Commentationes Mathematicae Universitatis Carolinae

J. Schröder Natural sinks on Y_{β}

Commentationes Mathematicae Universitatis Carolinae, Vol. 33 (1992), No. 1, 173--179

Persistent URL: http://dml.cz/dmlcz/118483

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Natural sinks on Y_{β}

J. SCHRÖDER

Abstract

Let $\left(e_{\beta}: \mathbf{Q} \rightarrow Y_{\beta}\right)_{\beta \in \mathbf{O r d}}$ be the large source of epimorphisms in the category Ury of Urysohn spaces constructed in [2]. A sink $\left(g_{\beta}: Y_{\beta} \rightarrow X\right)_{\beta \in \mathbf{O r d}}$ is called natural, if $g_{\beta} \circ e_{\beta}=g_{\beta^{\prime}} \circ e_{\beta^{\prime}}$ for all $\beta, \beta^{\prime} \in \mathbf{O r d}$. In this paper natural sinks are characterized. As a result it is shown that Ury permits no ($E p i, \mathcal{M}$)-factorization structure for arbitrary (large) sources.

Keywords: epimorphism, Urysohn space, cointersection, factorization, natural sink, periodic, cowellpowered, ordinal
Classification: 18A20, 18A30, 18B30, 54B30, 54C10, 54D10, 54D35, 54G20

Introduction.

In [2] a large source $\left(e_{\beta}: \mathbf{Q} \rightarrow Y_{\beta}\right)_{\beta \in \mathbf{O r d}}$ of epimorphisms in Ury was constructed, showing that Ury is not cowellpowered. The purpose of this paper is twofolded:
(a) Every natural sink $\left(g_{\beta}: Y_{\beta} \rightarrow X\right)_{\beta \in \mathbf{O r d}}$ is defined uniquely by $g_{1}: \mathbf{Q} \rightarrow X$. Y_{β} can be as large as might be required. How does g_{β} look? There are rare instances in General Topology where a smallness condition has overall consequences, e.g. the arbitrary product of separable spaces fulfills the countable chain condition.
(b) Because of non-cowellpoweredness, some categorical theorems should not be applicable in Ury. The investigation of sinks $\left(g_{\beta}: Y_{\beta} \rightarrow X\right)_{\beta \in \mathbf{O r d}}$ have as a result the non-existence for any \mathcal{M} of a $(E p i, \mathcal{M})$-factorization structure for (large) sources.

Notation. $\mathbf{Q}\left(\mathbf{Q}^{+}=\mathbf{Q}^{+} \cup\{0\}\right)$ are the (positive) rationals. $\mathbf{R}, \mathbf{N}=\mathbf{N} \cup\{0\}$ are the real and the natural numbers, respectively. ω_{0} is the first infinite ordinal. w is a fixed positive irrational number. ϵ, δ are real numbers $>0 . h, l, m, n$ are elements of \mathbf{N}. Ord is the class of ordinal numbers. $\alpha, \beta, \gamma, \kappa, \lambda, \xi, \tau$ are ordinal numbers. $[0,1),[-1,+1]$ are as usual intervals of real numbers. $d(x, y)$ is the euclidean distance of $x, y \in \mathbf{R}$ or of $x, y \in \mathbf{R} \times \mathbf{R}$. If $B \subseteq \mathbf{R}$ (or $\subseteq \mathbf{R} \times \mathbf{R}$), then $d(x, B):=\inf \{d(x, b) \mid b \in B\} . U(x, \epsilon)$ is an ϵ-neighbourhood, taken in \mathbf{R}, if $x \in \mathbf{R}$; taken in $\mathbf{R} \times \mathbf{R}$ if $x \in \mathbf{R} \times \mathbf{R}$. Every ordinal τ has a unique representation $\tau=\lambda+n$, where λ is a limit ordinal and n is a finite ordinal (natural number). This representation we will use often. Top, Ury, $\mathbf{T}_{\mathbf{3}}$ are the categories of topological, Urysohn, and regular T_{1} spaces, respectively. Recall that a topological space is

