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Existence via partial regularity for degenerate systems

of variational inequalities with natural growth

Martin Fuchs

Abstract. We prove the existence of a partially regular solution for a system of degenerate
variational inequalities with natural growth.

Keywords: variational inequalities, existence, regularity theory

Classification: 49

0. Introduction.

In this note we are concerned with degenerate systems of variational inequalities of
the form
(0.1)
{

find u ∈ K such that
∫

Ω |Du|p−2Du ·D(v − u) dx ≥
∫

Ω f(·, u,Du) · (v − u) dx

holds for all v ∈ K .

Here the right-hand side f is of natural growth with respect to the third argument,
i.e.

(0.2) |f(x, y,Q)| ≤ a · |Q|p ,

and the class K is defined by Dirichlet boundary conditions and a constraint of the
form Im (u) ⊂ K for a convex set K ⊂ R

N . We assume that the standard smallness
condition (relating the growth constant a and diamK)

(0.3) a < (diamK)−1

is satisfied (compare [5]) under which we want to establish the existence of a solution
of (0.1). Since we do not impose any variational structure it is not immediately
obvious in which way an existence proof should be carried out. In the quadratic
case p = 2 it is well known (see [5]) that (0.3) implies apriori bounds in Hölder
spaces for solutions of (0.1) which in turn can be used to get existence of a function
u ∈ K solving (0.1). On the other hand the author recently showed (compare [3])
that at least partial regularity is true for arbitrary exponents p > 2. In this note
we combine the methods and prove existence via partial regularity: in the first
step (0.1) is replaced by a sequence of variational inequalities with corresponding
nonlinearity fk defined as a suitable truncation of f . By Schauder’s fixed point
theorem we find a solution uk ∈ K and we show uniform (partial) regularity on Ω
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apart of a closed set Σ of vanishing Hn−p-measure which in turn implies that the
weak H1,p-limit u of the sequence {uk} is a solution of (0.1) on Ω − Σ, i.e. (0.1)
holds for all v ∈ K such that spt (u− v) ⊂⊂ Ω−Σ. Using a capacity argument one
finally sees that u is actually a solution of (0.1) on the whole domain Ω being in
addition of class C1,ε(Ω− Σ) for some 0 < ε < 1. We conjecture that the singular
set Σ is empty but without any further information we could not establish this more
general result, a detailed discussion can be found in [3] where it is shown that for
example certain monotonicity properties of u imply Σ = ∅.

1. Notations and statement of the result.

Let Ω ⊂ R
n, n ≥ 2, denote a bounded open set and consider a compact convex region

K ⊂ R
N , N ≥ 1, which is the closure of a C2-domain. For exponents 2 ≤ p < ∞

we fix a function u0 in the Sobolev space H
1,p(Ω,RN ) with the property u0(x) ∈ K

a.e. and introduce the convex class

K := {w ∈ H1,p(Ω,RN ) : w − u0 ∈ H̊1,p(Ω,RN ), w(x) ∈ K a.e. }.

Moreover, suppose that we are given a (for simplicity) continuous function

f : Ω× R
N × R

nN ∋ (x, y,Q)→ f(x, y,Q) ∈ R
N

for which the growth estimate

(1.1) |f(x, y,Q)| ≤ a · |Q|p

holds. Here a denotes a positive real number satisfying the smallness condition

a < (diam K)−1.

We then look at the variational inequality
(V)
{

find u ∈ K such that
∫

Ω{|Du|
p−2Du ·D(v − u)− f(·, u,Du) · (v − u)} dx ≥ 0

holds for all v ∈ K

for which we prove the following

Theorem. Suppose that (1.1), (1.2) hold. Then (V) has at least one solution u ∈
K. For p < n, there exists a relatively closed subset Σ of Ω such that Hn−p(Σ) = 0
and with the additional property that u is of class C1,ε on Ω − Σ. In case p ≥ n
the singular set of u is empty.

Comments. 1) Motivated by the quadratic case p = 2 treated in [5] we conjecture
that the singular set Σ is empty for all exponents p.

2) Clearly it is possible to replace the p-energy
∫

Ω |Du|p dx by a more general
splitting functional

∫

Ω

(

aαβ(·, u)B
ij(·, u)Dαu

iDβu
j
)p/2

dx
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with smooth elliptic coefficients aαβ , B
ij provided we modify (1.2) in an appropriate

way.

3) With similar arguments it is possible to include lower order terms in the growth
estimate (1.1).

4) It should be noted that for smooth boundary functions u0 we have partial
regularity of u up to the boundary.

