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On a weak Freudenthal spectral theorem

Marek Wójtowicz

Abstract. Let X be an Archimedean Riesz space and P(X) its Boolean algebra of all band
projections, and put Pe = {Pe : P ∈ P(X)} and Be = {x ∈ X : x ∧ (e − x) = 0}, e ∈ X+.
X is said to have Weak Freudenthal Property (WFP) provided that for every e ∈ X+ the
lattice linPe is order dense in the principal band edd. This notion is compared with strong
and weak forms of Freudenthal spectral theorem in Archimedean Riesz spaces, studied by
Veksler and Lavrič, respectively. WFP is equivalent to X+-denseness of Pe in Be for every
e ∈ X+, and every Riesz space with sufficiently many projections has WFP (THEOREM).

Keywords: Freudenthal spectral theorem, band, band projection, Boolean algebra, dis-
jointness

Classification: Primary 46A40; Secondary 06E99, 06B10

0. Introduction.

The classical Freudenthal spectral theorem states that if a Riesz space X has
the principal projection property (PPP, in short) then every positive element of
the principal ideal Ae (for a given e ∈ X+) is e-uniformly approximated by linear
combinations of Pe := {Pe : P ∈ P(X)}, where P(X) denotes the Boolean algebra
of all projection bands of X .1 Put Be := {x ∈ X : x ∧ (e − x) = 0}. The set Be is
the Boolean algebra of all components of e with operations ∧ and ∨ restricted from
X and the complementation x′ = e−x, and Pe is its Boolean subalgebra. It is easy
to check that both linPe and linBe are sublattices of Ae (with linPe ⊂ linBe).
Veksler [8] and Lavrič [5] considered independently the following notions of weak
and strong forms of Freudenthal’s theorem (the symbol ()V , resp. ()L, denotes that
the notion goes back to Veksler, resp. Lavrič).

(WF)V Weak form. For every e ∈ X+, linBe is order dense in edd.
(SF)L Strong form. For every e ∈ X+, each x ∈ Ae is e-uniformly approximated

by elements of linPe.

The notion of PPP can be generalized in two ways:

(∗) every nontrivial band of X contains a nontrivial projection band,
(∗∗) every pair of disjoint elements of X is contained in a disjoint pair of projec-

tion bands of X .

The author wishes to thank Professors C.B. Huijsmans and Z. Lipecki for their helpful remarks
and comments

1We consider, for simplicity, Archimedean Riesz spaces only and use the terminology and
notations of [6] to which the reader is referred; some of our results are valid in the non-Archimedean
case where bands should be replaced by disjoint complements.
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Riesz spaces fulfilling (∗) are said to have sufficiently many projections (SMP,
in short; see [6]) or the property (P2) ([8, p. 10]), while (∗∗) is called the property δ
([5, p. 418]) or the property (P3) ([8, p. 10]). The above forms of Freudenthal’s
theorem are characterized by Veksler and Lavrič, respectively, as follows:

Proposition 0.1 (See [8], Theorem 2.5, and [5], Proposition 3.3 and Theorem 3.8).
(WF)V holds for X iff every principal ideal of X has SMP.
(SF)L holds for X iff X has the property δ iff Pe = Be for every e ∈ X+.

(Note that the notions of (SF)V and (WF)L, concerned with e-uniform approxima-
tion of elements of Ae by elements of linBe, coincide but have been characterized by
each of the authors in somewhat different way: every (Riesz) homomorphic image
of every principal ideal of X has the property (P3) ([8, Theorem 2.8]), and every
principal ideal of X is zero-dimensional in the sense of Lavrič ([5, Corollary 2.8]).)
The present paper is concerned with a characterization of the following notion

of the weak Freudenthal property (WFP, in short):

For every e ∈ X+, the lattice linPe is order dense in edd.