[^0]called Urysohn, if distinct points have disjoint closed neighbourhoods. $c l A$ is, as usual, the topological closure of $A \subseteq X, \operatorname{cl} A=: \bar{A}$. If $(X, \mathcal{X}) \in \mathbf{T o p}$ and $A \subseteq X$, then $c_{\theta} A:=\{x \in X \mid x \in U \in \mathcal{X} \Rightarrow c l U \cap A \neq \emptyset\}, l_{\theta \theta} A:=\bigcap\left\{c_{\theta} c l U \mid A \subseteq U \in \mathcal{X}\right\}$. $c l_{\theta}^{\omega_{0}} A:=\bigcup_{\mathbf{N}} c l_{\theta}^{n} A$, where $c l_{\theta}^{0} A:=A$ and $c l_{\theta}^{n+1} A:=c l_{\theta} c l_{\theta}^{n} A . \triangle:=\{(x, x) \mid x \in X\}$. Definition 1. A sink $\left(g_{\beta}: Y_{\beta} \rightarrow X\right)_{\beta \in \mathbf{O r d}}$ is called natural, if $g_{\beta} \circ e_{\beta}=g_{1} \circ e_{1}$ for all $\beta \in \mathbf{O r d}$.
$X_{0}=\mathbf{Q} \times\{0\} \times\{1\}, X_{\alpha}=\mathbf{Q} \times(\mathbf{Q} \cap[0,1)) \times\{\alpha\}, \alpha>0$,
$Y_{1}=X_{0}, Y_{\beta}=\bigcup\left\{X_{\alpha} \mid \alpha<\beta\right\}, \beta>1$,
$e_{\beta}: \mathbf{Q} \rightarrow Y_{\beta}$ is defined by $e_{\beta}(q)=(q, 0,1)$ for all $q \in \mathbf{Q}$.
$K(r, s, \alpha, \epsilon)=\left\{(u, v, \alpha) \in X_{\alpha} \mid v>0 \wedge d((u, v),(r-s / w, 0))<\epsilon\right\}, 0<\epsilon<1$.
Y_{β} becomes a Urysohn space equipped with the following sets forming neighbourhood bases of (r, s, α) (see [2]):
$\alpha=1$:
$s \neq 0: K(r, s, 1, \epsilon) \cup\{(r, s, 1)\}=: U(r, s, 1, \epsilon)$.
$s=0: K(r, 0,1, \epsilon) \cup\{(u, 0,1) \mid d(u, r)<\epsilon\}$.

Fig. 2
$\alpha>1$:
α limit:

$$
\begin{aligned}
s \neq 0 & : K(r, s, \alpha, \epsilon) \cup\{(r, s, \alpha)\}=: U(r, s, \alpha, \epsilon) . \\
s= & 0:\{(r, 0, \alpha)\} \cup K(r, 0, \alpha, \epsilon) \cup \bigcup_{\alpha>\tau \geq \gamma} K(r, 0, \tau, \epsilon)=: \\
& U(r, 0, \alpha, \gamma, \epsilon), \gamma<\alpha .
\end{aligned}
$$

α non-limit:

$$
\begin{aligned}
s \neq 0 & : K(r, s, \alpha, \epsilon) \cup\{(r, s, \alpha)\}=: U(r, s, \alpha, \epsilon) . \\
s=0 & : K(r-1 / w, 0, \alpha-1, \epsilon) \cup K(r, 0, \alpha, \epsilon) \cup\{(r, 0, \alpha)\}=: \\
& U(r, 0, \alpha, \epsilon) \quad \text { (see Fig. 1). }
\end{aligned}
$$

Consider now a limit ordinal λ and $\bigcup_{\mathbf{N}} X_{\lambda+n}=: X_{\lambda}^{\infty}$. There is a bijection $\phi: X_{\lambda}^{\infty} \rightarrow \mathbf{Q} \times \mathbf{Q}^{+} \times\{\lambda\}$ given by $\phi(r, s, \lambda+n):=(r, s+n, \lambda)$. We refer to this bijection in the following construction.
Define $\bigcup_{n \leq l \leq h+n} X_{\lambda+l} \cup\{(r, 0, \lambda+h+n+1) \mid r \in \mathbf{Q}\}=: X_{\lambda+n}^{h}, L(r, s, \lambda+m, \epsilon, \lambda+$ $n, h):=\left\{(u, v+l, \lambda) \in X_{\lambda+n}^{h} \mid d((u, v+l), L(r, s, \lambda+m)) \leq \epsilon\right\}$, where $L(r, s, \lambda+m):=$ $\{(x, w(x-r)+s+m) \mid x \in \mathbf{R}\} \times\{\lambda\}$, i.e. $L(r, s, \lambda+m, \epsilon, \lambda+n, h)$ is the 2ϵ-stripe around $L(r, s, \lambda+m)$ passing through $(r, s, \lambda+m)=\phi^{-1}(r, s+m, \lambda)$ with bottom at $\{(r, 0, \lambda+n) \mid r \in \mathbf{Q}\}$ and height h. Note that we identify via ϕ the point $(u, v+l, \lambda)$ with $(u, v, \lambda+l)$, where $v<1$, i.e. $(u, v+l, \lambda) \in X_{\lambda+l}$. The meaning of $h=\omega_{0}$ is obvious (see Fig. 2).
Lemma 2. Let (X, \mathcal{X}) be a Urysohn space, $A \subseteq X, c l_{\theta \theta} A=A$. Define an equivalence relation by $\sim_{A}:=A \times A \cup \triangle$. Then the quotient X / \sim_{A} is a Urysohn space.
Proof: Take $x \notin A$. Then there exists $U \in \mathcal{X}$ s.t. $A \subseteq U$ and $x \notin c l_{\theta} c l U$. Hence there is U_{x} s.t. $x \in U_{x}, c l U_{x} \cap c l U=\emptyset$. Since A is θ-closed, distinct points in $X-A$ can be separated by disjoint closed neighbourhoods.

