prove the existence of (2τ , τ)-matrix points.

We say that a family λ = {C} of subsets of τ (or closed subsets of τ∗) is “good”
for a (2τ , τ)-independent matrix {Aαβ : α ∈ 2τ , β ∈ τ} on τ (or the matrix {A∗

αβ :

α ∈ 2τ , β ∈ τ} in τ∗), if for any finite λ′ ⊆ λ, distinct α1, . . . , αn ∈ 2τ and
β1, . . . , βn ∈ τ , |(

⋂

{C : C ∈ λ′}) ∩ (
⋂

{Aαiβi
: i ≤ n})| = τ (or (

⋂

{C : C ∈
λ′}) ∩ (

⋂

{A∗
αiβi
: i ≤ n}) 6= ∅).

Theorem 1.4. There is a (2τ , τ)-matrix point in U(τ).

Proof: Let {A∗
αβ : α ∈ 2τ , β ∈ τ} be a (2τ , τ)-independent matrix in τ∗. Index

the set of all clopen subsets of τ∗ as {Wγ : γ ∈ 2τ}, W0 = τ∗. By induction, for
each γ ∈ 2τ , we choose a clopen set and a set Bγ ⊆ 2τ such that

(1) {Zγ : γ ∈ 2τ} is an ultrafilter of clopen subsets of τ∗;
(2) |Bγ \

⋃

{Bδ : δ < γ}| < ω for all γ ∈ 2τ , and Bγ ⊆ Bγ′ for γ ≤ γ′; for each
γ ∈ 2τ , let Σγ be a family of sets of the form

⋃

{Aαiβi
∩ Zγ : i ∈ ω}, where

{αi : i ∈ ω} ⊆ 2τ \ Bγ are distinct, {βi : i ∈ ω} ⊆ τ and αi ≤ γ (i ∈ ω);
(3) for all δ ∈ 2τ , the family (

⋃

{Σγ : γ ≤ δ}) ∪ {Zγ : γ ≤ δ} is “good” for the
matrix {A∗

αβ : α ∈ 2τ \ Bδ, β ∈ τ}.

Define Z0 =W0 = τ∗, B0 = ∅.

Suppose that δ ∈ 2τ and Bγ , Zγ have been chosen for all γ < δ. Define B′
δ =

⋃

{Bγ : γ < δ}. For Wδ, there is a finite K ⊆ 2τ such that (
⋃

{Σγ : γ < δ})∪ {Zγ :
γ < δ} ∪ {Wδ} (or (

⋃

{Σγ : γ < δ}) ∪ {Zγ : γ < δ} ∪ {τ∗ \ Wδ}) is “good” for the
matrix {A∗

αβ : α ∈ 2τ \(B′
δ∪K), β ∈ τ}. Otherwise there is η ∈ 2τ , η < δ, such that

(
⋃

{Σγ : γ < η})∪{Zγ : γ ≤ η} is not “good” for the matrix {A∗
αβ : α ∈ 2τ \Bη, β ∈

τ}, but this contradicts our assumption. If (
⋃

{Σγ : γ < δ})∪ {Zγ : γ < δ} ∪ {Wδ}
is “good” for {A∗

αβ : α ∈ 2τ \ (B′
δ ∪K), β ∈ τ}, then we define Zδ =Wδ, otherwise

define Zδ = τ∗ \ Wδ, and define Bδ = B′
δ ∪ K.

Let us check that {Zγ : γ < δ} and {Bγ : γ ≤ δ} satisfy (3).

Let

(a) {Zγ1 , . . . , Zγn : γi ≤ δ} be a finite subset of {Zγ : γ ≤ δ}, and
(b) {Vj : j = 1, . . . , m} be a finite subset of Σδ, Vj =

⋃

{A∗
α

j
i
β

j
i

∩ Z
γ

j
i

: i ∈ ω};

(c) {V ′
k : k = 1, . . . , l} be a finite subset of Σγ′ , γ′ < δ, V ′

k =
⋃

{Aαk
i βk

i
∩ Zγk

i
:

i ∈ ω};
(d) {A∗

αpβp
: p = 1, . . . , q} be a finite family of sets of (2τ , τ)-independent matrix

{A∗
αβ : α ∈ 2τ \ Bδ, β ∈ τ}, where {αp : p = 1, . . . , q} are distinct.
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Let us check that

(

n
⋂

i=1

Zγi

)

∩
(

m
⋂

j=1

Vj

)

∩
(

l
⋂

k=1

V ′
k

)

∩
(

q
⋂

p=1

Aαpβp

)

6= ∅.