Thus we replace the lattice linBe occurring in (WF)V by the lattice linPe (as in
(SF)L) which is more convenient in applications. Obviously, (SF)L ⇒ WFP ⇒
(WF)V , thus WFP is (essentially, see Section 3) stronger than (WF)V but still
“weak”. Our main result (THEOREM), presented in Section 1, states that WFP
is equivalent to X+-denseness of Pe in Be for every e ∈ X+, and that every Riesz
space with SMP has WFP. Such a characterization of WFP is similar to that
of δ given by Lavrič (see Proposition 0.1), thus these two properties are very close
in terms of Pe − Be. The reader should note that THEOREM includes also an
interesting connection between natural Boolean algebras occurring in the theory of
Riesz spaces: Boolean denseness of B(X) in A(X) (= the Boolean algebras of all
projection bands, and bands of X , respectively) implies X+-denseness of Pe in Be

for every e ∈ X+ and these conditions are equivalent provided X has a weak order
unit.
The paper is organized as follows. In Section 1 we present preliminary facts,

notions and our main result, Section 2 is devoted to the study of Riesz spaces with
sufficiently many projections, Section 3 is concerned with the weak Freudenthal
property, and Section 4 includes some examples.
Problems presented in this paper have appeared in a natural way when the author

tried to verify whether the order convergence of orthomorphisms on Riesz spaces
with SMP is pointwise. This conjecture is confirmed in [3, Corollary 2.5] by the
method of extended orthomorphisms, but an alternative proof can be given with
the help of order density of linPe in edd for every e ∈ X+.

1. Preliminaries.

Let X be an Archimedean Riesz space. A(X), B(X), and P(X), respectively,
denote the Boolean algebras of all bands, projection bands, and band projections
of X , respectively. If P ∈ P(X) [resp. A ∈ A(X)] then P c := I − P [resp.

Ad := {x ∈ X : |x|∧|a| = 0 for all a ∈ A}]. P(X) and B(X) are Boolean isomorphic
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via the mapping P → PX with P c → (PX)d = P cX . Ax and xdd, respectively,
stand for the principal ideal and band, respectively, generated by a given x ∈ X .
Notice that a Riesz space X has sufficiently many projections (see (∗), Section 0)
iff B(X) is Boolean dense in A(X). For fundamental information concerning SMP
(as well as A(X), B(X)and P(X)), the reader is referred to the monograph [6,
Section 30], where it is proved, for instance, that X is Archimedean whenever X
has SMP, and that the class of all Riesz spaces with PPP is properly included in
the class of all Riesz spaces possessing SMP (pp. 174–175) (see also Section 4).
We shall now introduce a very useful tool in descriptions both of Riesz spaces

with SMP and WFP. Let A be an order ideal of X . It is easy to check that the
class J (A) := {B ∈ B(X) : B ⊂ A} is an ideal of B(X); JP (A) denotes the ideal
{P ∈ P(X) : PX ⊂ A} of P(X) corresponding to J (A). Put [A] =

⋃
J (A) and

notice that [A] is always a linear subspace and a solid subset of X , thus an order

ideal of X included in A. Now let A be a band of X . We have always [A]dd ⊂ A.
In the sequel we shall be interested in characterization of those bands for which
[A]dd = A.

Definition 1.1. Let A be a band of X . A is said to be a generative band of X
provided that the ideal [A] is order dense in A or, equivalently, [A]dd = A. In other
words, A = supJ (A) where the “sup” is taken in A(X).

The first lemma summarizes fundamental properties of the ideal [A]. The routine
proof is omitted.

Lemma 1.2. Let A, A1, A2 be order ideals of X .

(i) We have always [A] ⊂ A and Ad ⊂ [A]d.
(ii) If A1 ⊂ A2 then J (A1) ⊂ J (A2) (and JP(A1) ⊂ JP(A2)) whence [A1] ⊂
[A2] and [A1]

dd ⊂ [A2]
dd.

(iii) An element x is a member of [A] iff for every P ∈ J (A) we have Px = x.

(iv) An element y is a member of [A]d iff for every P ∈ J (A) we have Py = 0.

Moreover, if A is a band then

(v) A is generative iff there is a nonempty class V of projection bands of X

with A = (
⋃

V)dd; in particular, for every ideal A of X the band [A]dd is
generative;

(vi) [A]dd is the greatest generative band included in A; in particular, [xdd]dd is

the greatest generative band included in xdd.

Corollary 1.3. Let A be an order ideal of X . Then for every y ∈ Ad and every
P ∈ JP(A) we have Py = 0. In particular, for every e ∈ X+ and any u ∈ Pe we

have JP (u
dd) ⊂ {P ∈ P(X) : Pu = Pe} = {P ∈ P(X) : Pe ≤ u}.

Proof: The first part is implied by Lemma 1.2, (i) and (iv). The inclusion of the

second part is followed by e − u ∈ ud = (udd)d and the first part. To prove the
equality notice first that we have always the inclusion ⊂. On the other hand, if
Pe ≤ u then Pe = P 2e ≤ Pu and so 0 ≤ P (e − u) ≤ Pu − Pu = 0; this yields the
required equality. �

In the next lemma, we give equivalent conditions for a band A to be generative.
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Lemma 1.4. Let A be a band of X . Then the following conditions are equivalent.