Lemma 3. Let $(r, s, \alpha) \in Y_{\beta}$. We consider basic neighbourhoods of (r, s, α).
(a) if $s \neq 0$, then $\operatorname{clU}(r, s, \alpha, \epsilon)=L(r, s, \alpha, \epsilon, \alpha, 1) \cup U(r, s, \alpha, \epsilon)$
(b) if $s=0$, α non-limit, then $\operatorname{clU}(r, 0, \alpha, \epsilon)=L(r, 0, \alpha, \epsilon, \alpha-1,2) \cup U(r, 0, \alpha, \epsilon)$
(c) if $s=0, \alpha=\lambda$ limit, then $\operatorname{clU}(r, 0, \lambda, \gamma, \epsilon)=\bigcup\{L(r, 0, \tau, \epsilon, \tau, 1) \mid \alpha \geq \tau \geq$ $\gamma\} \cup U(r, 0, \lambda, \gamma, \epsilon)$
(see Fig. 3).
Proof: A point (u, v, α) is in the closure of $K(r, s, \alpha)$ if $d(r-s / w, u-v / w) \leq \epsilon$ and $0 \leq v \leq 1$. Where in case $v=1$ the point $(u, 1, \alpha)$ is identified with $(u, 0, \alpha+1)$.

Lemma 4. If λ is a limit ordinal and $n, m \in \mathbf{N}$, then $c_{\theta}^{\omega_{0}} L(r, s, \lambda+m, \epsilon, \lambda+n, h)=$ $L\left(r, s, \lambda+m, \epsilon, \lambda, \omega_{0}\right)$.
Proof: By induction with the help of Lemma 3 (b).

Fig. 3

Fig. 4

Lemma 5. Let λ be a limit ordinal, $\lambda<\beta$. Then $\bigcup_{\lambda \leq \alpha<\beta} X_{\alpha}=Y_{\beta}-Y_{\lambda}$ and $c l_{\theta \theta}\left(Y_{\beta}-Y_{\lambda}\right)=Y_{\beta}-Y_{\lambda}$.
Proof: Take $(r, s, \alpha) \notin Y_{\beta}-Y_{\lambda}$, i.e. $(r, s, \alpha) \in Y_{\lambda}$. We will construct disjoint closed neighbourhoods of (r, s, α) and of $Y_{\beta}-Y_{\lambda}$. It is $\alpha<\lambda$ and λ is limit ordinal. The set $\left\{(u, v, \gamma) \in Y_{\beta} \mid(\gamma>\alpha+2) \vee((\gamma=\alpha+2) \wedge(v>0))\right\}$ is an open set containing $Y_{\beta}-Y_{\lambda}$. Its closure is $\left\{(u, v, \gamma) \in Y_{\beta} \mid \gamma \geq \alpha+2\right\}$. By Lemma 3 above, the closure of an open basic neighbourhood of (r, s, α) is contained in $Y_{\alpha+2}$.

Remark 6. Are there non-constant natural sinks on Y_{β} ? We must find a sink $\left(g_{\beta}: Y_{\beta} \rightarrow X\right)_{\beta \in \mathbf{O r d}}$ coinciding on $\mathbf{Q} \subseteq Y_{\beta}$. As we know, each morphism $g_{\beta}: Y_{\beta}$ $\rightarrow X$ is defined by its values on the countable set \mathbf{Q}. Since Y_{γ} is subspace of Y_{β}, if $\gamma<\beta, g_{\beta}$ can be regarded as continuous extension of g_{γ}. Hence there are not so many morphisms into X. Additionally X has fixed weight, character, cardinality, etc.. All these cardinality functions have no bound on the class $Y_{\beta}, \beta \in$ Ord. The answer is given by the following

Example 7.