For V1, . . . , Vm from the family (b), we choose the subsets A∗
α̂1i

∩ Zγ̂1
i
⊆ V1, . . . ,

A
α̂m

i β̂m
i

∩Zγ̂m
i

⊆ Vm such that α̂
1
i , . . . , α̂

m
i are distinct and distinct from the indexes

{αp : p = 1, . . . , q} of sets of the family (d).
Note that by construction, the family Σγ′ ∪ {Zγ : γ ≤ δ} is “good” for {A∗

αβ :

α ∈ 2τ \ Bδ, β ∈ τ}. By this remark and by choosing of indexes α̂1
i , . . . , α̂

m
i , we

have

∅ 6=
(

n
⋂

i=1

Zγi

)

∩
(

m
⋂

j=1

(A
α̂

j
i β̂

j
i

∩ Z
γ̂

j
i

)
)

∩
(

l
⋂

k=1

V ′
k

)

∩
(

q
⋂

p=1

Aαpβp

)

⊆

⊆
(

n
⋂

i=1

Zγi

)

∩
(

m
⋂

j=1

Vj

)

∩
(

l
⋂

k=1

V ′
k

)

∩
(

q
⋂

p=1

Aαpβp

)

.

So, {Zγ : γ ≤ δ} and {Bγ : γ ≤ δ} satisfy (3). By the completing of the induction,
we obtain the systems {Zγ : γ ∈ 2τ} and {Bγ : γ ∈ 2τ} which satisfy (1)–(3). Let
us check that a point x =

⋂

{Zγ : γ ∈ 2τ} is a (2τ , τ)-matrix point in τ∗.
Let {Ui : i ∈ ω} be a system of neighbourhoods of the point x. We can assume

that Ui = Zγi (i ∈ ω). By (3), a set
⋃

i{Aαiβi
∩ Zγi} ∈ Σγ , where δ = sup{γi : i ∈

ω}, intersects any set Zγ , γ ∈ 2τ , so x ∈
[
⋃

i{Aαiβi
∩ Zγi}

]

. Finally, it is easy to
see that x ∈ U(τ). �

A simple consequence of the definition of a matrix point is

Theorem 1.5. Let x be a (2τ , τ)-matrix point in τ∗ for a (2τ , τ)-independent
matrix {A∗

αβ : α ∈ 2τ , β ∈ τ}. Let {Fi : i ∈ ω} be a family of closed sets in τ∗, not

containing x. Suppose B ⊆ 2τ and |B| = 2τ , and for any α ∈ B there is β ∈ τ with
Aαβ ∩

(
⋃∞

i=1 Fi

)

= ∅. Then x /∈
[
⋃

{Fi : i ∈ ω}
]

.

Corollary 1.6. Let x ∈ τ∗ be a (2τ , τ)-matrix point and {Fi : i ∈ ω} be a family
of closed subsets of τ∗ such that x /∈ Fi, c(Fi) ≤ δ and δ < τ for all i ∈ ω. Then
x /∈

[
⋃

{Fi : i ∈ ω}
]

.

Corollary 1.7. Let x ∈ τ∗ be a (2τ , τ)-matrix point. Then x /∈ [F ] for any F ⊆ τ∗

such that x /∈ F and c(F ) ≤ ω.

Let M = {Aαβ : α ∈ 2τ , β ∈ τ} be a (2τ , τ)-independent matrix on τ , and
a family λ = {F} of subsets of τ is “good” for M . Then we construct a new matrix
Mλ in such a way.
Let λ′ = {Fα : α ∈ 2τ}, where each Fα is one of F ∈ λ, and for all F ∈ λ

|{Fα : Fα = F}| = 2τ . Denote

Mλ = {A′
αβ : A

′
αβ = Aαβ ∩ Fα, α ∈ 2τ , β ∈ τ}.



On matrix points in Čech–Stone compactifications of discrete spaces 779

We say that Mλ is a λ-modification of M . It is easy to see that x ∈ {[F ] : F ∈ λ}.
Now let us discuss a problem of the existence of matrix points which are regular

points in R(τ). Recall that a centered system of subsets of τ , ξ = {A}, |ξ| = τ ,
is called regular, if

⋂

{A : A ∈ ξ′} = ∅ for all countable ξ′ ⊆ ξ, |ξ′| = ω. An
ultrafilter x on τ , containing a regular system, is regular.

Theorem 1.8. There is a (2τ , τ)-matrix point in R(τ).