2. Approximate problems.

For k ∈ N we define

fk(x, y,Q) :=

{

f(x, y,Q) if |f(x, y,Q)| ≤ k

k · f(x, y,Q) · |f(x, y,Q)|−1 otherwise

and look at the problem
(2.1)
{

find ũ ∈ K such that
∫

Ω

(

|Dũ|p−1Dũ ·D(v − ũ)− fk(·, ũ, Dũ) · (v − ũ)
)

dx ≥ 0

holds for all v ∈ K .

In order to solve (2.1) we introduce the operator

T : K → K,

K ∋ u 7→ the unique solution w ∈ K of
∫

Ω

(

|Dw|p−2Dw ·D(v − w) − fk(·, u,Du) · (v − w)
)

dx ≥ 0

for all v ∈ K ,

and check that the image T (K) is precompact. For this consider a sequence {wi} =
{Tui} in T (K). Observing u0 ∈ K we get

∫

Ω
|Dwi|

p dx ≤

∫

Ω
|fk(·, ui, Dui)| · |u0 − wi| dx+

∫

Ω
|Dwi|

p−1 |Du0| dx,

hence
sup
i∈N

‖wi‖H1,p(Ω) <∞

and we may assume (at least for a subsequence)

wi ⇁: w ∈ K weakly in H1,p(Ω),

wi → w strongly in Lp(Ω).

On the other hand we have
∫

Ω

(

|Dwi|
p−2Dwi · (Dwj −Dwi)− fk(·, ui, Dui)(wj − wi)

)

dx ≥ 0,

∫

Ω

(

|Dwj |
p−2Dwj · (Dwi −Dwj)− fk(·, uj , Duj)(wi − wj)

)

dx ≥ 0,
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so that

∫

Ω
|Dwi −Dwj |

p dx ≤ c(n, p) sup |fk| ·

∫

Ω
|wi − wj | dx.

This implies wi → w strongly in H1,p(Ω). By Schauder’s fixed point theorem [4,
Corollary 11.2] there exists at least one solution ũ ∈ K of ũ = T ũ which clearly
satisfes (2.1).
In the sequel we denote by uk a solution of (2.1). Since fk is dominated by f we

have the growth condition

(2.2) |fk(x, y,Q)| ≤ a · |Q|p

which gives (insert u0 into (2.1)):

(

1− a · diam (K)
)

∫

Ω
|Duk|

p dx ≤

∫

Ω
|Duk|

p−1 · |Du0| dx

and in consequence (after passing to a subsequence)

uk ⇁: u ∈ K weakly in H1,p(Ω),

uk →: u strongly in Lp(Ω).

Lemma 2.1. There exist constants ε > 0, α ∈ (0, 1) and C > 0 independent of k
with the following properties: If for some ball BR(x) ⊂ Ω we have

(2.3)

∫

BR(x)
|u− (u)R|

p dz < ε

then

a) u, uk ∈ C1,α
(

BR/2(x)
)

and
|Duk(x1)−Duk(x2)|+ |Du(x1)−Du(x2)| ≤ C · |x1 − x2|

α

for all x1, x2 ∈ BR/2(x),

b) uk → u in C1,α
(

BR/2(x)
)

.

Proof of Lemma 2.1: We follow [1, Chapter 3] and assume that (2.3) holds for
some ε > 0 being determined later. For k sufficiently large we also have

∫

BR(x)
|uk − (uk)R|p dz < ε.
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Recalling (2.2) and the smallness condition a < (diam K)−1 it is easy to check that
a Caccioppoli type inequality

Rp−n ·

∫

B3/4R(x)
|Duk|

p dz ≤ c ·

∫

BR(x)
|uk − (uk)|

p dz

holds. Going through the proof of [1, Theorem 3.1] we see

uk ∈ C0,α
(

BR/2(x)
)

, [uk]C0,α
(

BR/2(x)
) ≤ C

provided ε is small enough (depending on absolute data). From this uniform Hölder
bounds for the first derivatives can be deduced along the lines of [1, Theorem 3.2]
with obvious simplifications. Part b) of the lemma follows from Arcela’s theorem.

�

3. Solution of the variational inequality (V).

As in Chapter 2 we let uk denote a solution of (2.1), and we want to show that the
limit function u solves our problem (V).
Let

Σ := {x ∈ Ω : lim inf
ρ↓0

∫

Bρ(x)
|u− (u)ρ|

p dz > 0}

⊂ {x ∈ Ω : lim inf
ρ↓0

ρp−n
∫

Bρ(x)
|Du|p dz > 0}.