(a) Let λ be a limit ordinal. We apply Lemma 2 and Lemma 5. Take $A=$ $Y_{\lambda+1}-Y_{\lambda}$. Then $Y_{\lambda+1} / \sim_{A}=: Y_{\lambda} \cup\{*\}=: Y_{\lambda}^{*}$ is a Urysohn space. Define $g_{\beta}: Y_{\beta} \rightarrow Y_{\lambda}^{*}$ by

$$
g_{\beta}(r, s, \alpha)= \begin{cases}(r, s, \alpha) & \text { if } \alpha<\lambda \\ * & \text { if } \alpha \geq \lambda, \alpha<\beta\end{cases}
$$

(b) Define $\sin _{\beta}: Y_{\beta} \rightarrow[-1,+1]$ by $\sin _{\beta}(r, s, \alpha)=\sin (2 \pi(w r-s)$) for all $(r, s, \alpha) \in Y_{\beta}$. Let $U(r, s, \alpha, \delta) \subseteq Y_{\beta}$ be a basic neighbourhood of (r, s, α). If $(p, q, \tau) \in U(r, s, \alpha, \delta)$, then $d(r-\bar{s} / w, p-q / w)<\delta\left(1+1 / w^{2}\right)^{1 / 2}=: \delta c$, where

$$
\bar{s}= \begin{cases}1 & \text { if } \tau=\alpha-1 \\ s & \text { otherwise }\end{cases}
$$

(c appears for geometrical reasons, as one can see in Fig. 3 or Fig. 4: some points of $U(r, s, \alpha, \epsilon)$ lie outside $L(r, s, \alpha, \epsilon, \alpha, 1)$.) Now take an ϵ neighbourhood $U\left(\sin \left(2 \pi\left(w r_{0}-s_{0}\right)\right), \epsilon\right)$. The mapping $x \mapsto \sin (2 \pi w x)$ is continuous. There is a δ-neighbourhood $U\left(r_{0}-s_{0} / w, \delta\right)$ s.t. $p-q / w \in$ $U\left(r_{0}-s_{0} / w, \delta\right) \Rightarrow \sin (2 \pi w(p-q / w)) \in U\left(\sin \left(2 \pi\left(w r_{0}-s_{0}\right)\right), \epsilon\right)$. Now assume $\tau=\alpha-1$, then $s_{0}=0$. Take p, q with $d\left(p-q / w, r_{0}-1 / w\right)<\delta c$, of course $d\left(p-q / w+1 / w, r_{0}\right)<\delta c$, but $\sin (2 \pi w(p-q / w))=\sin (2 \pi w(p-q / w+1 / w))$ and hence $\sin (2 \pi(w p-q)) \in U\left(\sin \left(2 \pi w r_{0}\right), \epsilon\right)$.
(c) Define $P_{\beta}: Y_{\beta} \rightarrow[0,1], \beta \geq 1$, by

$$
P_{\beta}(r, s, \alpha)= \begin{cases}\frac{1}{1+\left(r-\frac{s+n}{w}\right)^{2}} & \text { if } \alpha=n<\omega_{0} \\ 0 & \text { if } \alpha \geq \omega_{0}, \alpha<\beta\end{cases}
$$

The proof of continuity is similar to (b): The mapping $x \mapsto \frac{1}{1+x^{2}}$ is continuous. Fix $U\left(P_{\beta}\left(r_{0}, s_{0}, n\right), \epsilon\right) \subseteq[0,1]$. There is $\delta>0$ s.t. $p-\frac{q+n}{w} \in$
$U\left(\left(r_{0}-\frac{s_{0}+n}{w}\right), \delta c\right)$ implies $\frac{1}{1+\left(p-\frac{q+n}{w}\right)^{2}} \in U\left(P_{\beta}\left(r_{0}, s_{0}, n\right), \epsilon\right)$, showing that even $P_{\beta}\left[L\left(r_{0}, s_{0}, n, \delta c, 0, \omega_{0}\right)\right] \subseteq U\left(P_{\beta}\left(r_{0}, s_{0}, n\right), \epsilon\right)$. Finally P_{β} is arbitrary small on $U\left(r_{0}, 0, \omega_{0}, n, \delta\right)$, if n increases.
(d) Take $Y_{\lambda}^{*}, \lambda>\omega_{0}$, from (a) and a limit ordinal $\xi<\lambda$. If $(r, s, \alpha) \in Y_{\lambda}^{*}, \alpha=$ $\xi+n$, then $c l_{\theta \theta} L\left(r, s, \alpha, \epsilon, \xi, \omega_{0}\right)=L\left(r, s, \alpha, \epsilon, \xi, \omega_{0}\right)=: F$ and $Y_{\lambda}^{*} / \sim_{F}$ is a Urysohn space. Combination with (a) gives many different sinks $\left(g_{\beta}: Y_{\beta} \rightarrow Y_{\lambda}^{*} / \sim_{F}\right)_{\beta \in \mathbf{O r d} .}$.

