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When (E, σ(E, E′)) is a DF -space?

Dorota Krassowska, Wies law Ṡliwa

Abstract. Let (E, t) be a Hausdorff locally convex space. Either (E, σ(E, E′)) or
(E′, σ(E′, E)) is a DF -space iff E is of finite dimension (THEOREM). This is the most

general solution of the problem studied by Iyahen [2] and Radenovič [3].
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Throughout this paper, E = (E, t) denotes a Hausdorff locally convex space
and E′ its topological dual. The classical Grothendieck’s theorem asserts that
(E′, β(E′, E)) is a complete DF -space (for definitions see below) provided that the
topology t is metrizable ([1], [5, Ch. VI, Theorem 6.5, also p. 154]). The main result
in this paper deals with the following natural question, first investigated in 1966 by
Iyahen [2]: when (E, σ(E, E′)) (or (E′, σ(E′, E))) is a DF -space? Iyahen’s result
is that (c0, σ(c0, l1)) is not a DF -space. In 1988, Radenovič [3] generalized this
result and proved that if E is a Banach space of infinite dimension then neither
(E, σ(E, E′)) nor (E′, σ(E′, E)) is a DF -space.
In this note we give the full answer to the question stated above (THEOREM).

Our approach is most elementary (we work on dual pairs only) and the result is
most general (no assumptions concerning the structure of E are required; compare
[3, Theorems 1, 3 and Corollaries 1, 2]). We follow [4] and [5] for definitions and
notations. For the convenience of the reader recall that E is said to be countably
quasibarrelled if every strongly bounded subset of E′ which is a countable union
of t-equicontinuous subsets of E′ is t-equicontinuous; if, in addition, E possesses
a fundamental sequence of bounded sets then it is called a DF -space.

Theorem. Let (E, E′) be a dual pair. Then either (E, σ(E, E′)) or (E′, σ(E′, E))
is a DF -space iff E is of finite dimension.

Proof (of the nontrivial case “only if”): Since both (E, E′) and (E′, E) is a dual
pair, it is enough to consider the case (E, σ(E, E′)). Let {Bn} be an arbitrary
increasing fundamental sequence of bounded sets in (E, σ(E, E′)). Then {B0n} is
a base of neighbourhoods of zero in (E′, β(E′, E)). Let now {x′n : n ∈ N} be
an arbitrary linearly independent sequence in E′. Then for every n ∈ N there
exists a real number αn > 0, such that αnx′n ∈ B0n. Therefore αnx′n → 0 in
β(E′, E); in particular, the sequence {αnx′n} is β(E′, E)-bounded, and so it is
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σ(E, E′)-continuous. It follows that there is a finite subsetK of E′ with {αnx′n : n ∈
N} ⊂ (K0)0 ⊂ linK; thus lin{x′n : n ∈ N} is of finite dimension and, consequently,
dimE < ∞. �

The result stated in the corollary below indicates a large class of locally con-
vex spaces which are not countably quasibarrelled. This problem was discussed in
[3, p. 155, and Corollary 1] (for the Banach case only).

Corollary. If E is a metrizable and barrelled space, then (E′, σ(E′, E)) is count-
ably quasibarrelled iff E is of finite dimension.

Proof: Since E′ possesses a fundamental sequence of σ(E′, E)-bounded sets,
THEOREM is applied to complete the proof. �
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