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Natural sinks on Yβ

J. Schröder

Abstract. Let (eβ : Q→ Yβ)β∈Ord
be the large source of epimorphisms in the category

Ury of Urysohn spaces constructed in [2]. A sink (gβ : Yβ → X)
β∈Ord

is called natural,

if gβ ◦ eβ = gβ′ ◦ eβ′ for all β, β′ ∈ Ord. In this paper natural sinks are characterized.
As a result it is shown that Ury permits no (Epi,M)-factorization structure for arbitrary
(large) sources.

Keywords: epimorphism, Urysohn space, cointersection, factorization, natural sink, peri-
odic, cowellpowered, ordinal

Classification: 18A20, 18A30, 18B30, 54B30, 54C10, 54D10, 54D35, 54G20

Introduction.

In [2] a large source (eβ : Q→ Yβ)β∈Ord of epimorphisms in Ury was con-

structed, showing that Ury is not cowellpowered. The purpose of this paper is
twofolded:

(a) Every natural sink (gβ : Yβ → X)β∈Ord is defined uniquely by g1 : Q→ X . Yβ
can be as large as might be required. How does gβ look? There are rare instances
in General Topology where a smallness condition has overall consequences, e.g. the
arbitrary product of separable spaces fulfills the countable chain condition.

(b) Because of non-cowellpoweredness, some categorical theorems should not be ap-
plicable inUry. The investigation of sinks (gβ : Yβ → X)

β∈Ord
have as a result the

non-existence for anyM of a (Epi,M)-factorization structure for (large) sources.

Notation. Q (Q+ = Q+ ∪ {0}) are the (positive) rationals. R, N = N ∪ {0}
are the real and the natural numbers, respectively. ω0 is the first infinite ordinal.
w is a fixed positive irrational number. ǫ, δ are real numbers > 0. h, l, m, n are
elements of N. Ord is the class of ordinal numbers. α, β, γ, κ, λ, ξ, τ are ordinal
numbers. [0, 1), [−1,+1] are as usual intervals of real numbers. d(x, y) is the
euclidean distance of x, y ∈ R or of x, y ∈ R × R. If B ⊆ R (or ⊆ R × R),
then d(x, B) := inf{d(x, b)| b ∈ B}. U(x, ǫ) is an ǫ-neighbourhood, taken in R, if
x ∈ R; taken in R×R if x ∈ R×R. Every ordinal τ has a unique representation
τ = λ+n, where λ is a limit ordinal and n is a finite ordinal (natural number). This
representation we will use often. Top, Ury, T3 are the categories of topological,
Urysohn, and regular T1 spaces, respectively. Recall that a topological space is
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called Urysohn, if distinct points have disjoint closed neighbourhoods. clA is, as
usual, the topological closure of A ⊆ X , clA =: A. If (X,X ) ∈ Top and A ⊆ X ,
then clθA := {x ∈ X |x ∈ U ∈ X ⇒ clU ∩ A 6= ∅}, clθθA :=

⋂

{clθclU |A ⊆ U ∈ X}.

clω0θ A :=
⋃

N clnθ A, where cl0θA := A and cln+1θ A := clθcl
n
θ A. △ := {(x, x)|x ∈ X}.

Definition 1. A sink (gβ : Yβ → X)
β∈Ord

is called natural, if gβ ◦ eβ = g1 ◦ e1 for

all β ∈ Ord.
X0 = Q× {0} × {1}, Xα = Q× (Q ∩ [0, 1))× {α}, α > 0,
Y1 = X0, Yβ =

⋃

{Xα|α < β}, β > 1,
eβ : Q→ Yβ is defined by eβ(q) = (q, 0, 1) for all q ∈ Q.
K(r, s, α, ǫ) = {(u, v, α) ∈ Xα|v > 0 ∧ d((u, v), (r − s/w, 0)) < ǫ}, 0 < ǫ < 1.
Yβ becomes a Urysohn space equipped with the following sets forming neighbour-
hood bases of (r, s, α) (see [2]):

α = 1 :

s 6= 0 : K(r, s, 1, ǫ) ∪ {(r, s, 1)} =: U(r, s, 1, ǫ).

s = 0 : K(r, 0, 1, ǫ) ∪ {(u, 0, 1)|d(u, r) < ǫ}.

