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Copure injective resolutions, flat resolvents and dimensions

Edgar E. Enochs, Overtoun M.G. Jenda

Abstract. In this paper, we show the existence of copure injective preenvelopes over noe-
therian rings and copure flat preenvelopes over commutative artinian rings. We use this
to characterize n-Gorenstein rings. As a consequence, if the full subcategory of strongly
copure injective (respectively flat) modules over a left and right noetherian ring R has
cokernels (respectively kernels), then R is 2-Gorenstein.
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1. Introduction.

R will denote an associative ring with a unit element and all modules are unitary.
Module and noetherian will mean left R-module and left noetherian respectively.

A submodule A of B is said to be a copure submodule if B/A is injective, and
a module M is said to be copure injective if it is injective with respect to all copure
submodules. These modules were introduced and studied in Enochs-Jenda [6]. It
is easy to see that copure injective modules are precisely those modules M such
that Ext1(E,M) = 0 for all injective R-modules E. Therefore, over principal ideal
domains, copure injective modules are precisely injective modules. We will say that
M is strongly copure injective if Exti(E,M) = 0 for all injective R-modules E for
all i ≥ 1.

A module M is said to be copure flat if it is flat with respect to all copure sub-
modules. It is again easy to see that M is copure flat if and only if Tor1(E,M) = 0
for all injective right R-modules E. We will say that M is strongly copure flat if
Tori(E,M) = 0 for all injective right R-modules E for all i ≥ 1. A submodule
A ⊂ B is said to be E-pure if 0→ E ⊗A→ E ⊗B is exact for all injectives E.

A map ψ :M → C where C is strongly copure injective (respectively flat) is said
to be a copure injective (respectively flat) preenvelope if any diagram

M -ψ C

? . .
. .
. .
.

	
C′
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with C′ strongly copure injective (respectively flat) can be completed. If further-
more, the diagram

M -ψ C

?
ψ

.
. .
. .
. .

	
C

can only be completed by automorphisms of C, then the map ψ : M → C is said
to be a copure injective (respectively flat) envelope.

In this paper, we show that if R is noetherian, then every R-module has a copure
injective preenvelope (Theorem 2.2). We note that any copure injective preenvelope
M → C is a monomorphism since the injective envelope of M is strongly copure
injective.

An exact sequence 0 → M → C◦ → C1 → · · · where M → C◦, Coker(M →
C◦) → C1, Coker(Cn−1 → Cn) → Cn+1 for n ≥ 1 are copure injective preen-
velopes is called a copure injective resolution of M . If there is a copure injective
resolution 0 → M → C◦ → C1 → · · · → Cn → 0, we say that M has copure
injective dimension (cid) ≤ n. In Theorem 2.5, we show the existence of copure
flat preenvelopes over commutative artinian rings. In this case, we define a copure
flat resolvent (see Enochs [3]) of an R-module M to be a sequence (not necessar-
ily exact) 0 → M → T ◦ → T 1 → · · · where M → T ◦, Coker(M → T ◦) →
T 1, Coker(Tn−1 → Tn) → Tn+1 for n ≥ 1 are copure flat preenvelopes. The
meaning of copure flat resolvent dimension of M is now clear.

We define copure flat dimension (cfd) of an R-module M for any ring R to be
the largest positive integer n such that Torn(E,M) 6= 0 for some injective right
R-module E. If M is strongly copure flat, then we set cfdM = 0.

In Section 3, we study copure injective and flat dimensions. The results of this
section are then used to characterize n-Gorenstein rings (i.e. R is left and right
noetherian, idRR ≤ n and idRR ≤ n, (see Iwanaga [8])) in terms of copure injective,
copure flat, and copure flat resolvent dimensions.

Exti(N,M),Tori(N,M) will denote Ext
i
R(N,M),Tor

R
i (N,M) respectively and

the character module HomZ(M,Q/Z) will be denoted by M+.

2. Copure injective and flat preenvelopes.

We start with the following

Lemma 2.1. Let R be noetherian and let ℵα be an infinite cardinal. Then there

is an infinite cardinal ℵβ such that if C is a strongly copure injective R-module and
S ⊂ C is a submodule with CardS ≤ ℵα, then there is a strongly copure injective

submodule D of C containing S with CardD ≤ ℵβ .

