
Commentationes Mathematicae Universitatis Carolinae

Michal Fečkan
Small functions and iterative methods

Commentationes Mathematicae Universitatis Carolinae, Vol. 33 (1992), No. 4, 589--595

Persistent URL: http://dml.cz/dmlcz/118529

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118529
http://project.dml.cz


Comment.Math.Univ.Carolin. 33,4 (1992)589–595 589

Small functions and iterative methods

Michal Fečkan

Abstract. Iterative methods based on small functions are used both to show local surjec-
tivity of certain operators and a fixed point property of mappings on scales of complete
metric spaces.

Keywords: small functions, iterative methods

Classification: 47A50, 47H10

1. Introduction.

This paper will be concerned with the study of an equation F (x) = y. We shall
use iteration methods based on small functions introduced by V. Pták [1] .

In the first part of Section 2, we present two theorems which guarantee local
surjectivity for certain operators. In the second part, we generalize Pták’s nondis-
crete mathematical induction on scales of metric spaces. Then we use this result to
a generalized implicit function theorem [2]; [3] obtaining a relatively simple proof.

2. Results.

Firstly we give two theorems ensuring surjectivity of certain operators.

Theorem 2.1. Let F ∈ C1(B1, Y ), where B1 = {x ∈ X, |x| ≤ 1}, X, Y are Banach
spaces, m > 0, y1 ∈ Y , and A : B1 → L(X, Y ) be such that

i) The inverse A−1(x) of A(x) exists for any
x ∈ B1, |A

−1(x)| ≤ c, and the mapping
A is Lipschitz.

ii) |y1 − y0| ≤ m, y0 = F (0).
iii) |DF (x) − A(x)| ≤ g(|x|) for all x ∈ B1.
iv) g is nondecreasing on [0, 1],

c.m+ c.r(c.m) + c.r(c.r(c.m)) + · · · < 1,
where Dr = g, r(0) = 0.

Then there exists an x ∈ B1 such that F (x) = y1 .

Proof: We shall use the continuation method. Consider the following equation

x′ = A−1(x)(y1 − y0),

x(0) = 0.
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We have |x(t)| ≤
t
∫

0
c.m ≤ t.c.m ≤ c.m < 1. Hence x(t) ∈ B1 for each t ∈ [0, 1].

Since

d

dt
F (x(t)) = DF (x).x′(t) = DF (x).A−1(x)(y1 − y0),

F (x(1)) = y0 +

1
∫

0

d

dt
F (x(t)) dt = y0 +

1
∫

0

DF (x).A−1(x)(y1 − y0) dt.

Hence

|F (x(1)) − y1| =|y0 − y1 +

1
∫

0

DF (x).A−1(x)(y1 − y0) dt|

≤

1
∫

0

|y0 − y1 +DF (x).A−1(x)(y1 − y0)| dt

≤

1
∫

0

g(|x(t)|).c.|y0 − y1| dt

≤

1
∫

0

g(t.c.m).c.m dt = r(c.m).

Finally
|F (x(1)) − y1| ≤ r(c.m) and |x(1)| ≤ c.m < 1.

For x(1), F (x(1)) = z1, we can apply the above method to obtain x(2), F (x(2)) = z2
with the properties

|z2 − y1| ≤ r(c.r(c.m)),

|x(2)− x(1)| ≤ c.r(c.m).

By the assumptions of the theorem we have

c.m+ c.r(c.m) + c.r(c.r(c.m)) + · · · < 1

and hence x(n) → x ∈ B1 and F (x) = y1, where x(n) is constructed by the
induction in the above way. This completes the proof. �

We recall that a function w on T = {t, 0 < t < t0} is a small function [1, p. 224]
if w : T → T and the sum

W (t) = t+ w(t) + w(w(t)) + w(w(w(t))) + · · ·

is finite for each t ∈ T .
Now we shall study the local surjectivity of operators on more general spaces.
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Theorem 2.2. Let X be a Fréchet space with the F -norm |.| and we consider
a mapping g : U → X, U = {x ∈ X, |x| < δ} with the following properties

a) g is continuous.
b) |g(x)− g(y)− (x − y)| ≤ w(|x − y|),

where w : R+ = [0,∞) → R+, w(0) = 0, and w is a nondecreasing small function
such that W (δ1) < δ for some δ1, 0 < δ1 < δ.
Then there is a neighbourhood V of 0 such that the restriction g/V is an open

mapping.

Proof: We define a sequence {zk} as follows:

z1 = x for |x| < δ − W (δ1),

zi+1 = zi + (y − g(zi)) for |y − g(x)| = h1 < δ1.

We see that for i > 1

|zi+1 − zi| = |y − g(zi)| = |y − g(zi−1) + g(zi−1)− g(zi)|

= |zi − zi−1 + g(zi−1)− g(zi)| ≤ w(|y − g(zi−1)|).

Hence for i ≥ 1

|zi+1| ≤ |zi|+ |y − g(zi)|,

|zi+1 − x| ≤ |zi − x|+ |y − g(zi)|.

