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Multivalued pseudo-contractive mappings

defined on unbounded sets in Banach spaces

Claudio H. Morales

Abstract. Let X be a real Banach space. A multivalued operator T from K into 2X is
said to be pseudo-contractive if for every x, y in K, u ∈ T (x), v ∈ T (y) and all r > 0,
‖x−y‖ ≤ ‖(1+r)(x−y)−r(u−v)‖. Denote by G(z, w) the set {u ∈ K : ‖u−w‖ ≤ ‖u−z‖}.
Suppose every bounded closed and convex subset of X has the fixed point property with
respect to nonexpansive selfmappings. Now if T is a Lipschitzian and pseudo-contractive
mapping from K into the family of closed and bounded subsets of K so that the set G(z, w)
is bounded for some z ∈ K and some w ∈ T (z), then T has a fixed point in K.

Keywords: pseudo-contractive mappings

Classification: Primary 47H10

Let X be a Banach space, K a nonempty subset of X , and for M = K or X let
K(M) denote the family of all nonempty compact subsets of M which is equipped
with the Hausdorff metric. Let B(M) denote the family of all nonempty closed and
bounded subsets of M . A mapping T : K → K(M) is said to be Lipschitzian if
there exists L > 0 such that for each x, y ∈ K

H(T (x), T (y)) ≤ L‖x − y‖.

For L < 1 (L = 1) such mappings are said to be contractive (respectively, nonex-
pansive). A point x ∈ K is called a fixed point of T if x ∈ T (x).

An operator T : K → 2X is said to be k-pseudo-contractive (k > 0) (see [7])
if for each x, y ∈ K, u ∈ T (x), v ∈ T (y) and λ > k

(1) (λ − k)‖x − y‖ ≤ ‖λ(x − y)− (u − v)‖.

For k = 1 (k < 1) such mappings are said to be pseudo-contractive (respectively,
strongly pseudo-contractive). By letting r = 1/(λ − 1) and k = 1 in (1), we
derive the original definition of pseudo-contractive mappings, due to Browder [1],
as follows:

(2) ‖x − y‖ ≤ ‖(1 + r)(x − y)− r(u − v)‖

holds for all x and y in K, u ∈ T (x), v ∈ T (y) and all r > 0. However, by taking
a semi-inner approach (see also Kato [5]) we may describe (2) by

〈u − v, j〉 ≤ ‖x − y‖2
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for some j ∈ J(x − y). The mapping J : X → 2X
∗

is called the normalized duality
mapping which is defined by

J(x) = {j ∈ X∗ : 〈x, j〉 = ‖x‖2, ‖j‖ = ‖x‖}.

Here 〈·, ·〉 denotes the generalized duality pairing. As we mentioned in [8], this
latter family of mappings is intimately related to the so-called accretive operators,
which play an important role in the theory of evolution equations.
The main purpose of this paper is to examine the behavior of multivalued map-

pings in the case the domain K is unbounded. Certainly, under this constraint we
fail to obtain fixed points even in the single-valued case (see [11]). Nevertheless, we
are able to show that a mild boundedness condition on T (the condition (4) below)
is sufficient to guarantee the existence of a fixed point. In this context we prove
that Lipschitzian and pseudo-contractive multivalued mappings satisfying an “in-
wardness” condition have fixed points. We should mention that this result extends,
in various directions, one of the main results of Canetti et al. [2]. We also include an
application where the mild boundedness condition (4) holds for the so-called acute
cones.
Throughout the paper we will assume that the domain K of the operator T is

closed and convex and also the notion that T satisfies the weakly inward condition
may be described by

(3) lim
h→0

h−1 dist ((1 − h)x+ hy, K) = 0

for each x ∈ K and y ∈ T (x). In addition, we observe that the boundedness
condition (introduced in [4]), which has been mentioned earlier, asserts that for z
and w in X

(4) G(z, w) = {u ∈ K : ‖u − w‖ ≤ ‖u − z‖}.

is a bounded subset of K.
While we may observe that there is a firm connection between the fixed point

theory for pseudo-contractive and nonexpansive mappings in the single-valued case,
this is not so for multivalued operators. However, additional conditions on the map-
ping T will allow us to derive some relationships between the single and multivalued
cases. We begin studying some results for single-valued operators. Our first theo-
rem is a slight extension of Theorem 5 of [9], whose proof is included for the sake
of completeness.