Proof: Since R is noetherian, there is a representative set {Xk} of injective R-
modules (see Gabriel [7]). Therefore, to show that an R-module M is strongly
copure injective, it suffices to show that Exti(⊕Xk,M) = 0 for all i ≥ 1. So let
· · · → P1 → P0 → ⊕Xk → 0 be a projective resolution of ⊕Xk. We note that for
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each syzygy Kj , Ext
i(Kj , C) = 0 for all i ≥ 1 since C is strongly copure injective.

So for each j ≥ 1, the diagram

Kj - Pj−1

? . .
. .
. .
.

	
C

can be completed into a commutative diagram.
We now construct D in steps. First, we set S = S0 and consider the maps

σ : Kj → S0. Then σ can be extended to σ
′ : Pj−1 → C. Let S1 = S0+

∑
σ′(Pj−1),

sum over σ ∈ Hom(Kj , S0), j ≥ 1. Then we construct S2 from S1 in the same way
and so on. Now define Sα =

⋃
β<α Sβ if α is a limit ordinal. Let λ be the least

limit ordinal which is not cofinal with any ordinal whose cardinality is less or equal
to

∑
j CardKj . Hence if σ ∈ Hom(Kj , Sλ), then σ(Kj) ⊂ Sβ for β < λ for each

j ≥ 1. Then σ can be extended to σ′ : Pj−1 → Sβ+1 with β+1 < λ. So let D = Sλ.
Then we see from the construction that S ⊂ D ⊂ C, D is strongly copure injective,
and CardD ≤ ℵβ. �

Theorem 2.2. Let R be noetherian. Then every R-module has a copure injective
preenvelope.

Proof: The lemma above shows that if M is an R-module with CardM ≤ ℵα,
then for any homomorphism M → C with C strongly copure injective, there is
a homomorphism M → D,D ⊂ C, D strongly copure injective, and CardD ≤ ℵβ

which agrees with the map M → C. Now we set two such homomorphisms M →
D,M → D′ equivalent if the diagram

M - D

@
@

@

w

...........?
D′

can be completed by an isomorphism. If X is the set of representatives of such
homomorphismsM → D, thenM →

∏
D∈X D is a strongly copure injective preen-

velope.
�

Remark. It follows from the proof of Proposition 6.1 of Enochs [3] that if R is
noetherian and every projective limit of strongly copure injective R-modules is
strongly copure injective, then every R-module has a copure injective envelope.

Lemma 2.3. Let R be right noetherian, {Xk} be a representative set of injective
right R-modules on N = ⊕Xk. If ℵα is an infinite cardinal, then there is an

infinite cardinal ℵβ such that if M is a strongly copure flat R-module and S ⊂ M
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is a submodule with Card S ≤ ℵα, then there is a T with S ⊂ T ⊂ M and

Card T ≤ ℵβ such that S ⊂ T induces the zero map

Tori(N,S)→ Tori(N,T ) for all i ≥ 1.

Proof: We first note that M is strongly copure flat if and only if Tori(N,M) = 0
for all i ≥ 1.
Let · · · → P1 → P0 → N → 0 be a projective resolution of N . Then

Card Tori(N,S) ≤ Card (Pi⊗N). Hence given ℵα, there exists an infinite cardinal
ℵδ ≥ ℵα such that if Card S ≤ ℵα then Card Tori(N,S) ≤ ℵδ for all i ≥ 1.
Now note that 0 = Tori(N,M) ∼= lim→ Tori(N,S

′) (i ≥ 1) where the limit is over
all S′ with S ⊂ S′ ⊂M and with S′/S finitely generated. Hence for z ∈ Tori(N,S),
there is an S′ such that Tori(N,S)→ Tori(N,S

′) maps z to 0. Choosing one such
S′ for each z and letting T be the sum of the S′’s chosen, we see that

Tori(N,S)→ Tori(N,T )

is the zero map for all i ≥ 1.
Now it is easy to see that we can choose ℵβ ≥ ℵα so that Card T ≤ ℵβ whenever

Card S ≤ ℵα (no matter what choice of S
′’s we make). �

Lemma 2.4. Let R be right noetherian and let ℵα be an infinite cardinal. Then

there is an infinite cardinal ℵβ such that if M is a strongly copure flat R-module
and S ⊂ M is a submodule with Card S ≤ ℵα, then there is a strongly copure flat

submodule T of M containing S with Card T ≤ ℵβ .