(i) A is generative.

(ii) A = (
⋃

V)dd for some nonempty V ⊂ B(X).

(iii) Ad =
⋂

B∈V Bdfor some nonempty V ⊂ B(X).

(iv) Ad =
⋂

B∈J (A)B
d =

⋂
P∈JP(A)

P cX .

(v) There is a nonempty W ⊂ P(X) such that: Px = 0 for every P ∈ W iff

x ∈ Ad.
(vi) If Px = 0 for every P ∈ JP(A) then x ∈ Ad.

(vii) An element x is a member of Ad iff Px = 0 for every P ∈ JP(A). In
particular, the intersection of a generative band in X with an order ideal Y
of X is a generative band in Y .

Proof: The equivalence of (i)–(vii) is followed by the parts (i), (iv) and (v) of
Lemma 1.2 and the correspondence between projection bands and band projections
described above. We shall now prove the second part of the lemma. Let Y be an
order ideal of X , and let for any nonempty subset V of Y the symbol V D denote
the disjoint complement of V in Y . Since the intersection of any [projection] band
of X with the ideal Y is a [projection] band of Y , we have AY := A∩Y ∈ A(Y ) and
BY := B ∩ Y ∈ B(Y ) for all B ∈ J (A). By the definition of a disjoint complement
we have both AD

Y = Ad ∩ Y and BD
Y = Bd ∩ Y , thus the result is followed by the

part (iii) of our lemma. �

Let G(X) denote the set of all generative bands of X . We have B(X) ⊂ G(X) ⊂
A(X) and B(X) is always dense in G(X). In the lemma below we discuss the
definition of SMP in terms of elements of G(X). A detailed description of SMP will
be given by Proposition 2.1.

Lemma 1.5. The following conditions are equivalent:

(i) X has the SMP (i.e. B(X) is Boolean dense in A(X)).
(ii) Every band of X is generative (i.e. G(X) = A(X)).
(iii) For every nonempty subset V of X we have [V dd]dd = V dd.
(iv) Every principal band of X is generative (i.e. for every x ∈ X we have

[xdd]dd = xdd).
(v) Every nontrivial principal band of X contains a nontrivial projection band.

Proof: Obviously, (i), (ii) and (iii) are equivalent by definition, (i) implies (v),

and (iii) implies (iv). Since for every band A of X we have A =
⋃

a∈A add, the

class V = {B ∈ B(X) : B ∈ J (add) for some a ∈ A} fulfils (
⋃

V)dd = A whenever
every principal band of X is generative; thus, by Lemma 1.2 (v), (iv) implies (ii).
Similarly, (v) implies (ii). �

Riesz spaces with SMP will be characterized in Section 2 by the following notion
of g-disjoint elements of X (a similar concept, of completely disjoint elements, which
characterizes the property δ, can be found in [5, p. 418]).
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Definition 1.6. Two elements u, v ∈ X are said to be generatively disjoint
(g-disjoint, in short) if there is a generative band A in X with: u ∈ A and v ∈ Ad.

Obviously, g-disjoint elements are disjoint and these notions coincide whenever
X has WFP (see THEOREM).

Let e ∈ X+. Since Pe is a Boolean subalgebra of Be and both Pe and Be are
sublattices of the lattice X+ (as well as A+e ), we may conjecture that there is some
kind of denseness of Pe in Be provided X has WFP. We may think of Boolean or
X+-denseness of Pe in Be (i.e., for every u ∈ Be, u = sup{v ∈ Pe : v ≤ u}, where
the “sup” is taken in X+). It occurs that there is a strict connection between the
notions of WFP, g-disjointness and X+-denseness of Pe in Be (see THEOREM).
We shall now present a somewhat general result which links X+-denseness of Pe

in Be with g-disjointness of elements of Be. This will be used in the proof of
Proposition 2.3.

Lemma 1.7 (cf. [5, Proposition 3.2]). Let e ∈ X+. Then the following are equiv-
alent.

(i) Pe is X+-dense in Be (i.e. for every u ∈ Be there is a net (Pα) ⊂ P(X) with
u = supPαe where the “sup” is taken in X+).

(ii) Every pair of disjoint components of e is g-disjoint.