α > 1 :

α limit:

s 6=0 : K(r, s, α, ǫ) ∪ {(r, s, α)} =: U(r, s, α, ǫ).

s =0 : {(r, 0, α)} ∪ K(r, 0, α, ǫ) ∪
⋃

α>τ≥γ

K(r, 0, τ, ǫ) =:

U(r, 0, α, γ, ǫ), γ < α.

α non-limit:

s 6=0 : K(r, s, α, ǫ) ∪ {(r, s, α)} =: U(r, s, α, ǫ).

s =0 : K(r − 1/w, 0, α − 1, ǫ) ∪ K(r, 0, α, ǫ) ∪ {(r, 0, α)} =:

U(r, 0, α, ǫ) (see Fig. 1).
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Consider now a limit ordinal λ and
⋃

NXλ+n =: X∞
λ . There is a bijection

φ : X∞
λ → Q ×Q+ × {λ} given by φ(r, s, λ + n) := (r, s + n, λ). We refer to this

bijection in the following construction.
Define

⋃

n≤l≤h+n Xλ+l ∪{(r, 0, λ+h+n+1)|r ∈ Q} =: Xh
λ+n, L(r, s, λ+m, ǫ, λ+

n, h) := {(u, v+l, λ) ∈ Xh
λ+n|d((u, v+l), L(r, s, λ+m)) ≤ ǫ}, where L(r, s, λ+m) :=

{(x, w(x − r) + s+m)|x ∈ R} × {λ}, i.e. L(r, s, λ +m, ǫ, λ + n, h) is the 2ǫ-stripe
around L(r, s, λ+m) passing through (r, s, λ+m) = φ−1(r, s+m, λ) with bottom at
{(r, 0, λ+n)|r ∈ Q} and height h. Note that we identify via φ the point (u, v+ l, λ)
with (u, v, λ + l), where v < 1, i.e. (u, v + l, λ) ∈ Xλ+l. The meaning of h = ω0 is
obvious (see Fig. 2).

Lemma 2. Let (X,X ) be a Urysohn space, A ⊆ X , clθθA = A. Define an equiva-
lence relation by ∼A:= A × A ∪△. Then the quotient X/ ∼A is a Urysohn space.

Proof: Take x 6∈ A. Then there exists U ∈ X s.t. A ⊆ U and x 6∈ clθclU . Hence
there is Ux s.t. x ∈ Ux, clUx∩clU = ∅. Since A is θ-closed, distinct points in X−A
can be separated by disjoint closed neighbourhoods. �

Lemma 3. Let (r, s, α) ∈ Yβ . We consider basic neighbourhoods of (r, s, α).

(a) if s 6= 0, then clU(r, s, α, ǫ) = L(r, s, α, ǫ, α, 1) ∪ U(r, s, α, ǫ)
(b) if s = 0, α non-limit, then clU(r, 0, α, ǫ) = L(r, 0, α, ǫ, α− 1, 2)∪U(r, 0, α, ǫ)
(c) if s = 0, α = λ limit, then clU(r, 0, λ, γ, ǫ) =

⋃

{L(r, 0, τ, ǫ, τ, 1)|α ≥ τ ≥
γ} ∪ U(r, 0, λ, γ, ǫ)

(see Fig. 3).

Proof: A point (u, v, α) is in the closure of K(r, s, α) if d(r − s/w, u − v/w) ≤ ǫ
and 0 ≤ v ≤ 1. Where in case v = 1 the point (u, 1, α) is identified with (u, 0, α+1).

�

Lemma 4. If λ is a limit ordinal and n, m ∈ N, then clω0θ L(r, s, λ+m, ǫ, λ+n, h) =
L(r, s, λ+m, ǫ, λ, ω0).

