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Logarithmic capacity is not subadditive

— a fine topology approach

Pavel Pyrih

Abstract. In Landkof’s monograph [8, p. 213] it is asserted that logarithmic capacity is
strongly subadditive, and therefore that it is a Choquet capacity. An example demon-
strating that logarithmic capacity is not even subadditive can be found e.g. in [6, Example
7.20], see also [3, p. 803]. In this paper we will show this fact with the help of the fine
topology in potential theory.
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1. Introduction.

In potential theory we often use special set functions, called capacities. Their
physical interpretation is relatively simple. If we denote Q the total charge on the
conductor and V its equilibrium potential, the equality Q = k · V holds where the
constant k (k independent on Q) is called the capacity of the conductor. From
a physical point of view it is obvious that the capacity of the surface of the unit ball
equals the capacity of the whole ball. The capacity therefore cannot be additive.
Around 1950, Choquet constructed a mathematical theory of capacities. A ca-

pacity was defined axiomatically as a non-negative, monotone, right continuous set
function C, defined on the system of all compact sets fulfilling the strong subad-
ditivity axiom

C(A ∪ B) + C(A ∩ B) ≤ C(A) + C(B) .

Today every set function that fulfills the above axioms is called a Choquet capa-
city.
Similarly to measure theory, starting from a Choquet capacity both an inner

and outer Choquet capacity, C∗ and C∗, respectively, of an arbitrary set can be
constructed. Choquet’s main result in capacity theory is the following theorem :
All Borel sets are capacitable (i.e. their inner and outer capacities coincide) [7].
Furthermore, the outer capacity is countably subadditive [1] :

C∗(
∞⋃

n=1

An) ≤
∞∑

n=1

C∗(An) .

A Choquet capacity has found widespread use in potential theory in R
m, m ≥ 3.



68 P.Pyrih

Let us examine the case of the plane [8]: For any compact set K in the plane R
2

denote

W = inf
µ

∫
log

1

|x − y|
dµ(x)dµ(y)

where the infimum is taken over all positive probability Radon measures µ supported
by K. Now the logarithmic capacity cap of compact K is defined by

cap(K) = e−W .

The logarithmic capacity has a number of suitable properties (e.g. for a capacity
of a closed disc B(x, r) with a center x and a radius r the formula cap B(x, r) = r
holds), but it is not a Choquet capacity.
Theorem 1 shows that the outer logarithmic capacity is not countably subadditive

and therefore cannot be an outer Choquet capacity. Furthermore, in Theorem 2 we
show that there exist compact sets A, B such that

cap(A) + cap(B) < cap(A ∪ B) ,

so that the logarithmic capacity does not fulfill the axiom of (strong) subadditivity
for a Choquet capacity. Let us note that all Borel sets are capacitable for the
logarithmic capacity despite of the fact that it is not a Choquet capacity (see [9,
p. 170]). For Borel sets, we shall write cap instead of cap∗.

2. Fine topology.

In modern potential theory, fine topology introduced in the 40s by Cartan
plays an important role. It is the coarsest topology that makes all superharmonic
functions continuous. In connection with this topology we will use terms such as
finely open, fine interior · · · .
With the fine topology the notion “a set thin at a point” is closely related. If

we denote for an arbitrary point x ∈ R
2, a set A ⊂ R

2 and n ∈ N

An(x) = {z ∈ A,
1

2n
≤ |z − x| <

2

2n
} ,

we can characterize points x at which a set A is thin as those for which the series

∞∑

n=1

−n

log cap∗ (An(x))

converges (Wiener’s test). It can be shown that a set A is thin at a point x if and
only if the point x is in the fine interior of the set {x}∪∁A (see [2, Theorem IX,10]).
We will need the following properties of the fine topology in the plane :

Theorem A. ([7, Theorem 10.14]) Let E ⊂ R
2 and let ∁E be thin at a point x.

Then there exist arbitrarily small r > 0 such that

{z ∈ R
2, |x − z| = r} ⊂ E .

This statement holds in the plane. The fine topology does not have such a pro-
perty in higher dimensions.
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Theorem B. ([5, Lemma 7]) Let U ⊂ R
2 be a finely open set and let S be compact

in R
2. Define, for α ∈ R, the function

hα(z) =

∫

S\U

1

|z − ζ|α
dζ , z ∈ U .

Then every point z ∈ U has a fine neighbourhood V ⊂ U such that, for every α ∈ R,

hα is bounded on V .

The proof of Theorem B is based on the inequality between the Lebesgue measure
λ and the logarithmic capacity

λ(E) ≤ π(cap E)2 ,

that holds for all Borel sets E in the plane, and a certain uniform version of Wiener’s
criterion obtained by Lyons (cf. [5, Lemma 6]). Using Theorem B, Fuglede derived
in the 80s a theory of finely holomorphic functions having the property of unique
continuation typical of holomorphic functions (cf. [4]).
Other properties of the fine topology and of other “fine” topologies (for example

the density topology on the real axis) have been studied in the monograph [10].