Definition 8. Let $\left(g_{\beta}: Y_{\beta} \rightarrow X\right)_{\beta \in \text { Ord }}$ be a natural sink.
(a) $\left(g_{\beta}\right)$ is called periodic, if for all $\beta>\omega_{0}$ and for all $\alpha, \tilde{\alpha} \geq \omega_{0} ; \alpha, \tilde{\alpha}<\beta$: $g_{\beta}(r, s, \alpha)=g_{\beta}(r, s, \tilde{\alpha})$.
(b) $\left(g_{\beta}\right)$ is called eventually periodic, if there exists an ordinal τ, s.t. for all $\beta>\tau$ and for all $\alpha, \tilde{\alpha} \geq \tau ; \alpha, \tilde{\alpha}<\beta: g_{\beta}(r, s, \alpha)=g_{\beta}(r, s, \tilde{\alpha})$.

Theorem 9. Let $\left(g_{\beta}: Y_{\beta} \rightarrow X\right)_{\beta \in \mathbf{O r d}}$ be a natural sink and let X be a T_{3}-space. Then $\left(g_{\beta}\right)$ is periodic.
Proof: Take $x \in X$. For every neighbourhood W_{x} of x there is a neighbourhood V_{x} of x with $c l V_{x} \subseteq W_{x}$, and of course $c l_{\theta} c l V_{x}=c l V_{x}, c_{\theta}^{\omega_{0}} c l V_{x}=c l V_{x}$. If $A \subseteq Y_{\beta}$, then $g_{\beta}\left[c l_{\theta}^{\omega_{0}} A\right] \subseteq c l_{\theta}^{\omega_{0}} g_{\beta}[A]=\overline{g_{\beta}[A]}$. Take a basic neighbourhood $U(r, s, n, \delta)=: U$ of (r, s, n). Then $c l_{\theta}^{\omega_{0}}[U]=L\left(r, s, n, \delta, 0, \omega_{0}\right) \cup U$. For every neighbourhood W of $g_{\beta}(r, s, n)$ there is $\delta>0$ s.t. $g_{\beta}\left[L\left(r, s, n, \delta, 0, \omega_{0}\right)\right] \subseteq W$. Consider $\left(p, 0, \omega_{0}\right)$ and $\left(p, 0, \omega_{0}+1\right)$. For every neighbourhood $U\left(g_{\beta}\left(p, 0, \omega_{0}\right)\right)$ there is a neighbourhood $U\left(p, 0, \omega_{0}, k, \delta\right)$ s.t. $g_{\beta}\left[L\left(p, 0, \omega_{0}, \delta, \omega_{0}, \omega_{0}\right) \cup \bigcup_{n \geq k} L\left(p, 0, n, \delta, 0, \omega_{0}\right)\right] \subseteq$ $U\left(g_{\beta}\left(p, 0, \omega_{0}\right)\right)$. Assume $g_{\beta}\left(p, 0, \omega_{0}\right) \neq g_{\beta}\left(p, 0, \omega_{0}+1\right)$. Then we have open sets U_{1}, V_{1}, U_{0} s.t. $g_{\beta}\left(p, 0, \omega_{0}+1\right) \in U_{1} \subseteq \overline{U_{1}} \subseteq V_{1}, g_{\beta}\left(p, 0, \omega_{0}\right) \in U_{0}=U\left(g_{\beta}\left(p, 0, \omega_{0}\right)\right)$, $V_{1} \cap U_{0}=\emptyset$. Now take an open basic neighbourhood $U\left(p, 0, \omega_{0}+1, \delta\right)=$: U^{*} fulfilling $g_{\beta}\left[U^{*}\right] \subseteq U_{1}$. Then $c l U^{*}=L\left(p, 0, \omega_{0}+1, \delta, \omega_{0}, 2\right) \cup U^{*}=L\left(p-1 / w, 0, \omega_{0}, \delta, \omega_{0}, 2\right) \cup$ U^{*}. Let $O^{*} \subseteq g_{\beta}^{-1}\left[V_{1}\right]$ be an open set containing $\overline{U^{*}}$. Then for all $\left(u, 0, \omega_{0}\right) \in \overline{U^{*}}$ there is $\delta_{u}<\delta, k_{u} \in \mathbf{N}$ s.t. $K\left(u, 0, l, \delta_{u}\right) \subseteq O^{*}$ for all $l \geq k_{u}$ (see Fig. 4). Take a $(x, 0, l) \in K\left(u, 0, l, \delta_{u}\right), l \geq \max \left\{k_{u}, k\right\}$. Then $(x, 0, l) \in L\left(p, 0, l+1, \delta, 0, \omega_{0}\right)$. But $g_{\beta}(x, 0, l) \in V_{1}$ and $g_{\beta}(x, 0, l) \in g_{\beta}\left[L\left(p, 0, l+1, \delta, 0, \omega_{0}\right)\right] \subseteq U_{0}$, contradicting $V_{1} \cap U_{0}=\emptyset$. Hence g_{β} assumes the same values on $\mathbf{Q}_{\omega_{0}}:=\left\{\left(r, 0, \omega_{0}\right) \mid r \in \mathbf{Q}\right\}$ and $\mathbf{Q}_{\omega_{0}+1}:=\left\{\left(r, 0, \omega_{0}+1\right) \mid r \in \mathbf{Q}\right\}$. Since $c l_{\theta} \mathbf{Q}_{\omega_{0}}=\overline{X_{\omega_{0}}}$ and $c l_{\theta} \mathbf{Q}_{\omega_{0}+1}=\overline{X_{\omega_{0}+1}}$, this is also true for $X_{\omega_{0}}$ and $X_{\omega_{0}+1}$ (there is another argument: the two mappings $h_{1}:=g_{\beta} / X_{\omega_{0}+1}$ and h_{0} defined by $h_{0}\left(r, s, \omega_{0}+1\right):=g_{\beta}\left(r, s, \omega_{0}\right)$ are continuous and coincide on $\left.\mathbf{Q}_{\omega_{0}+1}\right)$. The function $\tilde{g_{\beta}}: Y_{\beta} \rightarrow X$ defined by