By Lemma 2.1 Σ is a relatively closed subset of Ω with Hn−p(Σ) = 0, especially
capp(Σ) = 0, and we already know uk → u in C1,α for compact subsets of Ω −
Σ. Fix a small ball Br(x0) in Ω − Σ and consider a function w ∈ K such that
spt(w − u) ⊂ Br(x0). For η ∈ C10

(

Br(x0), [0, 1]
)

, η = 1 on Br−δ(x0), the function
v := (1 − η) · uk + ηw is admissible in (2.1) and by first letting k tend to infinity
and then choosing δ > 0 small we arrive at (V) at least for functions w as above.
A covering argument then implies

(3.1)

∫

Ω

(

|Du|p−2Du ·D(w − u)− f(·, u,Du) · (w − u)
)

dx ≥ 0,

w ∈ K, spt (w − u) ⊂ Ω− Σ.

In order to proceed further we linearize the variational inequality (3.1) where we
make use of the smoothness of ∂K: as in [1, Theorem 2.1, 2.2] we get for all

ψ ∈ C10 (Ω,R
N ), spt (ψ) ∩ Σ = ∅,

(3.2)

∫

Ω

(

|Du|p−2Du ·Dψ − f(·, u,Du) · ψ) dx

=

∫

Ω∩[u∈∂K]
ψ ·N(u) b(·, u,Du) dx

where N(y) is the interior unit normal vectorfield of ∂K and b(·, u,Du) denotes
a function with the properties

{

b(·, u,Du) ≥ 0 a.e. on [u ∈ ∂K] := {x ∈ Ω : u(x) ∈ ∂K},

|b(·, u,Du)| ≤ ã · |Du|p , ã = ã(n, p,N, ∂K).
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Remark. It is easy to check that the functions ut and vt defined in the proof of [1,
Theorem 2.1] belong to the class K and are admissible in (3.1) provided the support
of the cut-off function η occurring in the definitions of ut and vt is disjoint to Σ.
Let ψ ∈ C10 (Ω,R

N ) denote an arbitrary test vector; since capp(Σ) = 0 we

find a sequence ην ∈ C∞
(

R
n, [0, 1]

)

such that spt ην ∩ Σ = ∅, ην → 1 a.e. and
∫

Rn |Dην |
p dx→ 0. Inserting ηνψ into (3.2) and passing to the limit ν → ∞ we get

(3.2) for all ψ ∈ C10 (Ω,R
N ) and, by approximation, for all ψ ∈ H̊1,p(Ω,RN ) ∩ L∞.

We apply this result to ψ := v − u where v ∈ K is arbitrary. Observing

(v − u) ·N(u) ≥ 0 a.e. on [u ∈ ∂K]

(by the convexity of K) we have shown that u is a solution of the variational
inequality (V) having the regularity properties stated in our Theorem.

4. Applications to nonlinear elliptic systems: existence of small
solutions.

We here consider the problem of finding a solution u ∈ H1,p(Ω,RN ) of the nonlinear
Dirichlet problem

{

−Dα

(

|Du|p−2Dαu
)

= f(·, u,Du) on Ω,

u = u0 on ∂Ω

where f satisfies the hypotheses stated in Section 1, especially the estimate (1.1),

and u0 is given in the space H
1,p(Ω,RN ).

Theorem. Suppose u0 ∈ L∞(Ω,RN ) and in addition let the smallness condition

(4.2) a <
(

2 · ‖u0‖∞
)−1

hold. Then problem (4.1) admits at least one solution u ∈ H1,p(Ω,RN ) being of
class C1,ε on Ω−Σ where Σ is a relatively closed subset of Ω such thatHn−p(Σ) = 0.
In case p ≥ n we have Σ = ∅.

Remarks. 1) For p = 2 it is possible to replace (4.2) by the weaker condition
a < ‖u0‖

−1
∞ . We do not know how to obtain this result for general p.

2) Under certain assumptions on f it can be shown that there are no interior
singularities, some ideas will be given after the proof of the Theorem.

3) It turns out that the above solution satisfies the maximum principle ‖u‖∞ ≤
‖u0‖∞ by the way staying in the convex hull of the boundary values u0. This
corresponds to our results in [2] where we constructed “small” p-harmonic maps of
Riemannian manifolds.