Proof: By induction with the help of Lemma 3 (b). �
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Lemma 5. Let λ be a limit ordinal, λ < β. Then
⋃

λ≤α<β Xα = Yβ − Yλ and

clθθ(Yβ − Yλ) = Yβ − Yλ.

Proof: Take (r, s, α) 6∈ Yβ−Yλ, i.e. (r, s, α) ∈ Yλ. We will construct disjoint closed
neighbourhoods of (r, s, α) and of Yβ − Yλ. It is α < λ and λ is limit ordinal. The
set {(u, v, γ) ∈ Yβ |(γ > α+ 2) ∨ ((γ = α+ 2) ∧ (v > 0))} is an open set containing
Yβ − Yλ. Its closure is {(u, v, γ) ∈ Yβ |γ ≥ α + 2}. By Lemma 3 above, the closure
of an open basic neighbourhood of (r, s, α) is contained in Yα+2. �

Remark 6. Are there non-constant natural sinks on Yβ? We must find a sink
(gβ : Yβ → X)

β∈Ord
coinciding on Q ⊆ Yβ . As we know, each morphism gβ : Yβ

→ X is defined by its values on the countable set Q. Since Yγ is subspace of Yβ ,
if γ < β, gβ can be regarded as continuous extension of gγ . Hence there are not so
many morphisms into X . Additionally X has fixed weight, character, cardinality,
etc. . All these cardinality functions have no bound on the class Yβ , β ∈ Ord. The
answer is given by the following

Example 7.

(a) Let λ be a limit ordinal. We apply Lemma 2 and Lemma 5. Take A =
Yλ+1 − Yλ. Then Yλ+1/ ∼A=: Yλ ∪ {∗} =: Y ∗

λ is a Urysohn space. Define
gβ : Yβ → Y ∗

λ by

gβ(r, s, α) =

{

(r, s, α) if α < λ

∗ if α ≥ λ, α < β.

(b) Define sinβ : Yβ → [−1,+1] by sinβ(r, s, α) = sin(2π(wr − s)) for all
(r, s, α) ∈ Yβ . Let U(r, s, α, δ) ⊆ Yβ be a basic neighbourhood of (r, s, α).

If (p, q, τ) ∈ U(r, s, α, δ), then d(r − s/w, p − q/w) < δ(1 + 1/w2)1/2 =: δc,
where

s =

{

1 if τ = α − 1

s otherwise.

(c appears for geometrical reasons, as one can see in Fig. 3 or Fig. 4:
some points of U(r, s, α, ǫ) lie outside L(r, s, α, ǫ, α, 1).) Now take an ǫ-
neighbourhood U(sin(2π(wr0 − s0)), ǫ). The mapping x 7→ sin(2πwx) is
continuous. There is a δ-neighbourhood U(r0 − s0/w, δ) s.t. p − q/w ∈
U(r0−s0/w, δ)⇒ sin(2πw(p−q/w)) ∈ U(sin(2π(wr0−s0)), ǫ). Now assume
τ = α − 1, then s0 = 0. Take p, q with d(p − q/w, r0 − 1/w) < δc, of course
d(p−q/w+1/w, r0) < δc,but sin(2πw(p−q/w)) = sin(2πw(p−q/w+1/w))
and hence sin(2π(wp − q)) ∈ U(sin(2πwr0), ǫ).

(c) Define Pβ : Yβ → [0, 1],β ≥ 1, by

Pβ(r, s, α) =

{ 1

1+(r− s+n
w
)
2 if α = n < ω0

0 if α ≥ ω0, α < β.