Proof: (i) implies (ii). Let u, v ∈ Be with u ∧ v = 0. Denote W = {P ∈
P(X) : Pe ≤ u}. By assumption, W is nonempty; thus, by Lemma 1.4, the band

A = (
⋃

P∈W PX)dd is generative. We shall now prove that u ∈ A and v ∈ Ad,
i.e. u and v are g-disjoint. Since Pe ∈ A for all P ∈ W , u = supPe ∈ A (by
X+-denseness). On the other hand, u + v = u ∨ v ≤ e, and so Pu + Pv ≤ u
for all P ∈ W . It follows that Pv ≤ P cu and, consequently, Pv = 0. Thus, by
Lemma 1.4 (v), v ∈ Ad.

(ii) implies (i). Let u ∈ Be. We have to show that u = supPαe (in X+) for some
net (Pα) ⊂ P(X). By assumption, there exists a generative band A with

(1) u ∈ A and e − u ∈ Ad.

Since [A] is order dense in A, there is a net (Pα) ⊂ JP(A) with u = supPαxα for
some (xα) ⊂ [A]. By (1) and Lemma 1.4 (vii), Pαe = Pαu, whence u ≥ Pαe ≥ Pαxα.
Consequently, u = supPαe (in X+), as claimed. �

We are now in a position to formulate our main result.

THEOREM. Consider the following four conditions.

(i) X has SMP.
(ii) X has WFP.
(iii) For every e ∈ X+, Pe is X+-dense in Be.
(iv) Every pair of disjoint elements of X is g-disjoint.
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We have (i) ⇒ (ii) ⇔ (iii) ⇔ (iv). If, moreover, X has a weak order unit then all
four conditions are equivalent.

The proof follows immediately from Proposition 2.2 and Proposition 3.2. For the
proof of the second part of THEOREM (via Proposition 2.2) we need the following
lemma on nontrivial complementations of positive elements to weak order units
(the constructive proof presented here has been communicated to the author by
Professor Z. Lipecki).

Lemma 1.8. Let ε(X) denote the set of all weak order units of X . If ε(X) 6= ∅
then for every x > 0 there exists y ≥ 0 with y /∈ ε(X) such that x ∨ y ∈ ε(X)

(equivalently, xdd ⊃ yd).

Proof: Assume that x /∈ ε(X) and let 0 < e ∈ ε(X). It follows that for all n ∈ N

we have (e − nx)+ > 0. Since X is Archimedean, we have (e − mx)− > 0 for some
m ∈ N; in particular, y := (e − mx)+ is not a weak order unit of X . We claim
that x ∨ y ∈ ε(X). Indeed, if (x ∨ y) ∧ z = 0 for some z ∈ X then mx ∧ z = 0 and
therefore (y +mx) ∧ z = 0; consequently, e ∧ z = 0, whence z = 0. �

Remark 1.9. If X is a separable Banach lattice then we have a stronger form of
the above result: For every positive x which is not a weak order unit of X there
exists a weak order unit e > 0 with x ∧ (e − x) = 0 (i.e. x ∈ Be). To prove this
use the fact that any maximal disjoint system in X (containing x, for example) is
countable.

2. Riesz spaces with sufficiently many projections.

In the first theorem of this section we describe Riesz spaces with SMP in terms
of ideals of P(X) introduced before Definition 1.1. Such a description enables us to
link SMP both with g-disjointness of elements of X and X+-denseness of Pe in Be,
as presented in the second theorem. As before, if required, X is Archimedean. Our
first result follows, among others, that P(X) is sufficiently rich to determine x+ by
x provided X has SMP (part (iv)). Observe that in the case of X with PPP, the

ideal JP(x
dd) contains the greatest element Px (= the band projection onto xdd),

thus the statement (ii)–(v) hold automatically.

Proposition 2.1 (cf. [5, Proposition 3.3]). The following conditions are equivalent.
(The “sup” in conditions (ii)–(v) is taken in X+.)

(i) X has SMP (thus, X satisfies the equivalent assertions of Lemma 1.5).
(ii) For every band A of X and any x ∈ A+ we have x = sup{Px : P ∈ JP (A)}.
(iii) For every e ∈ X+ and any u ∈ Be we have u = sup{Pe : P ∈ JP (u

dd)}.
(iv) For every x ∈ X we have x+ = sup{Px : P ∈ JP ((x

+)dd)}.
(v) For every x ∈ X+ we have x = sup{Px : P ∈ JP (x

dd)}.