$$
\tilde{g_{\beta}}(r, s, \alpha)= \begin{cases}g_{\beta}(r, s, \alpha) & \text { if } \alpha<\omega_{0} \\ g_{\beta}\left(r, s, \omega_{0}\right) & \text { if } \alpha \geq \omega_{0}, \alpha<\beta\end{cases}
$$

is continuous and coincides with g_{β} on \mathbf{Q}, hence $g_{\beta}=\tilde{g_{\beta}}$. To show continuity, take $K(r-1 / w, 0, \alpha-1, \epsilon) \cup K(r, 0, \alpha, \epsilon) \cup\{(r, 0, \alpha)\}=: U$, an ϵ-neighbourhood
of $(r, 0, \alpha), \alpha>\omega_{0}$ non-limit. Then $\tilde{g_{\beta}}[U]=\tilde{g_{\beta}}\left[K\left(r-1 / w, 0, \omega_{0}, \epsilon\right) \cup K\left(r, 0, \omega_{0}+\right.\right.$ $\left.1, \epsilon) \cup\left\{\left(r, s, \omega_{0}\right)\right\}\right]=\tilde{g_{\beta}}\left[K\left(r-1 / w, 0, \omega_{0}, \epsilon\right) \cup K\left(r, 0, \omega_{0}, \epsilon\right) \cup\left\{\left(r, s, \omega_{0}\right)\right\}\right]=g_{\beta}[K(r-$ $\left.\left.1 / w, 0, \omega_{0}, \epsilon\right) \cup K\left(r, 0, \omega_{0}+1, \epsilon\right) \cup\left\{\left(r, s, \omega_{0}\right)\right\}\right]$. α limit or $s \neq 0$ is not a problem.

Theorem 10. Let $\left(g_{\beta}: Y_{\beta} \rightarrow X\right)_{\beta \in \text { Ord }}$ be a natural sink in Ury, then $\left(g_{\beta}\right)$ is eventually periodic.