The proof of continuity is similar to (b): The mapping x 7→ 1
1+x2

is con-

tinuous. Fix U(Pβ(r0, s0, n), ǫ) ⊆ [0, 1]. There is δ > 0 s.t. p − q+n
w ∈
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U((r0 −
s0+n

w ), δc) implies 1
1+(p− q+n

w
)2

∈ U(Pβ(r0, s0, n), ǫ), showing that

even Pβ [L(r0, s0, n, δc, 0, ω0)] ⊆ U(Pβ(r0, s0, n), ǫ). Finally Pβ is arbitrary
small on U(r0, 0, ω0, n, δ), if n increases.

(d) Take Y ∗
λ ,λ > ω0, from (a) and a limit ordinal ξ < λ. If (r, s, α) ∈ Y ∗

λ , α =
ξ + n, then clθθL(r, s, α, ǫ, ξ, ω0) = L(r, s, α, ǫ, ξ, ω0) =: F and Y ∗

λ / ∼F is
a Urysohn space. Combination with (a) gives many different sinks
(gβ : Yβ → Y ∗

λ / ∼F )β∈Ord.

Definition 8. Let (gβ : Yβ → X)
β∈Ord

be a natural sink.

(a) (gβ) is called periodic, if for all β > ω0 and for all α, α̃ ≥ ω0; α, α̃ < β:
gβ(r, s, α) = gβ(r, s, α̃).

(b) (gβ) is called eventually periodic, if there exists an ordinal τ , s.t. for all
β > τ and for all α, α̃ ≥ τ ; α, α̃ < β: gβ(r, s, α) = gβ(r, s, α̃).

Theorem 9. Let (gβ : Yβ → X)
β∈Ord

be a natural sink and let X be a T3-space.

Then (gβ) is periodic.

Proof: Take x ∈ X . For every neighbourhood Wx of x there is a neighbour-
hood Vx of x with clVx ⊆ Wx, and of course clθclVx = clVx, clω0θ clVx = clVx.

If A ⊆ Yβ , then gβ[cl
ω0
θ A] ⊆ clω0θ gβ [A] = gβ [A]. Take a basic neighbourhood

U(r, s, n, δ) =: U of (r, s, n). Then clω0θ [U ] = L(r, s, n, δ, 0, ω0)∪U . For every neigh-
bourhood W of gβ(r, s, n) there is δ > 0 s.t. gβ[L(r, s, n, δ, 0, ω0)] ⊆ W . Consider
(p, 0, ω0) and (p, 0, ω0+1). For every neighbourhood U(gβ(p, 0, ω0)) there is a neigh-
bourhood U(p, 0, ω0, k, δ) s.t. gβ[L(p, 0, ω0, δ, ω0, ω0) ∪

⋃

n≥k L(p, 0, n, δ, 0, ω0)] ⊆

U(gβ(p, 0, ω0)). Assume gβ(p, 0, ω0) 6= gβ(p, 0, ω0 + 1). Then we have open sets

U1, V1, U0 s.t. gβ(p, 0, ω0 + 1) ∈ U1 ⊆ U1 ⊆ V1, gβ(p, 0, ω0) ∈ U0 = U(gβ(p, 0, ω0)),
V1∩U0 = ∅. Now take an open basic neighbourhood U(p, 0, ω0+1, δ) =: U

∗ fulfilling
gβ [U

∗] ⊆ U1. Then clU∗ = L(p, 0, ω0+1, δ, ω0, 2)∪U∗ = L(p−1/w, 0, ω0, δ, ω0, 2)∪

U∗. Let O∗ ⊆ g−1β [V1] be an open set containing U∗. Then for all (u, 0, ω0) ∈ U∗

there is δu < δ, ku ∈ N s.t. K(u, 0, l, δu) ⊆ O∗ for all l ≥ ku (see Fig. 4). Take
a (x, 0, l) ∈ K(u, 0, l, δu), l ≥ max{ku, k}. Then (x, 0, l) ∈ L(p, 0, l + 1, δ, 0, ω0).
But gβ(x, 0, l) ∈ V1 and gβ(x, 0, l) ∈ gβ[L(p, 0, l + 1, δ, 0, ω0)] ⊆ U0, contradicting
V1 ∩ U0 = ∅. Hence gβ assumes the same values on Qω0 := {(r, 0, ω0)|r ∈ Q} and

