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Non-compact perturbations of m-accretive

operators in general Banach spaces

Mieczys law Cichoń

Abstract. In this paper we deal with the Cauchy problem for differential inclusions gov-
erned by m-accretive operators in general Banach spaces. We are interested in finding
the sufficient conditions for the existence of integral solutions of the problem x′(t) ∈

−Ax(t) + f(t, x(t)), x(0) = x0, where A is an m-accretive operator, and f is a contin-
uous, but non-compact perturbation, satisfying some additional conditions.

Keywords: m-accretive operators, measures of noncompactness, differential inclusions, semi-
groups of contractions
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1. Introduction.

The main goal of the present paper is to prove a local existence result for a class
of nonlinear evolution equations of the form

(1)

{

x′(t) ∈ −Ax(t) + f(t, x(t))

x(0) = x0
, t ∈ [0, T ],

where A is an m-accretive operator acting on a real Banach space E and f is
a continuous function satisfying some additional conditions.

This problem has been intensively studied over the past several years mainly
because of a great practical interest, for example in the synthesis of the optimal
control, differential games and population dynamic (cf. [11], [13] and the references
therein). The case, when −A generates a compact semigroup is well known (see
[4], [9], [11], [13]), for example, if E is finite dimensional, then each m-accretive
operator is such that −A generates a compact semigroup (hence equicontinuous as
well, cf. [3], [5]). However, there exists a lot of m-accretive operators for which
−A generates equicontinuous, but not compact semigroups ([13]). In this case, the
authors of many papers ([8], [9], [12], [13]) considered compact perturbations of
m-accretive operators.

Our purpose is to generalize the last concept. The perturbations are not compact,
but so-called k-set contractions. It is well known that this is a very large class of
mappings (see [1], [10] for instance). Moreover, for a recent account of this theory
we refer the reader to [9] and [13].
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2. Main result.

Throughout this paper we will denote by E a real Banach space with the norm
‖ · ‖. Let I := [0, T ] ⊂ R+, and let L1(I, E) denote the space of all integrable
functions from I to E with the standard norm ‖ · ‖1. Moreover by (C(I, E), ‖ · ‖c)
we will denote a space of all continuous functions from I to E.

We begin with a definition that we need in the statement of the main result.

Definition 1. An operator A : D(A) ⊂ E → 2E is called accretive if [x − x̃,
y − ỹ]+ ≥ 0 for each x, x̃ ∈ D(A), y ∈ Ax and ỹ ∈ Ax̃. If, in addition, the range of
Id+ tA is the whole E (for each t > 0), then A is called m-accretive.

Here [u, v]+ denotes the normalized upper semi-inner product on E, i.e. [u, v]+ :=

limhց0
1
h (‖u + hv‖ − ‖u‖) (see [2], [10], [13]). Let {S(t) : S(t) : D(A) → D(A),

t > 0} be the semigroup of nonexpansive mappings generated by −A on D(A)
via the formula of Crandall and Liggett ([2, Theorem 1.3], [13, Theorem 1.8.8]).
This semigroup is called compact if S(t) is a compact operator for each t > 0, and

it is called equicontinuous if for each bounded subset M of D(A), the family of
functions {S(·)x : x ∈ M} is equicontinuous at each t > 0 (see [9], [13]). It is well

known that if a semigroup of nonexpansive mappings on D(A) is compact, then it
is equicontinuous (see [13, Theorem 2.2.1]). For the examples, we refer the reader
to [13].

We omit the definition of an integral solution of our problem, because it is well
known (see [2], [11], [13] for instance).

The next result due to Bénilan is one of the main ingredients in the proof of our
main theorem.

Proposition 1 ([2, Theorem 2.1], [13, Corollary 1.7.1]). If A : D(A) → 2E is m-

accretive operator, then for each (x0, f) ∈ D(A)× L1(I, E) the following problem

(1′)

{

x′(t) ∈ −Ax(t) + f(t)

x(0) = x0
, t ∈ I,

has a unique integral solution H(f, x0) : D(A)→ D(A), such that if H(g, y0) is an
integral solution to (1′) corresponding to (y0, g), then

‖H(f, x0)(t)− H(g, y0)(t)‖ ≤

≤ ‖H(f, x0)(s)− H(g, y0)(s)‖ +

∫ t

s
‖f(u)− g(u)‖ du

for each 0 ≤ s ≤ t ≤ T .

This theorem exhibits the Lipschitz-continuous dependence of integral solutions
of (1′) on the data. For abbreviation, we will write H(f) instead of H(f, x0).