Putting hi = |y − g(zi)| we obtain

hi ≤ w(hi−1),

|zi+1| ≤ |x|+ h1 + h2 + · · ·+ hi ≤ |x|+W (h1),

|zi+1 − x| ≤ h1 + h2 + · · ·+ hi ≤ W (h1).

We have shown that B(g(x), δ1) ⊂ g(B(x, W (δ1)), where B(z, r) = {x ∈ X,
|x − z| < r}. This ends the proof. �

Now we shall generalize the meaning of small functions. Let T be a positive real
number and w(t, s) = (w1(t, s), w2(t, s)) be a mapping of a set (0, T )×S into itself,
where S is a metric space and w1(t, s) ∈ R, w2(t, s) ∈ S. For any nonnegative
integer n define

sn+1 = w2(tn, sn), t0 = t,

tn+1 = w1(tn, sn), s0 = s.

We put W (t, s) = t0+ t1+ · · · , and the function w is said to be small on (0, T ′)×S,
(0 < T ′ ≤ T ) if W (t, s) < ∞ and {sn} is a convergent sequence in S for all
(t, s) ∈ (0, T ′)× S. If S = {x} then we obtain the definition from [1] .
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Now we consider a scale of complete metric spaces (Xs, ds)s∈S with the following
properties:
for each s ∈ S there exists s′ ∈ S and a neighbourhood U(s) ⊂ S, s ∈ U(s) such
that for each s1 ∈ U(s) it holds

(+) Xs′ ⊃ Xs1 , ds′(x, y) ≤ ds1(x, y) for x, y ∈ Xs1 .

Let I be an interval of the form I = {t, 0 < t < t0} for a positive t0. For each t ∈ I
and s ∈ S let Z(t, s) be a subset of Xs. Suppose that these sets are not all empty
on each orbit {(ti, si)} of w and

Z(t, s) ⊂ Uw2(t,s)(Z(w1(t, s), w2(t, s)), t)

= {x ∈ Xw2(t,s), dw2(Z(w1, w2), x) < t}.

We have the following theorem:

Theorem 2.3. Suppose that the subsets Z(t, s) have the above properties and,
moreover, w = (w1, w2) is small (see the above definition of smallness). Further,
for s0, which is a limit of {sn}, we find s′0 ∈ S by the property (+). Then

Z(0) =
⋂

t>0,n≥1

∪r<t ∪p>n Z(r, sp)

exists in Xs′
0
and

Z(ti, si) ⊂ Us′
0
(Z(0), W (t, s))

for i ≫ 1 .

Proof: If z ∈ Z(ti, si) ⊂ Usi+1
(Z(ti+1, si+1), ti) then there exists

z1 ∈ Z(ti+1, si+1)

such that
dsi+1

(z, z1) < ti.

In the same way we can find z2 ∈ Z(ti+2, si+2) such that dsi+2
(z1, z2) < ti+1. If

we consider that si ∈ U(s0) for i ≥ i0 then

ds′
0
(z, z2) ≤ ds′

0
(z, z1) + ds′

0
(z1, z2)

≤ dsi+1
(z, z1) + dsi+2

(z1, z2)

< ti + ti+1.

By the induction we have {zn}∞1 ⊂ Xs′
0
such that

ds′
0
(z, zn) < W (t, s) and zn ∈ Z(ti+n, si+n).

The proof is finished. �
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Corollary 2.4. Let (Xs, |.|s), (0 < s < ∞) be a scale of Banach spaces such that
Xs ⊃ Xs′ , |u|s ≤ |u|s′ for s′ ≥ s. Let Z(ti, si) be subsets of Xsi

, 0 < s < si+1 ≤ si,
i = 1, 2, · · · and suppose

∅ 6= Z(ti, si) ⊂ Uti+1(Z(ti+1, si+1), ti),

t1 + t2 + · · · < ∞

for a sequence {ti}. Then ∅ 6= Z(0) ⊂ Xs.

Theorem 2.5. Let (Xs, ds)s∈S be a scale with the above properties and let G :
∪ Xs → ∪Xs = X be a mapping such that

(1) X has a complete metric d such that
d(x, y) ≤ ds(x, y) for each s, x, y ∈ Xs.

(2) G : Xs → X is continuous
(3) There exist g : S → S, w : T × S → T such that
for each s ∈ S it holds
G : Xs → Xg(s), Xs ⊂ Xg(s), dg(s)(Gx, Gy) ≤ w(ds(x, y), s)

and w(., s) is increasing.

If (g(.), w(., g(.))) is small, i.e., {sn} is convergent in S and t1 + t2 + · · · < ∞ for
any sn+1 = g(sn), tn+1 = w(tn, sn+1). Then G : X → X has a fixed point.

Proof: Put Z(t, s) = {x ∈ Xs, dg(s)(x, Gx) < t} ⊂ Xs ⊂ Xg(s). By the assump-

tions of the theorem we obtain: if x ∈ Z(t, s) then

dg(s)(x, Gx) < t and

dg2(s)(Gx, G2x) ≤ w(dg(s)(Gx, x), g(s)) < w(t, g(s)).