Qω0+1 := {(r, 0, ω0 + 1)|r ∈ Q}. Since clθQω0 = Xω0 and clθQω0+1 = Xω0+1,
this is also true for Xω0 and Xω0+1 (there is another argument: the two mappings
h1 := gβ/Xω0+1 and h0 defined by h0(r, s, ω0 + 1) := gβ(r, s, ω0) are continuous
and coincide on Qω0+1). The function g̃β : Yβ → X defined by

g̃β(r, s, α) =

{

gβ(r, s, α) if α < ω0

gβ(r, s, ω0) if α ≥ ω0, α < β

is continuous and coincides with gβ on Q, hence gβ = g̃β . To show continuity,
take K(r − 1/w, 0, α − 1, ǫ) ∪ K(r, 0, α, ǫ) ∪ {(r, 0, α)} =: U , an ǫ-neighbourhood
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of (r, 0, α), α > ω0 non-limit. Then g̃β [U ] = g̃β [K(r − 1/w, 0, ω0, ǫ) ∪ K(r, 0, ω0 +
1, ǫ)∪{(r, s, ω0)}] = g̃β[K(r−1/w, 0, ω0, ǫ)∪K(r, 0, ω0, ǫ)∪{(r, s, ω0)}] = gβ [K(r−
1/w, 0, ω0, ǫ) ∪ K(r, 0, ω0 + 1, ǫ) ∪ {(r, s, ω0)}]. α limit or s 6= 0 is not a problem.

�

Theorem 10. Let (gβ : Yβ → X)
β∈Ord

be a natural sink in Ury, then (gβ) is

eventually periodic.

Proof: Let χ(X) be the character of X . Let λ be a regular limit ordinal with
(cof(λ) =) λ > max{χ(X), ω0}. Take a space Yβ with β > λ. Look at the
bottom edge of Xλ ⊆ Yβ : {(p, 0, λ)|p ∈ Q}. Let U(gβ(p, 0, λ)) be a neighbour-
hood base of cardinality ≤ χ(X) of the point gβ(p, 0, λ) in X . For every V ∈

U(gβ(p, 0, λ)) there exists a neighbourhood U(p, 0, λ, κ
p
V , ǫ

p
V ) =: U of (p, 0, λ) in

Yβ fulfilling gβ [U ] ⊆ V . We have |{(κp
V , ǫ

p
V )|V ∈ U(gβ(p, 0, λ))}| < χ(X), then

also sup{κp
V |V ∈ U(gβ(p, 0, λ))} =: κp < λ and sup{κp|p ∈ Q} =: κ < λ. This

shows that for every V ∈ U(gβ(p, 0, λ)), p ∈ Q, there is U := U(p, 0, λ, κ, ǫpV )
s.t. gβ[U ] ⊆ V . Now take τ < λ, τ ≥ κ. We show gβ(p, 0, λ) = gβ(p, 0, τ).
If we assume the contrary, then there are neighbourhoods U(gβ(p, 0, λ)) and
U(gβ(p, 0, τ)) of gβ(p, 0, λ) and gβ(p, 0, τ) respectively with disjoint intersection.

Of course gβ [clU(p, 0, λ, κ, ǫp
U(gβ(p,0,λ))

)] ⊆ clU(gβ(p, 0, λ)), but (p, 0, τ) ∈

clU(p, 0, λ, κ, ǫp
U(gβ(p,0,λ))

) is a contradiction. We are ready to show gβ(p, 0, τ) =

gβ(p, 0, τ + 1) for a limit ordinal τ < λ, τ ≥ κ. (There is such a limit ordinal.) But
this is easy, since gβ(p, 0, τ) = gβ(p, 0, λ) = gβ(p, 0, τ + 1). By the same argument
such as in the proof of the previous Theorem 9 we get gβ = g̃β for all β ∈ Ord,
where

g̃β(r, s, α) =

{

gβ(r, s, α) if α < τ

gβ(r, s, λ) if α ≥ τ, α < β.