Proof: We shall prove that the following implications hold:
(i) ⇔ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (ii).
(i) implies (ii). Let y ∈ X+ and x − Px ≥ y for every P ∈ JP(A). We shall

show that y = 0, i.e. inf{x − Px : P ∈ JP(A)} = 0. We have x − Px ∈ P cX for
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all P ∈ JP(A), whence, by assumption and Lemma 1.4 (iv), y ∈ Ad. On the other

hand, since x ∈ A+, we have y ∈ A; consequently, y ∈ A ∩ Ad = {0}.

(ii) implies (i). Let A be a band of X . We shall prove that (ii) follows A∩ [A]d =
{0} and therefore (as Ad ⊆ [A]d, see Lemma 1.2) we have A = [A]dd; in other

words, A is generative. If 0 ≤ x ∈ A ∩ [A]d then, by Lemma 1.2 (i), Px = 0 for
every P ∈ JP(A); now (ii) yields x = 0.

(iii) implies (ii). It follows by Lemma 1.2 (ii), as x ∈ A implies xdd ⊂ A.

(ii) implies (iii). By (ii), u = sup{Pu : P ∈ JP(u
dd)}, thus Corollary 1.3

implies (iii).

(iii) implies (iv). Let e = |x| = x++ x−. We have x+, x− ∈ Be and x− ∈ (x+)d.
It follows, by Corollary 1.3, that for every P ∈ JP((x

+)dd) we have Px = 0, whence
Px+ = Pe = Px; now (iii) implies (iv).
(iv) implies (v). Obvious.

(v) implies (ii). It follows by Lemma 1.2 (ii), as x ∈ A implies xdd ⊆ A. �

The rest of this section is mainly devoted to the study of SMP in Riesz spaces
with weak order units.

Proposition 2.2. Consider the following conditions.

(i) X has SMP.
(ii) For every e ∈ X+, Pe is X+-dense in Be.
(iii) Every pair of disjoint elements of X is g-disjoint.

We have (i) ⇒ (ii) ⇔ (iii). Moreover, if X has a weak order unit then all three
conditions are equivalent.

Proof: By Proposition 2.1 (iii), (i) implies (ii). The equivalence of (ii) and (iii) is
followed by Lemma 1.7. In fact, the implication (iii) ⇒ (ii) is obvious, and putting
e = |x|+ |y| whenever |x| ∧ |y| = 0 we obtain that (ii) implies (iii). Now let X have
a weak order unit. To prove that in this case (iii) implies (i) it suffices to show,
by Lemma 1.5, that any nontrivial principal band contains a nontrivial projection
band. Let x ∈ X+ \ {0} and consider the principal band xdd. We may assume that
x is not a weak order unit of X . By Lemma 1.8, there exist two strictly positive
elements y, z in X with xdd ⊃ yd ∋ z. By (iii), there is a nontrivial (containing z)

generative band A with y ∈ Ad. Thus, xdd ⊃ yd ⊃ A ⊃ B for some nontrivial
projection band B. �

Combining the above result with Proposition 0.1 we get

Corollary 2.3 ([8, Theorem 1.6.2]). In Riesz spaces with weak order units, (SF)L
implies SMP.

Remark 2.4. The second part of Proposition 2.2 (and its proof) cannot be reduced
to the case where e is a weak order unit; in other words, the denseness of Pe in Be

for some weak order unit e does not imply the denseness of P(X) in B(X). Indeed,
Be may even be trivial and equal to Pe, as in the case of the Riesz space C[0, 1],
which obviously has no SMP, and e = 1[0,1] (the constant-one function on [0, 1]).
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The following observation explains the role of the above example. It is readily
seen that if e is a weak order unit then the mapping h : Be → A(X) of the form
h(u) = udd is a Boolean isomorphism into. Since (Px)dd = xdd ∩PX holds for any
P ∈ P(X) and x ∈ X+, h restricted to Pe is onto B(X). Thus, if Pe is dense in Be

then B(X) is dense in h(Be); however, in general h(Be) is not a dense subalgebra
of A(X), as the example given in Remark 2.4 shows. Nevertheless, by the above
observation, Proposition 0.1, Proposition 2.2 and Corollary 2.3, we have

Corollary 2.5. Let e be a weak order unit of X . If X has SMP then h(Be) is
a Boolean dense subalgebra of A(X). Moreover, if X is a δ-space then we have
additionally h(Be) = B(X).