And now, we can recall the next important theorem.
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Proposition 2 ([8], [13, Theorem 2.5.1]). Let A : D(A) → 2E be an m-accretive

operator so that −A generates an equicontinuous semigroup, and let x0 ∈ D(A).
Then for each uniformly integrable subset K in L1(I, E) the set H(K) := {H(k) :
k ∈ K} is bounded and equicontinuous on I.

For completeness, we must recall the definition of Kuratowski measure of non-
compactness α [Hausdorff mnc β].

Definition 2. Let B be a bounded subset of E. Then:

α(B) = inf{ε > 0 : B ⊂

n(ε)
⋃

i=1

Mε
i for some Mε

i ⊂ E, i = 1, . . . , n(ε),

with diam(Mε
i ) ≤ ε}

and

β(B) = inf{ε > 0 : B ⊂ {xε
1, . . . , x

ε
n(ε)}+ ε · B0 for some xε

i ∈ E,

i = 1, . . . , n(ε)}.

For the properties of these measures we refer the reader to [1] and [10]. For example,
if F is a subspace of E and W is a bounded subset of F , then

β(W ) ≤ βF (W ) ≤ α(W ) ≤ 2β(W ),

where βF denotes the Hausdorff mnc in F . Furthermore, we have the following
proposition.

Proposition 3 (Ambrosetti’s lemma, [1, Theorem 11.3]). If M is bounded and

equicontinuous subset of C(I, E), then

αc(M) = sup{α(M(t)) : t ∈ I},

where αc is the Kuratowski measure of noncompactness in C(I, E).

Another main ingredient in the proof of our existence result is the following fixed
point theorem due to Sadovskii.

Proposition 4 ([1, Theorem 5.1], [6], [10, Theorem 3.2]). LetC denote a nonempty,
convex, closed and bounded subset of a Banach space X . Let F : C → C, and as-
sume that there exists k < 1, that µ(F (W )) ≤ k · µ(W ), for each bounded subset
W of X , where µ denotes an arbitrary measure of noncompactness in X . Then the
set of all fixed points of F is nonempty and compact.

We will use the following lemma.
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Lemma 1. Let A : D(A) → 2E be an m-accretive operator and let H(g) denote
a (unique) integral solution of

(2)

{

x′(t) ∈ −Ax(t) + g(t)

x(0) = x0
, t ∈ I, g ∈ L1(I, E).

Then for each bounded subset W of L1(I, E) we have

βc(H(w)) ≤ β1(W ),

where βc, β1 denote Hausdorff measure of noncompactness in C(I, E), and L1(I, E),
respectively.

Proof: Let g ∈ H(W ), so there exists v ∈ W that g = H(v). Fix arbitrary ε > 0.
Let {x1, . . . , xn} be a finite (β1(W ) + ε)-net in W . Then there exists a number k,
1 ≤ k ≤ n, such that ‖v − xk‖1 ≤ β1(W ) + ε. Let t ∈ I. We have

‖g(t)− H(xk)(t)‖ ≤

∫ t

0
‖v(s)− xk(s)‖ ds

≤

∫ T

0
‖v(s)− xk(s)‖ ds

= ‖v − xk‖1 ≤ β1(W ) + ε.

Therefore

‖g(t)− H(xk)(t)‖ ≤ β1(W ) + ε,

sup{‖g(t)− H(xk)(t) : t ∈ I‖} ≤ β1(W ) + ε,

‖g − H(xk)‖c ≤ β1(W ) + ε,

and we see that {H(x1), . . . , H(xk)} is a (β1(W )+ε)-net in H(W ), so βc(H(W )) ≤
β1(W ) + ε. But ε > 0 is arbitrary, and finally

βc(H(W )) ≤ β1(W ).
�

Now, we are able to state the main result in this paper.

Theorem 1. Assume that:

(A1) A : D(A)→ 2E is an m-accretive operator which generates an equicontinu-
ous semigroup,

(A2) f : I × D(A)→ E is a locally uniformly continuous function, such that
(i) for each bounded subsetW ofE, there existsM > 0, that sup{‖f(t, x)‖ :

x ∈ W} ≤ M for each t ∈ I,
(ii) α(f(t, W )) ≤ k·α(W ), k ∈ [0, 1/(2·T )), where α denotes the Kuratowski
measure of noncompactness in E, andW is an arbitrary bounded subset

of E.
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Under the above assumptions for each x0 ∈ D(A) there exists T0 = T (x0) ∈ (0, T ]
such that the problem (1) has at least one integral solution on [0, T0].

Proof: Let x0 ∈ D(A). Fix r > 0, choose M > 0 and T0 ∈ (0, T ] such that

(3) sup{‖f(t, x)‖ : x ∈ B(x0, r)} ≤ M on J := [0, T0],

and

(4) ‖H(0)(t)− x0‖+ T0M ≤ r for each t ∈ J.