Proof: Let $\chi(X)$ be the character of X. Let λ be a regular limit ordinal with $(\operatorname{cof}(\lambda)=) \lambda>\max \left\{\chi(X), \omega_{0}\right\}$. Take a space Y_{β} with $\beta>\lambda$. Look at the bottom edge of $X_{\lambda} \subseteq Y_{\beta}:\{(p, 0, \lambda) \mid p \in \mathbf{Q}\}$. Let $\mathcal{U}\left(g_{\beta}(p, 0, \lambda)\right)$ be a neighbourhood base of cardinality $\leq \chi(X)$ of the point $g_{\beta}(p, 0, \lambda)$ in X. For every $V \in$ $\mathcal{U}\left(g_{\beta}(p, 0, \lambda)\right)$ there exists a neighbourhood $U\left(p, 0, \lambda, \kappa_{V}^{p}, \epsilon_{V}^{p}\right)=: U$ of $(p, 0, \lambda)$ in Y_{β} fulfilling $g_{\beta}[U] \subseteq V$. We have $\left|\left\{\left(\kappa_{V}^{p}, \epsilon_{V}^{p}\right) \mid V \in \mathcal{U}\left(g_{\beta}(p, 0, \lambda)\right)\right\}\right|<\chi(X)$, then also $\sup \left\{\kappa_{V}^{p} \mid V \in \mathcal{U}\left(g_{\beta}(p, 0, \lambda)\right)\right\}=: \kappa^{p}<\lambda$ and $\sup \left\{\kappa^{p} \mid p \in \mathbf{Q}\right\}=: \kappa<\lambda$. This shows that for every $V \in \mathcal{U}\left(g_{\beta}(p, 0, \lambda)\right), p \in \mathbf{Q}$, there is $U:=U\left(p, 0, \lambda, \kappa, \epsilon_{V}^{p}\right)$ s.t. $g_{\beta}[U] \subseteq V$. Now take $\tau<\lambda, \tau \geq \kappa$. We show $g_{\beta}(p, 0, \lambda)=g_{\beta}(p, 0, \tau)$. If we assume the contrary, then there are neighbourhoods $U\left(g_{\beta}(p, 0, \lambda)\right)$ and $U\left(g_{\beta}(p, 0, \tau)\right)$ of $g_{\beta}(p, 0, \lambda)$ and $g_{\beta}(p, 0, \tau)$ respectively with disjoint intersection. Of course $g_{\beta}\left[c l U\left(p, 0, \lambda, \kappa, \epsilon_{U\left(g_{\beta}(p, 0, \lambda)\right)}^{p}\right) \subseteq c l U\left(g_{\beta}(p, 0, \lambda)\right)\right.$, but $(p, 0, \tau) \quad \in$ $c l U\left(p, 0, \lambda, \kappa, \epsilon_{U\left(g_{\beta}(p, 0, \lambda)\right)}^{p}\right)$ is a contradiction. We are ready to show $g_{\beta}(p, 0, \tau)=$ $g_{\beta}(p, 0, \tau+1)$ for a limit ordinal $\tau<\lambda, \tau \geq \kappa$. (There is such a limit ordinal.) But this is easy, since $g_{\beta}(p, 0, \tau)=g_{\beta}(p, 0, \lambda)=g_{\beta}(p, 0, \tau+1)$. By the same argument such as in the proof of the previous Theorem 9 we get $g_{\beta}=\tilde{g_{\beta}}$ for all $\beta \in \mathbf{O r d}$, where

$$
\tilde{g_{\beta}}(r, s, \alpha)= \begin{cases}g_{\beta}(r, s, \alpha) & \text { if } \alpha<\tau \\ g_{\beta}(r, s, \lambda) & \text { if } \alpha \geq \tau, \alpha<\beta\end{cases}
$$

Remark 11. The proof illustrates that for showing $g_{\beta}(p, 0, \tau)=g_{\beta}(p, 0, \tau+1)$ for all $p \in \mathbf{Q}$ we only need the Hausdorff property of X. To show $g_{\beta}=\tilde{g_{\beta}}$ we need the Urysohn separation axiom, of course.
Example 12. Let $\tau>1$. Define a new Urysohn space $Y_{\tau}^{\tau+1}$ on the set $Y_{\tau+1}=$ $Y_{\tau} \cup X_{\tau}$, where
(a) the neighbourhoods of the points $(r, s, \alpha), \alpha<\tau$, and of $(r, s, \tau), s \neq 0$, are not changed.
(b) neighbourhood bases of $(r, 0, \tau) \in X_{\tau}$ are $U(r, 0, \tau, \gamma, \epsilon) \cup K(r-1 / w, 0, \tau, \epsilon)$. Note that $(r, 1, \tau) \notin X_{\tau}$ by definition. Define $g_{\beta}: Y_{\beta} \rightarrow Y_{\tau}^{\tau+1}$ by

$$
\tilde{g_{\beta}}(r, s, \alpha)= \begin{cases}(r, s, \alpha) & \text { if } \alpha<\tau \\ (r, s, \tau) & \text { if } \alpha \geq \tau, \alpha<\beta\end{cases}
$$

$\left(g_{\beta}\right)$ is an eventually periodic sink, if $\tau>\omega_{0}$. The maps g_{β} in case $\beta>\tau$ are pressing down all X_{α} above τ onto the modified X_{τ}. The topology on $Y_{\tau}^{\tau+1}$ is coarser then on $Y_{\tau+1}$.