Recall (see [9, Chapter 20]) that an order bounded operator T on X is called an
orthomorphism provided T is band preserving or, equivalently, x ∧ y = 0 implies
|Tx| ∧ y = 0. The set Orth (X) of all orthomorphisms on X forms an Archimedean
Riesz space with

(2) (T1 ∨ T2)x = T1x ∨ T2x and (T1 ∧ T2)x = T1x ∧ T2x for all x ∈ X+,

and I (= the identity on X) is a weak order unit of Orth (X). An orthomorphism
T is called central if |T | ≤ λ · I for some λ ≥ 0, and the set Z(X) of all central
orthomorphisms on X is an order ideal of Orth (X). It is readily seen that if X is
(σ-)Dedekind complete then Orth (X) is (σ-)Dedekind complete as well, and it is
proved in [9, Exercises 140.12 and 140.13 (v)] that both uniform completeness and
projection property are heredited by Orth (X). In the last theorem of this section
we shall prove that the same holds for SMP.

Proposition 2.6. If X has SMP then both every order ideal of X and Orth (X)
(as well as Z(X)) have SMP.

Proof: Let Y be an order ideal of X and let A ∈ A(Y ). By assumption, the band
Add of X contains a nontrivial projection band B. We have B ∩ A 6= {0} (if not,
then by [6, Theorem 19.3 (iv)], B∩Add = {0}, a contradiction), and so B1 := B∩Y
is a nontrivial projection band in Y (see the proof of Lemma 1.4). We claim that

B1 ⊂ A, equivalently BD
1 ⊃ AD , but this is evident, as B ∩ Y dd = B implies (by

[6, Theorem 19.3 (iv)]) BD
1 = (B ∩ Y dd)d ∩ Y = Bd ∩ Y ⊃ Ad ∩ Y = AD . Thus we

have proved that B(Y ) is Boolean dense in A(Y ), i.e. Y has SMP.
In proof of the second part of our theorem we shall employ Lemma 1.8. Let

T ∈ Orth (X). By Lemma 1.5 (v), we have to show that T dd contains a nontrivial
projection band. Without loss of generality we may assume that T is not a weak
order unit of Orth (X). By Lemma 1.8, there exists T1 > 0 which is not a weak
order unit of Orth (X) with

(3) T dd ⊃ T d
1 .

By assumption, there is a band projection P on X with ker P ⊂ ker T1 (as, by [9,
Theorem 140.5 (i)], ker T1 is a band of X) which, by (2), implies that

(4) T d
1 ⊃ P d.
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Now observe that P d is a projection band of Orth (X), since P d = {S ∈ Orth (X) :

PS = SP = 0} = {S : P̂ (S) = 0} = ker P̂ , where P̂ is the band projection of

Orth (X) defined by the formula P̂ (S) = PS. Thus, by (3) and (4), T dd contains
a nontrivial projection band, as required. By the first part of our theorem, Z(X)
has SMP as well. �

3. Weak Freudenthal property.

In this section we study connections between WFP and (WF)V . We start with
a lemma which will simplify the proof of the next theorem.

Lemma 3.1. (a) The property given in the part (iii) (or equivalently, (ii)) of
Proposition 2.2 is heredited by order ideals.

(b) The following conditions are equivalent:

(i) (WF)V holds for X .
(ii) For every e ∈ X+, every pair of disjoint elements of the principal ideal Ae

is g-disjoint (in Ae).

It follows that if Pe is X+-dense in Be for every e ∈ X+ then (WF)V holds for X .

Proof: (a) Assume that Y is an order ideal ofX and that any two disjoint elements
of X are g-disjoint. Let y1 and y2 be disjoint elements of Y . By assumption, there
exists a generative band A in X with y1 ∈ A and y2 ∈ Ad. Putting C = A ∩ Y we
see that, by Lemma 1.4, C is a nonempty generative band of Y with y1 ∈ C and
y2 ∈ CD; thus, y1 and y2 are g-disjoint in Y .

(b) This part is followed by Proposition 0.1, Proposition 2.2 and part (a). �

We shall now present the main result of this section, which is a counterpart of
Proposition 3.3 and Theorem 3.8 of [5]. The equivalence of the parts (i) and (iii)
gives a full description of the relations between WFP and (WF)V .

Proposition 3.2. The following conditions are equivalent.