Thus
Z(t, s) ⊂ Ug(s)(Z(w(t, g(s)), g(s)), t).

Applying the above theorem we obtain the proof. �

Finally, we give a proof of a generalized implicit function theorem from [3] based
on the above results.

Theorem 2.6. For each number s, 0 ≤ s ≤ 1, we are given a Banach space (Ys, |.|s)
with the following properties:
1. Ys′ ⊃ Ys, and |.|s′ ≤ |.|s for s′ ≤ s.
2. Let R be a positive number and set Rs = {u ∈ Ys, |u|s < R}. Let f be a mapping
defined on R0 with values in Y0 such that f maps each Rs into Y0. Suppose that
the following conditions are satisfied:
a) f : Rs → Y0 is continuous for each s.
b) For each u ∈ ∪0<sRs there exists a mapping f ′(u) : ∪s>0 Ys → ∪s>0Ys such
that for each s′ < s, u ∈ Rs implies f ′(u)Ys ⊂ Ys′ , and

|f(u+ v)− f(u)− f ′(u)v|s′ ≤ K1(s − s′).|v|2s
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whenever u and u+ v belong to Rs.
c) If u ∈ Rs, there exists v ∈ ∩s′<sYs′ such that for each s′ < s

|f ′(u)v + f(u)|s ≤ K2(s − s′).|f(u)|2s′ , |v|s′ ≤ K3(s − s′).|f(u)|s,

where Ki are positive nonincreasing functions defined on the interval (0,1].
If there are S(1) ∈ R+ and sn ∈ (0, 1), (0 < s < sn+1 < sn) such that for

K(n) = K1(wn).K
2
3 (wn) +K2(wn),

K̃3(n) = K3(wn),

wn = (sn − sn+1)/2,

the following expression comes true:

K̃3(1)S(1) +
∑

1<i

K̃3(i).S
2i−1(1).K2

i−2

(1) · · ·K(i − 1) < R − |u0|s1 ,

|f(u0)|s1 < S(1), u0 ∈ Rs1 .

Then there exists u ∈ Rs such that f(u) = 0.

Proof: We follow the proof from [2]; [3]. We put for i ∈ N ∪ {∞}

k(i) = k(i+ 1) + K̃3(i).S(i), k(∞) = 0,

S(i+ 1) = K(i).S2(i).

The above condition guarantees that such k(i) exists for each i. We set

Z(i, si) = {u ∈ Rsi
, |f(u)|si

< S(i) and |u − u0|si
< R − |u0|s1 − k(i)− d}

for each i ∈ N and d > 0 small fixed. Then using the same arguments as in [2]; [3]
we obtain: for each u ∈ Z(i, si) there exists ũ ∈ Rsi+1

with the properties

|f(ũ)|si+1
< K(i).S2(i), |ũ − u|si+1

< K̃3(i)S(i).

Indeed, by c) there is v ∈ ∩s′<si
Ys′ such that

|f ′(u)v + f(u)|si
≤ K2(wi).|f(u)|

2
(si+si+1)/2

,

|v|(si+si+1)/2 ≤ K3(wi).|f(u)|si
.

Since

|v|(si+si+1)/2 ≤ K̃3(i).|f(u)|si
< K̃3(i).S(i),

|u|(si+si+1)/2 ≤ |u − u0|si
+ |u0|s1 < R − k(i),
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thus
|u+ v|(si+si+1)/2 < K̃3(i).S(i) +R − k(i) = R − k(i+ 1) < R,

i.e.,
u+ v ∈ R(si+si+1)/2.

According to b) we have

|f(u+ v)− f(u)− f ′(u)v|si+1
≤ K1(wi).|v|

2
(si+si+1)/2

.

Thus

|f(u+ v)|si+1
≤ K2(wi).|f(u)|

2
(si+si+1)/2

+K1(wi).K
2
3 (wi).|f(u)|

2
si

≤
(

K2(wi) +K1(wi).K
2
3 (wi)

)

.|f(u)|2si

< K(i).S2(i),

|v|si+1
< K3(wi).S(i) = K̃3(i).S(i).

We take ũ = u+ v.
Hence

|ũ − u0|si+1
< R − |u0|s1 − k(i) + K̃3(i).S(i)− d ≤ R − |u0|s1 − k(i+ 1)− d.

Finally, we have

Z(i, si) ⊂ Usi+1
(Z(i+ 1, si+1), K̃3(i).S(i)).

Since
∑

i K̃3(i).S(i) < ∞, we can apply Corollary 2.4. From the definition of Z(0)
we have: u ∈ Z(0)⇒ |u−u0|s ≤ R− |u0|s1 − d. Thus |u|s < R. We conclude by a)
that: u ∈ Z(0) ⊂ Rs ⇒ f(u) = 0. The proof is completed. �
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