Remark 13.

(a) The proof of the previous Theorem will apply for arbitrary X which has a coarser T_{3}-topology. This shows that in all eventually periodic, and non periodic examples the codomain has no coarser T_{3}-topology ($Y_{\omega_{0}}$ has!).
(b) All sinks are uniquely defined by $g_{1}: \mathbf{Q} \rightarrow X$. In all the examples, except $7(\mathrm{~b})$ and $7(\mathrm{c}), g_{1}$ is the identity on \mathbf{Q}. This illustrates that in determining $\left(g_{\beta}: Y_{\beta} \rightarrow X\right)_{\beta \in \mathbf{O r d}}, g_{1}$ is as important as the codomain X of the sink.
(c) Theorem 9 is a strong restriction, however the arithmetic sum of the functions in 7 (b) and 7 (c) provides a new sink.
(d) After these preparations have been completed it becomes an easy task to show that Ury allows no ($E p i, \mathcal{M})$-factorization structure for (large) sources and any \mathcal{M}. Since Ury has coequalizers this means that Ury is not (Epi, extremal Mono Source)-category (see [1, Proposition 15.8 (3)]).

Lemma 14. Let a sink $\left(g_{i}: X_{i} \rightarrow Y\right)_{I}$ in Top be given s.t. for all $j \in I$ and all $x_{j}, y_{j} \in X_{j}, x_{j} \neq y_{j}$, there is a sink $\left(h_{i}: X_{i} \rightarrow Z_{x_{j} y_{j}}\right)_{I}$ with $h_{j}\left(x_{j}\right) \neq h_{j}\left(y_{j}\right)$ and a continuous map $h: Y \rightarrow Z_{x_{j} y_{j}}$ s.t. $h \circ g_{j}=h_{j}$, then for all $i \in I, g_{i}: X_{i} \rightarrow Y$ is injective.

Proof: Assume we can find $j \in I, x_{j}, y_{j} \in X_{j}, x_{j} \neq y_{j}$, s.t. $g_{j}\left(x_{j}\right)=g_{j}\left(y_{j}\right)$. Take h_{i}, h as in the Lemma. Then $h_{j}\left(x_{j}\right)=h \circ g_{j}\left(x_{j}\right)=h \circ g_{j}\left(y_{j}\right)=h_{j}\left(y_{j}\right)$, contradicting $h_{j}\left(x_{j}\right) \neq h_{j}\left(y_{j}\right)$.
Theorem 15. The large source $\left(e_{\beta}: \mathbf{Q} \rightarrow Y_{\beta}\right)_{\beta \in \mathbf{O r d}}$ consisting of epimorphisms has no cointersection in Ury.
Proof: Assume there is a cointersection $\left(f_{\beta}: Y_{\beta} \rightarrow Z\right)_{\beta \in \mathbf{O r d}}$. Take $x_{\beta}, y_{\beta} \in Y_{\beta}$, $x_{\beta} \neq y_{\beta}$. There is a limit ordinal $\lambda>\beta$. Take the natural $\operatorname{sink}\left(g_{\beta}: Y_{\beta} \rightarrow\right.$ $\left.Y_{\lambda}^{\lambda+1}\right)$ from Example 12 or the natural $\operatorname{sink}\left(g_{\beta}: Y_{\beta} \rightarrow Y_{\lambda}^{*}\right)$ from Example 7. By Lemma 14, all f_{β} are injective, which is impossible.
Corollary 16. Ury is no $(E p i, \mathcal{M})$-category for any \mathcal{M}.
Proof: If we had some \mathcal{M} giving a factorization structure for large sources, then by [1, Corollary $15.16(1)]$ cointersections exist, which contradicts Theorem 15.

Remark 17. If we only allow T_{3}-spaces as codomains of a natural sink, then by Theorem 9 each such sink factorizes through $Y_{\omega_{0}}^{\omega_{0}+1}$, which gives some kind of cointersection.

References

[1] Adámek J., Herrlich H., Strecker G.E., Abstract and Concrete Categories, Wiley \& Sons 1990.
[2] Schröder J., The category of Urysohn spaces is not cowellpowered, Top. Appl. 16 (1983), 237-241.

University of Cape Town, Department of Mathematics, Rondebosch 7700, South Africa

[^0]: *Grants from the Foundation for Research Development and the University of Cape Town to the Categorical Topology Research Group are acknowledged.