(i) X has WFP.
(ii) Pe is X+-dense in Be for every e ∈ X+.
(iii) (WF )V holds for X and Pe is Boolean dense in Be for every e ∈ X+.
(iv) Every pair of disjoint elements of X is g-disjoint.
(v) For every x ∈ X we have x+ = sup{Px : Px− = 0 and P ∈ P(X)}.

Proof: We shall prove that the following relations hold:
(i) ⇒ (ii) ⇒ (iii) ⇒ (i) and (iv) ⇔ (ii) ⇔ (v).
(i) implies (ii). Let u ∈ Be for some e ∈ X+ and put E = [0, u] ∩ linPe. Let

lin+Pe denote the set of all linear and positive combinations of orthogonal elements
of Pe. It is easy to check that (linPe)

+ = lin+Pe, whence E = [0, u]∩lin+Pe. Now
let y be a fixed element of E; thus y =

∑n
i=1 λiPie for some λi > 0, i = 1, 2, . . . , n,

and Pie ∧ Pje = 0 for i 6= j. Note that without loss of generality we may assume
that Pi⊥Pj , i.e. PjPi = 0, which follows Q :=

∑n
i=1 Pi ∈ P(X). Since e ≥ u ≥
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λiPie = (λiPi(e−u))∨(λiPiu), we have λi ≤ 1 and 0 = u∧(e−u) ≥ λiPi(e−u) ≥ 0,
whence

(5) Pie = Piu for i = 1, 2, . . . , n.

By (5), we have u ≥ Qu = Qe ≥
∑n

i=1 λiPie = y, thus, by part (i), u = supX+ E =

supX+{Pe : Pe ≤ u}. In other words, Pe is X+-dense in Be, as claimed.
(ii) implies (iii). Obviously (ii) implies the second part of (iii), and the first one

is followed by Lemma 3.1 (b).
(iii) implies (i). We have to show that linPe is order dense in Ae. An inspection

of the proof of ([8, Lemma 2.1]) shows that a somewhat general result than given
there is true: Let B be a Boolean subalgebra of Be. Then linBe is an order dense
sublattice of Ae iff for every x ∈ A+e there are u ∈ B and λ > 0 with λ ·u ≤ x. Now
this result and part (iii) easily imply part (i).
The parts (ii) and (iv) are equivalent by Proposition 2.2.
(ii) and (v) are equivalent. Fix x ∈ X and put e = |x|, u = x+. By Corollary 1.3,

we have

(6) {P ∈ P(X) : Px = 0} = {P ∈ P(X) : P |x| ≤ x+},

thus (ii) and (6) imply (v). If u ∈ B(X) then for x = 2u − e = u − (e − u) we have
x+ = u and x− = e − u, and so |x| = e; now (6) and (v) imply (ii). �

Proof of THEOREM: It follows by Propositions 2.2 and 3.2. �

By Lemma 3.1 (a) and Proposition 3.2, we obtain

Corollary 3.3. WFP is heredited by order ideals.

Theorem 2.3 of [8] states that if a Riesz space X has a strong order unit then
(WF)V holds for X iff X has SMP; thus, by THEOREM, we have

Corollary 3.4. If X has a strong order unit then (WF)V and WFP coincide (via
SMP).

Corollary 3.5. If X has SMP then for every T ∈ Orth (X) we have T+ =
sup{PT : PT− = 0 & P ∈ P(X)}.

Proof: By Proposition 2.6 and THEOREM, WFP holds for Orth (X), thus the
result is implied by Proposition 3.2 (iv) and (unique) representation of elements
P(Orth (X)) by elements of P(X) (this is followed by the relationOrth (Orth (X))=
Orth (X); see [9, Theorems 140.9 and 141.1]). �

Remark 3.6. Using some representation theorems Veksler has constructed two
Riesz spaces X and Y with the following properties:

(A) X has a weak (but not strong) order unit e and (WF)V holds for X = edd,
but X fails to have SMP ([8, Example 3.3]);

(B) Y has no weak order unit, possesses the property δ (equivalently, by Propo-
sition 0.1, (SF)L holds for Y ) and fails to have SMP ([8, Example 3.4]).
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(A) proves that
(i) WFP is essentially stronger than (WF)V (in fact, by THEOREM, X fails to

have WFP as well, and obviously WFP implies (WF)V in general),
(ii) WFP cannot be lifted from principal ideals to principal bands (this is a simple

consequence of Proposition 0.1 and Corollary 3.4 applied to Ae and edd = X), and,
by Proposition 3.2,
(iii) in contrast to WFP, (WF)V for X does not imply that for every e ∈ X+,

Pe is Boolean dense in Be.