Theorem 1. Let X be a Banach space whose bounded closed and convex subsets
have the fixed point property with respect to nonexpansive selfmappings. Let K
be a close convex subset of X (with 0 ∈ K) and let T : K → X be a continuous
pseudo-contractive mapping. Suppose T holds the weakly inward condition for each
x ∈ K. If the set

(5) E = {x ∈ K : T (x) = λx for some λ > 1}
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is bounded, then T has a fixed point in K.

Proof: Let fr = (1 + r)I − rT for r > 0. Then, as in the proof of Theorem 5
of [9], the mapping g : K → K defined by g = f−1

r is nonexpansive. Also the set
F = {y ∈ K : g(y) = µy for some µ > 1} is bounded. To complete the proof,
we select a sequence {yn} in F such that g(yn) = µnyn with µn → 1. Then if
limh→∞ sup ‖yn‖ = L, a standard argument shows that the set

C = {y ∈ K : lim
n→∞

sup ‖yn − y‖ ≤ L}

is closed bounded convex and invariant under g. Therefore, by assumption, g has
a fixed point in K, which is also a fixed point for T . �

Corollary 1. Let X be as in Theorem 1 and let K be a closed and convex subset
of X (with 0 ∈ K). Suppose T is a continuous pseudo-contractive mapping from K
to K. Also, suppose the set E defined by (5) is bounded. Then T has a fixed point
in K.

Now, as a consequence of Theorem 1, we improve Theorem 1 of Ray [12]. We
should mention that his proof relies on the intrinsic properties of uniformly convex
spaces, contrary to our approach that appears to be less involved.

Theorem 2 (cf. Theorem 6 of [9]). Let X be as in Theorem 1 and let K be a closed
and convex subset of X . Let T : K → X be a continuous pseudo-contractive

mapping. Suppose there exists z ∈ K for which T (z) ∈ K and the set

(6) G(z, T (z)) = {u ∈ K : ‖u − T (z)‖ ≤ ‖u − z‖}

is bounded. Suppose also that T holds the weakly inward condition for each x ∈ K.
Then T has a fixed point in K.

Proof: We may assume without loss of generality that z = 0. We shall show that
the set E, defined by (5), is bounded. To see that, let T (x) = λx for x ∈ K and
λ > 1. Since T is pseudo-contractive we have

(7) ‖x‖ ≤ ‖(1 + r − rλ)x + rT (0)‖.

By choosing r = 1/(λ − 1) and λ ≥ λ0 for some λ0 ∈ (1, 2), we conclude that
‖x‖ ≤ ‖T (0)‖/(λ0 − 1). Select now r = 1 (in (7)) and λ ≤ λ0. Then we have

(2 − λ)‖x‖ ≤ ‖x‖ ≤ ‖(2− λ)x+ T (0)‖,

yielding (2 − λ)x ∈ G(−T (0), 0). Since G(0, T (0)) is bounded, so is G(−T (0), 0).
Therefore E is bounded and Theorem 1 completes the proof. �

As a result of Theorem 2 we may derive some known corollaries (see [6], [12], [9]).
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Corollary 2. Let X and K be as in Theorem 2. Let T : K → K be a continuous
pseudo-contractive mapping. Suppose for some z ∈ K the setG(z, T (z)) is bounded.
Then T has a fixed point in K.

In view of the fact that every nonexpansive mapping is continuous and pseudo-
contractive, we easily derive Theorem 1.3 of [6] as a consequence of Corollary 2.

Corollary 3. Let X andK be as in Theorem 2. Let T : K → K be a nonexpansive
mapping. Suppose there exists z ∈ K for which the set G(z, T (z)) is bounded. Then
T has a fixed point in K.

Next we prove our main theorem for multivalued mappings. This result repre-
sents a significant extension of Theorem 9 of [2].

Theorem 3. Let X be a Banach space whose bounded closed convex subsets have
the fixed point property with respect to single-valued nonexpansive selfmappings.

LetK be closed convex subset ofX and let T : K → B(K) be a Lipschitzian pseudo-
contractive mapping. Suppose that for some z ∈ K the set G(z, w) is bounded for
some w ∈ T (z). Then T has a fixed point in K.

Proof: We may assume without loss of generality that z = 0. Let L be a Lipschitz
constant of T and choose 0 < α < min{1, 1/L}. For each y ∈ K, the mapping
Ty : K → B(K) defined by Ty(x) = (1− α)y + αT (x) is a multivalued contraction.
Since K is complete and Ty(x) ⊂ K, Theorem 5 of Nadler [10] implies that Ty has
a fixed point Fα(y) in K. This means

Fα(y) ∈ (1 − α)y + αT (Fα(y)).