We see that it is possible because, in view of (A2) (i), there exists such a number
M satisfying (3) on I as well. In addition ‖H(0)(t)−x0‖ → 0, when t → 0+, so we
may choose T0 satisfying (3) and (4).
Next, let us define P := {x ∈ L1(J, E) : ‖x(t)‖ ≤ M a.e. on J}, and it is clear

that this set is uniformly integrable in L1(J, E). Moreover, we denote by Q the
following set Q := H(P ) = {H(x) : x ∈ P}. By Proposition 2, this set is bounded
and equicontinuous in C(J, E). Consequently, for t ∈ J and x ∈ P , we have

‖H(x)(t)− x0‖ ≤ ‖H(x)(t)− H(0)(t)‖ + ‖H(0)(t)x0‖

≤ ‖H(0)(t)− x0‖+

∫ t

0
‖x(s)‖ ds

≤ ‖H(0)(t)− x0‖+

∫ t

0
‖h(s)‖ ds,

and by (4)
H(x)(t) ∈ B(x0, r).

Hence, for every w ∈ Q

(5) ‖w(t)− x0‖ ≤ r.

Set K0 := {y ∈ C(J, E) : y(·) = f(·, u(·)), u ∈ Q}. If y ∈ K0 then by (3) and
(5) ‖y(t)‖ ≤ M for each t ∈ J . From the uniform continuity of f , the set K0 is
equicontinuous in C(J, E). However, the set K := convK0 is nonempty, closed,
convex, bounded and equicontinuous in C(J, E). Indeed, the set P is convex and
closed, by (3) and (5) K0 ⊂ P , and we see that K ⊂ P .
Thus, we can define an operator F : K → C(J, E) as follows

F (u)(t) = f(t, H(u)(t)), t ∈ J, u ∈ K.

In addition, if v ∈ K, then F (v)(t) = f(t, H(v)(t)), t ∈ J , andK ⊂ P , soH(v) ∈ Q,
and consequently F (v) ∈ K0 ⊂ K. In conclusion, F (K) ⊂ K.
Furthermore F is continuous as a superposition of two continuous functions f(·, ·)

and H(·).
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Let W be a bounded subset of K, and t ∈ J . Hence by (A2) (ii), α(F (w)(t)) =
α(f(t, H(W )(t))) ≤ k · α(H(w)(t)). But H(W ) ⊂ Q, and by Proposition 3 and
Lemma 1 we have that α(F (W )(t)) ≤ k ·αc(H(w)) ≤ 2k · βc(H(W )) ≤ 2k · β1(W ).
The set W , as a subset of K, is equicontinuous, and so

αc(F (W )) ≤ 2k · β1(W ) ≤ 2k · β
C(J,E)
1 (W ).

Denote by B0c and B01 the unit balls with the norms ‖ · ‖c and ‖ · ‖1, respectively.
Since ‖ · ‖1 ≤ T · ‖ · ‖c, then we see that for each fixed ε > 0 there exists a finite
set {u1, . . . , um} ⊂ C(J, E), that for a bounded set W in E W ⊂ {u1, . . . , um} +

(βc(W )+ε) ·B0c ⊂ {u1, . . . , um}+(βc(W )+ε) ·T ·B0c and β
C(J,E)
1 (W ) ≤ (βc(W )+

ε) · T . Finally, β
C(J,e)
1 (W ) ≤ T · βc(W ) ≤ T · αc(W ).

Now, we can write that

αc(F (W )) ≤ 2k · T · αc(W ),

and since 2k · T ≤ 1, then f satisfies all the assumptions of Proposition 4. Finally,
there exists a fixed point theorem of F , i.e. w0 ∈ K, such that

F (w0) = w0.

Equivalently, w0 is an integral solution of (1) on J . �

Theorem 2. The set of all integral solutions of the problem (1) on J is nonempty
and compact.

This is an immediate consequence of our Theorem 1 and Theorem 5.1 of [1].

The class of all functions satisfying the condition (A2) (ii) is very large (see [10]
for instance). However, it is well known that if E is a finite dimensional, then each
m-accretive operator is such that −A generates a compact semigroup, so we can use
the previous results ([4], [9], [11]). But the case of infinite dimensional Banach space
is more delicate (cf. [9]). For example, the operator Ax ≡ 0 generates a semigroup
S(t) ≡ Id, t ≥ 0, which is equicontinuous, but not compact. Thus, this is one of
the special cases of our theorem (see [10]). The applications of the results of this
type in PDE’s are due to Vrabie [13] for instance.
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