Proof: Let ξ = {B}, |ξ| = τ , be a regular system on τ , and let Σ = {S′
δ : δ ∈ τ}

be a basic family for a (2τ , τ)-independent matrix M = {Aαβ : α ∈ 2τ , β ∈ τ}. For
β ∈ ξ, denote ΣB =

⋃

{S′
δ : δ ∈ B}. The system η = {ΣB : B ∈ ξ} is a regular

system on τ =
⋃

{S′
δ : Sδ ∈ Σ}, and |η| = τ . The system η = {ΣB : B ∈ ξ} is

“good” for the matrixM ; and letMη = {A′
αβ : α ∈ 2τ , β ∈ τ} be an η-modification

ofM . A (2τ , τ)-matrix point x forMη is a regular one, since x ∈
⋂

{[ΣB] : ΣB ∈ η}.
�

Theorem 1.9. Let T = {Pγ : γ ∈ τ} be a family of pairwise disjoint subsets of τ ,
and D = {xγ : γ ∈ τ} be a discrete subset of τ∗ such that xγ ∈ P ∗

γ = [Pγ ]βτ \ τ .

Then there is a (2τ , τ)-matrix point in ([D]τ∗ \ D) ∩ U(τ).

Proof: Denote F = ([D]τ∗ \ D) ∩ U(τ) and let BF = {0} be a system of clopen
neighbourhoods of F in βτ . For a (2τ , τ)-independent matrix M = {Aαβ : α ∈
2τ , β ∈ τ} on τ , note M ′ = {A′

αβ : A
′
αβ =

⋃

{Pγ : γ ∈ Aαβ}, α ∈ 2τ , β ∈ τ}. It is

easy to see that BF is “good” for the matrixM ′ and letM ′
BF
be a BF -modification

of M ′. A matrix point x for the matrix M ′
BF
is in F , so the theorem is proved. �

We can prove the same fact for regular points, namely

Theorem 1.10. Let T = {Pγ : γ ∈ τ} be a family of pairwise disjoint subsets of
τ , and D = {xγ : γ ∈ τ} be a discrete subset of τ∗ such that xγ ∈ P ∗

γ . Then there

is a (2τ , τ)-matrix point in ([D]τ∗ \ D) ∩ R(τ).

Proof: Let M = {Aαβ : α ∈ 2τ , β ∈ τ} be a (2τ , τ)-independent matrix on τ ,
Σ = {Sδ : δ ∈ τ} be a basic family for M , ξ = {B} be a regular system on τ . As in
the proof of Theorem 1.8, denote ΣB =

⋃

{Sδ : δ ∈ B}, then η = {ΣB : B ∈ ξ} is

a regular system. For Sδ ∈ Σ, let ST
δ =

⋃

{Pγ : γ ∈ Sδ},Σ
T
B =

⋃

{ST
δ : δ ∈ B}, for

B ∈ ξ. Then ηT = {ΣT
B : B ∈ ξ} is a regular system. Denote M ′ = {A′

αβ : A
′
αβ =

⋃

{Pγ : γ ∈ Aαβ}, α ∈ 2τ , β ∈ τ}. A family λ = ηT ∪ BF (BF as in 1.9) is “good”

for M ′, finally we construct a matrix point for a λ-modification of M ′. �

Note that from the previous theorems it follows

Corollary 1.11. There are 2τ (2τ , τ)-matrix points in U(τ) and R(τ).

Theorem 1.12. χ(x, τ∗) ≥ cf2τ for (2τ , τ)-matrix point in τ∗.

Proof: Let χ(x, τ∗) < cf2τ , where x is a matrix point for a (2τ , τ)-independent
matrix {Aαβ : α ∈ 2τ , β ∈ τ}. Let Bx = {Ox} be a base in x, |Bx| = χ(x, τ∗). By

the definition of a (2τ , τ)-matrix point, for each Ox ∈ Bx there is a set B′
Ox

⊆ 2τ
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such that Ox ∩ Aαβ 6= ∅ for all α ∈ 2τ \ B′
Ox
and β ∈ τ . Since 2τ \

⋃

{B′
Ox
: Ox ∈

Bx} 6= ∅, there is α0 ∈ 2τ \
⋃

{B′
Ox
: Ox ∈ Bx} such that Aα0β ∩ Ox 6= ∅ for all

β ∈ τ and Ox ∈ Bx, but it is impossible. �

References

[K] Kunen K.,Weak p-points in βN \N , Coll. Math. Soc. Janos Bolyai, Topology, Budapest, vol.
23, 341–349.

[G1] Gryzlov A., Ob odnom klasse tochek prostranstva N∗, Leningradskaya mezhdunarodnaya
konf., Leningrad, Nauka, 1982, p. 57.

[G2] , K teorii prostranstva βN , Obshchaya topologiya, Mosk. Univ., Moskva, 1986, 20-33.
[EK]Engelking R., Kar lowicz M., Cartesian products and dyadic spaces, Fund. Math. 57 (1965),

287–304.

Udmurt State University, Krasnogeroyskaya 71, 426037 Izhevsk, USSR

(Received August 26, 1991)


		webmaster@dml.cz
	2012-04-30T13:06:22+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