(B) shows that
(iv) WFP is essentially stronger than SMP,
(v) (together with Corollary 3.4 and Example 4.2 (a) (or 4.3)) there are no con-

nections between (SF)L and SMP, in general (cf. Corollary 2.3).

In the next theorem we collect main results of the paper (see (∗) and (∗∗) in
Section 0, THEOREM, Corollary 2.3, Proposition 3.2, and Corollary 3.4). For this
purpose let (BD) (= Boolean denseness) denote the property Pe is Boolean dense
in Be for every e ∈ X+ (see Proposition 3.2 (iii)).

Theorem 3.7. The following relations hold, in general:

PPP
⇒ SMP ⇒

⇒ (SF)L ⇒
WFP⇔ (WF)V & (BD)⇒ (WF)V .

If X has a weak order unit then, additionally,

(SF)L ⇒ SMP⇔WFP,

and if X has a strong order unit then SMP ⇔ WFP ⇔ (WF)V . By Remark 3.6,
all implications are strict.

4. Examples.

In this section we give several examples of Riesz spaces which have SMP and
fail to have (SF)L or PPP (see the diagram in Theorem 3.7). All examples are
dependent upon the results collected in the lemma below. Recall that a compact
Hausdorff space Ω is [quasi-] Stonean if every open [open and Fσ] subset of Ω has
an open closure; it is an F -space if every two disjoint and open Fσ subsets of Ω have
disjoint closures. Ω is zero-dimensional if it possesses a base of closed-open subsets.
We have: Stonean ⇒ quasi-Stonean ⇒ F -space (see [7, p. 432]). Recall also that
for C(Ω)-spaces the notions of PPP and σ-Dedekind completeness (as well as SMP
and WFP, see Theorem 3.7) coincide ([6, Theorem 43.2]).

Lemma 4.1. (i) Every discrete (i.e. possessing a maximal disjoint system consisting
of discrete elements) Archimedean Riesz space has SMP.
(ii) C(Ω) is Dedekind complete [has PPP, (SF)L holds for C(Ω), C(Ω) hasWFP]

iff Ω is Stonean [quasi-Stonean, zero-dimensional F -space, zero-dimensional].
(iii) The Cartesian product of two infinite compact spaces cannot be an F -space.
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(iv) Any closed subspace of an F -space is an F -space.

Proof: Part (i) is followed by [1, Theorem 2.16], while (ii) is included in Theo-
rem 1.3 of [8](the parts (5)–(8)) (cf. [6, Section 43]). The part (iii) goes back to
W. Rudin ([2, p. 50]). For (iv) see [7, Proposition 24.2.5]. �

In the first example, discrete Archimedean Riesz spaces which, by Lemma 4.1 (i),
have SMP (and therefore have WFP also), are given. Call X to have strict WFP if
X has WFP and (SF)L does not hold for X .

Example 4.2. Let A be an infinite set. Then for every [finite] compactification r
of the discrete space A, the Riesz space C(rA) has SMP [strict WFP].

Parts (ii)–(iv) of Lemma 4.1, and THEOREM yield the following

Example 4.3. (a) LetD denote the discrete space consisting of two distinct points,
and let m be a cardinal number. Then for every m ≥ ℵ0, C(D

m) has strict WFP;
in particular, C(∆) is of this type, where ∆ is the Cantor set.

(b) Let A be as in Example 4.2, and let βA denote its Stone-Čech compactifi-
cation.Then for every closed infinite subspace K of βA, C(K) has (SF)L, while for
m ≥ 2, C(Km) has strictWFP (notice that C(βA) (= l∞(A)) is Dedekind complete
and, by [7, Propositions 16.5.6 and 24.2.4], C(βA \ A) fails to have PPP).

Ω is said to be dyadic if there is a continuous mapping from Dm onto Ω for
some m ≥ ℵ0. It is well known that every metric compact space is dyadic. Efi-
mov and Engelking have proved that infinite dyadic spaces are not quasi-Stonean
and that every compact metrizable subspace X of Dm is dyadic ([4, Theorem 12
and Corollary 8, respectively]). The last example is based on these results (see
Lemma 4.1 (ii)).

Example 4.4. Let Ω be infinite, zero-dimensional and dyadic. Then C(Ω) has
WFP and fails to have PPP; in particular, every closed metrizable subspace Ω of
Dm is of this type.
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