Thus, if x, y ∈ K there exist u ∈ T (Fα(x)) and v ∈ T (Fα(y)) such that Fα(x) =
(1 − α)x + αu and Fα(y) = (1 − α)y + αv. Since T is pseudo-contractive, there
exists j ∈ J(Fα(x) − Fα(y)) so that

〈Fα(x)− Fα(y), j〉 = (1− α)〈x − y, j〉+ α〈u − v, j〉.

This implies that

‖Fα(x)− Fα(y)‖
2 ≤ (1− α)‖x − y‖‖Fα(x) − Fα(y)‖ + α‖Fα(x) − Fα(y)‖

2 ,

and thus
‖Fα(x)− Fα(y)‖ ≤ ‖x − y‖.

Therefore Fα is a single-valued nonexpansive mapping of K into K. Since T and
Fα have the same fixed points, it is sufficient to show that Fα has a fixed point.
However, in view of Corollary 1 we just need to show that the set

E = {x ∈ K : Fα(x) = λx for some λ > 1}

is bounded. To see that, let Fα(x) = λx for x ∈ K and λ > 1. Then λx ∈
(1 − α)x + αT (λx), which implies that [α−1(λ − 1) + 1]x ∈ T (λx). Since T is
pseudo-contractive, it follows that

(8) ‖λx‖ ≤ ‖(1 + r)λx − r[(α−1(λ − 1) + 1)x − w]‖
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for some w ∈ T (0). First of all, we select λ0 ∈ (1, 2) so that α−1 < 1+λ0(λ0−1)
−1

and then we consider two cases. For λ ≥ λ0 we choose r = αλ/(1−α)(λ−1) in (8),
and this yields

‖x‖ ≤ α‖w‖/(1− α)(λ0 − 1).

Now, suppose λ < λ0. Then choose r = 1 (in (8)) and we obtain

‖λx‖ ≤ ‖[(α−1 − 1)(1− λ) + λ]x + w‖.

By writing µ = (α−1−1)(1−λ)+λ, we may choose µ0 > 0 so that 0 < µ0 ≤ µ < λ
for all λ ∈ (1, λ0). This means µx ∈ K and thus µx ∈ G(−w, 0). Since, by
assumption, G(w, 0) is bounded, so is G(−w, 0). Therefore the set E is bounded.
This completes the proof. �

In Theorem 3, the condition on T of mapping K into itself can be relaxed by
imposing a compactness assumption on T (x).

Theorem 4. Let X be as in Theorem 3 and let K be a closed convex subset of X .
Let T : K → K(X) be a Lipschitzian pseudo-contractive mapping. Suppose for
some z ∈ K for which T (z) ∈ K the set G(z, w) is bounded for some w ∈ T (z),
suppose also that (3) holds for each x ∈ K. Then T has a fixed point in K.

Proof: As in the proof of Theorem 3, the mapping Ty : K → K(X) defined by
Ty(x) = (1 − α)y + αT (x) is a multivalued contraction. Since Ty also satisfies the
weakly inward condition on K (see for example Lemma 1 of [9]), Corollary 2 of [3]
implies that Ty has a fixed point Fα(y) in K. These conclusions will then enable
us to complete the proof following the argument of Theorem 3. �

We will discuss now an application of Theorem 4 to mappings defined on cones.
Following [6] we define the notion of a sufficiently “sharp” cone.

Let X be a normed linear space. A cone K in X with vertex 0 is said to be
acute if, for each x in K, the set G(x, 0) is bounded. For some specific classes of
spaces, this notion can be formulated in more tangible terms. For instance, if X is
either lp-space or the Lp-space (with 1 < p < ∞), then acute cones are described
as those for which

Sup {Dz(−x) : z ∈ K and ‖z‖ = 1} < 0

for each nonzero x in K, where Dz is the derivative of the norm of X at z. However,
in Hilbert spaces this becomes

inf{〈x, y〉 : y ∈ K, ‖y‖ = 1} > 0

for each nonzero x in K. This latter characterization corresponds to the well known
description of acute cones in Euclidean geometry.
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Theorem 5. Let X be a uniformly convex Banach space and let K be an acute
cone of X . Let T : K → K(X) be a Lipschitzian pseudo-contractive mapping that
satisfies (3) for each x ∈ K. If T has an eigenvalue in [0, 1), then T has a fixed
point in K.

Proof: Suppose tz ∈ T (z) for some t ∈ [0, 1). Since K is an acute cone, the
set G(z, 0) is bounded, and thus by Lemma 3.3 of [6] the set G(z, tz) is bounded.
Therefore Theorem 4 completes the proof. �
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