�

Remark 11. The proof illustrates that for showing gβ(p, 0, τ) = gβ(p, 0, τ + 1) for
all p ∈ Q we only need the Hausdorff property of X . To show gβ = g̃β we need the
Urysohn separation axiom, of course.

Example 12. Let τ > 1. Define a new Urysohn space Y τ+1
τ on the set Yτ+1 =

Yτ ∪ Xτ , where

(a) the neighbourhoods of the points (r, s, α), α < τ , and of (r, s, τ), s 6= 0, are
not changed.

(b) neighbourhood bases of (r, 0, τ) ∈ Xτ are U(r, 0, τ, γ, ǫ)∪K(r−1/w, 0, τ, ǫ).
Note that (r, 1, τ) 6∈ Xτ by definition. Define gβ : Yβ → Y τ+1

τ by

g̃β(r, s, α) =

{

(r, s, α) if α < τ

(r, s, τ) if α ≥ τ, α < β.

(gβ) is an eventually periodic sink, if τ > ω0. The maps gβ in case β > τ
are pressing down all Xα above τ onto the modified Xτ . The topology on
Y τ+1

τ is coarser then on Yτ+1.
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Remark 13.

(a) The proof of the previous Theorem will apply for arbitrary X which has
a coarser T3-topology. This shows that in all eventually periodic, and non
periodic examples the codomain has no coarser T3-topology (Yω0 has!).

(b) All sinks are uniquely defined by g1 : Q → X . In all the examples, ex-
cept 7 (b) and 7 (c), g1 is the identity on Q. This illustrates that in deter-
mining (gβ : Yβ → X)

β∈Ord
, g1 is as important as the codomain X of the

sink.
(c) Theorem 9 is a strong restriction, however the arithmetic sum of the func-
tions in 7 (b) and 7 (c) provides a new sink.

(d) After these preparations have been completed it becomes an easy task to
show thatUry allows no (Epi,M)-factorization structure for (large) sources
and anyM. Since Ury has coequalizers this means that Ury is not (Epi,
extremal Mono Source)-category (see [1, Proposition 15.8 (3)]).

Lemma 14. Let a sink (gi : Xi → Y )I in Top be given s.t. for all j ∈ I and all
xj , yj ∈ Xj , xj 6= yj , there is a sink (hi : Xi → Zxjyj )I with hj(xj) 6= hj(yj) and
a continuous map h : Y → Zxjyj s.t. h ◦ gj = hj , then for all i ∈ I, gi : Xi → Y is
injective.

Proof: Assume we can find j ∈ I, xj , yj ∈ Xj ,xj 6= yj , s.t. gj(xj) = gj(yj). Take
hi, h as in the Lemma. Then hj(xj) = h◦gj(xj) = h◦gj(yj) = hj(yj), contradicting
hj(xj) 6= hj(yj). �

Theorem 15. The large source (eβ : Q→ Yβ)β∈Ord consisting of epimorphisms

has no cointersection in Ury.

Proof: Assume there is a cointersection (fβ : Yβ → Z)
β∈Ord

. Take xβ , yβ ∈ Yβ ,

xβ 6= yβ . There is a limit ordinal λ > β. Take the natural sink (gβ : Yβ →

Y λ+1
λ ) from Example 12 or the natural sink (gβ : Yβ → Y ∗

λ ) from Example 7. By
Lemma 14, all fβ are injective, which is impossible. �

Corollary 16. Ury is no (Epi,M)-category for anyM.

Proof: If we had someM giving a factorization structure for large sources, then
by [1, Corollary 15.16 (1)] cointersections exist, which contradicts Theorem 15. �

Remark 17. If we only allow T3-spaces as codomains of a natural sink, then by

Theorem 9 each such sink factorizes through Y ω0+1
ω0 , which gives some kind of

cointersection.
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