Proof of the Theorem: LetM := ‖u0‖∞ and consider the ball K := {z ∈ R
N :

|z| ≤M + ε}. For ε sufficiently small (4.2) implies

a < (diamK)−1
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so that there exists a solution u ∈ H1,p(Ω,K) of the variational inequality

{

∫

Ω |Du|p−2Du ·D(v − u)dx ≥
∫

Ω f(·, u,Du) · (v − u) dx

for all v ∈ K

with K being defined in Section 1.
For η ∈ C10 (Ω, [0, 1]) we let v := (1 − η) · u which is admissible in (4.3) so that

∫

Ω
|Du|p−2Du ·D(−ηu) dx ≥

∫

Ω
(−ηu) · f(·, u,Du) dx,

hence
∫

Ω
η

[

1− a · ‖u‖∞
]

|Du|p dx+

∫

Ω
|Du|p−2

1

2
∇|u|2 · ∇η dx ≤ 0

and we arrive at
∫

Ω
|Du|p−2∇|u|2 · ∇η dx ≤ 0.

By approximation this inequality extends to all η ∈ H̊1,p(Ω), η ≥ 0, especially we
may choose

η := max(0, |u|2 −M2)

since u has boundary values u0 and ‖u0‖∞ =M . We then get

∫

[|u|>M ]
|Du|p−2 |∇η|2 dx = 0

so that |Du|p−2 |∇η|2 = 0 a.e. on the set [|u| > M ]. Since Du(x) = 0 implies
∇η(x) = 0 we deduce ∇η = 0 a.e. on Ω by the way η = 0 a.e. on Ω, which gives
‖u‖∞ ≤ ‖u0‖∞. For ψ ∈ C10 (Ω,R

N ) and 0 < t ≤ ε·‖ψ‖−1∞ , the function v := u+t·ψ
belongs to the class K so that

∫

Ω
|Du|p−2Du ·Dψ dx ≥

∫

Ω
f(·, u,Du) · ψ dx

which proves that u is a solution of (4.1) satisfying the (partial) regularity properties
stated in Theorem. �

Let us add a final comment concerning removable singularities. First of all it is
easy to check that

|Du|
p
2
−1Du ∈ H1,2loc (Ω− Σ)

|Du|p−2Du ∈ H
1, p

p−1

loc (Ω− Σ)and

−Dα

(

|Du|p−2Dαu
)

= f(·, u,Du)so that
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holds almost everywhere on Ω− Σ. This implies
∫

Ω−Σ

(

|Du|p · divX − p · |Du|p−2Dαu ·DβuDαX
β
)

dx

=

∫

Ω−Σ
p
(

f(·, u,Du) ·Dβu
)

Xβ dx

for all X ∈ C10 (Ω− Σ,Rn). If we impose the structural condition

(4.4)

{

f(x, y,Q) ·Qα = 0, α = 1, . . . , n,

for all x ∈ Ω , y ∈ R
N , Q ∈ R

nN

then

(4.5)

∫

Ω−Σ

(

|Du|p divX − p · |Du|p−2Dαu ·DβuDαX
β
)

dx = 0,

X ∈ C10 (Ω− Σ,Rn).

Suppose now that Σ is discrete. W.l.o.g. we may assume 0 ∈ Σ and that 0 is the
only singular point in the ball Br(0) =: B. Then it is easy to check that (4.5)
implies the standard monotonicity formula

(4.6)

sp−n
∫

Bs

|Du|pdx− tp−n
∫

Bt

|Du|p dx

= p

∫

Bs−Bt

|Du|p−2 |Dru|
2 · |x|p−n dx

for all balls Bt ⊂ Bs ⊂ Br. (In order to justify this, one has to multiply the radial
vectorfield X occuring in the proof of (4.6) by a sequence of cut-off functions.) Now,
just as in the proof of [3, Theorem 1.2], a blow-up argument relying on (4.6) gives

lim
ρ↓0

ρp−n
∫

Bρ(0)
|Du|p dx = 0

so that 0 is a removable singular point.

Remark. For general singular sets Σ, i.e. capp(Σ) = 0, it is not obvious if (4.5) is
sufficient to prove the monotonicity formula for balls with center x0 ∈ Σ. In the
positive case the singular set will be removable.

What is the meaning of the structural condition (4.4)? In the codimension 1
case, i.e. N = n+ 1, a class of functions f satisfying (4.4) is given by

f(x, y,Q) := f0(x, y,Q) · ∗Q1 ∧ . . . ∧ Qn / |Q1 ∧ . . . ∧ Qn|

where f0 : Ω × R
N × R

nN → R is a scalar function growing of order p in Q and
∗ : ΛnR

n+1 → R
n+1 denotes the isomorphism between the space of n-vectors in

R
n+1 and R

n+1.
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