3. Subadditivity.

To prove the following theorem we will use the fine topology property introduced
in Theorem A.

Theorem 1. Logarithmic capacity is not countably subadditive, in fact there exist

nonempty Borel sets Aj such that

cap
∞⋃

j=1

Aj >
∞∑

j=1

cap Aj .

Proof: If x ∈ R, set x̂ = (x, 0) ∈ R
2. Choose real numbers a ≥ b > 0. If 0 ≤ x ≤ a,

and T = (a2 , a+
b
100 ), we have

B(T,
b

100
) ⊂ {z ∈ R

2, a ≤ |z − x̂| < 2a} .

For m, k ∈ N, k odd, 1 ≤ k ≤ 2m+1 denote

Tm,k = (
k

2m+1
,
1

2m
+
1

100
·
1

22m
) .

Set

F =

∞⋃

m=1

2m+1⋃

k=1
k odd

B(Tm,k,
1

100
·
1

22m
) .
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Fix now x ∈]0, 1]. For any n ∈ N there exists k ∈ N, k odd, such that (for A ⊂ R
2

is An(x) defined in the part 2)

B(Tn,k,
1

100
·
1

22n
) ⊂ (R2)n(x̂) .

For any n ∈ N we have

cap Fn(x̂) ≥ cap B(Tn,k,
1

100
·
1

22n
) =

1

100
·
1

22n
.

Since
∞∑

n=3

−n

log cap Fn(x̂)
≥

∞∑

n=3

−n

log( 1100 ·
1
22n
)
= +∞ ,

F is not thin at x̂ according to Wiener’s test. In the same way the set

G =

∞⋃

n=1

∞⋃

m=n3

⋃

k∈Dn,m

B(Tm,k,
1

100
·
1

22m
) .

(where Dn,m = {k ∈ N : 1 ≤ k ≤ 2m+1, k odd, 12n ≤ k
2m+1

≤ 2
2n } for n, m ∈ N) is

not thin at x̂.
We shall prove that G is thin at the origin 0. We have

Gn(0) ⊂
∞⋃

m=n3

2m+1⋃

k=1
k odd

B(Tm,k,
1

100
·
1

22m
) .

Assuming that the logarithmic capacity is countably subadditive, we get the esti-
mate

cap Gn(0) ≤
∞∑

m=n3

2m+1∑

k=1

1

100
·
1

22m
=

∞∑

m=n3

2

100 · 2m
=
2

50
·
1

2n
3

.

Since
∞∑

n=1

−n

log cap Gn(0)
≤

∞∑

n=1

−n

log 250 − n3 · log2
< ∞ ,

G is thin at 0. Now, let H denote the fine interior of the set ∁G. Since G is thin at
the origin, 0 ∈ H . According to Theorem A there exists x ∈]0, 1] such that x̂ ∈ H .
This contradicts the fact that G is not thin at x̂. �

The proof of the following theorem is not only based on Theorem A, but also on
a deeper assertion of Theorem B.
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Theorem 2. There exist compact sets A, B such that

cap(A) + cap(B) < cap(A ∪ B) .

Proof: Let n ∈ N. Divide the interval [ 12n , 22n ] into kn intervals of the same length
dn = 1/kn · 2n with centers xn,j for j = 1, . . . , kn. Set

M =

∞⋃

n=1

kn⋃

j=1

B(x̂n,j , rn) ,

where rn = 1/kn · 2n
3

. Fix α > 2. Define a function h : R
2 → [0,+∞] by the

formula

h : z 7→

∫

M

1

|z − ζ|α
dζ .

For z ∈ [ 12n , 22n ], the inequalities

h(ẑ) ≥

∫

B(bxn,j ,rn)

1

|ẑ − ζ|α
dζ ≥

∫

B(bxn,j ,rn)

1

dα
n

dζ

hold, where j (1 ≤ j ≤ kn) is the index of the interval such that |z − xn,j | ≤
dn

2 .
Since ∫

B(bxn,j ,rn)

1

dα
n

dζ = π · (rn)
2 · (2n · kn)

α = cn · kα−2
n ,

where cn is a constant independent of kn, there exists a kn such that for all z ∈
[ 12n , 22n ]

(∗) h(ẑ) ≥ n .

Supposing, that the logarithmic capacity is subadditive, we get (the capacity of
a disc equals its diameter)

cap Mn(0) ≤ cap B(x̂n,1, rn) + . . .+ cap B(x̂n,kn
, rn) = kn ·

1

kn · 2n
3
=
1

2n
3

.

We see that M is thin at the origin according to Wiener’s test. The function h is
bounded according to Theorem B in a certain fine neighbourhood V of the origin
by a certain constant K. Using Theorem A there is a sequence zj ↓ 0 such that
ẑj ∈ V and

h(ẑj) ≤ K .

This contradicts (∗). �
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