Proof: We use the notation in Lemma 2.3 above. Let α0 = α and α1 = β. Let α1
play the role of α and α2 be the new β guaranteed by the lemma. Repeating the
procedure, we get ℵα0 ,ℵα1 . . . with obvious properties. Then given S ⊂ M with
Card S ≤ ℵα = ℵα0 , let S0 = S and find S1, S2, . . . with S1 ⊂ S2 ⊂ · · · ⊂ M such
that Card Sj ≤ ℵαj

and such that Sj ⊂ Sj+1 induces the zero map

Tori(N,Sj)→ Tori(N,Sj+1) for all i ≥ 1.

So let T =
⋃
∞

j=1 Sj . Then

Tori(N,T ) = lim
→j

Tori(N,Sj) = 0 for all i ≥ 1.

Thus T is strongly copure flat. Furthermore, if we set ℵβ = supj ℵαj
, then Card T ≤

ℵβ . �

Theorem 2.5. If R is a commutative artinian ring, then every R-module has
a copure flat preenvelope.

Proof: E(R/m) is finitely generated for each m ∈ mSpecR since R is commuta-
tive artinian. So the product of strongly copure flat R-modules is strongly copure
flat by induction on Theorem 2.2 of Lenzing [11]. Then the theorem follows from
Lemma 2.4 as in the proof of Theorem 2.2. �
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3. Dimensions.

We start with the following

Lemma 3.1. Let R be noetherian. Then the following are equivalent for an R-
module M .

1) cidM ≤ n;
2) Exti(E,M) = 0 for all injective R-modules E for all i ≥ n+ 1;

3) Every nth cosyzygy of M is strongly copure injective.

Proof: 1 ⇔ 2. Let 0 → M → C◦ → C1 → · · · → Cn−1 → D → 0 be an exact
sequence with C◦, C1, · · · , Cn−1 strongly copure injective. Then Extj+n(E,M) ∼=
Extj(E,D). Thus the result follows. The same proof gives 2⇔ 3. �

Remark. We note that the copure injective dimension of an R-module M can be
considered as the largest positive integer n such that Extn(E,M) 6= 0 for some
injective module E. Taking this as a definition of copure injective dimension, one
may drop the noetherian condition in Lemma 3.1 above.

Corollary 3.2. If idM <∞, then cidM = idM .

Proof: cidM ≤ idM follows from the lemma above since injectives are copure
injectives. Now suppose cidM = n. Then Exti(E,M) = 0 for all injectives E and
for all i ≥ n+ 1. But idM <∞. So idM ≤ n by Lemma 2.2 of Jenda [9]. �

We also have the following

Lemma 3.3. The following are equivalent for a module M over any ring R.

1) cfdM ≤ n;
2) Tori(E,M) = 0 for all injective right R-modules E for all i ≥ n+ 1;

3) Every nth syzygy of M is strongly copure flat.

Proof: 1⇔ 2 by definition.

2⇔ 3. We simply note that if Kn is an n
th syzygy of M , then Torj+n(E,M) ∼=

Torj(E,Kn). So the result follows. �

Remark. If R is noetherian and M is a finitely generated R-module, then

Tori(E,M) ∼= Tori(Hom(R,E),M) ∼= Hom(Ext
i(M,R), E)

for any injective right R-module E. So in this case, copure flat dimension coincides
with Gorenstein dimension (G − dim) if the latter is finite (see Auslander-Bridger
[1, p. 95]).

Lemma 3.4. Let M be an R-module. Then

cfdM = cidM+.

Proof: This follows from the standard isomorphism Tori(E,M)
+ ∼= Exti(E,M+).

�
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Proposition 3.5. Let 0→ M → C◦ → C1 → · · · be a copure injective resolution
of an R-module M . Then the sequence 0→ T ⊗M → T ⊗ C◦ → T ⊗ C1 → · · · is
exact for all right strongly copure flat R-modules T .

Proof: Let Si(M) = Ker(Ci → Ci+1), i ≥ 1 and S◦(M) = M . We consider the
short exact sequence 0→ Si(M)→ Ci → Si+1(M)→ 0. Then 0→ T ⊗ Si(M)→
T ⊗ Ci → T ⊗ Si+1(M) → 0 is exact if and only if 0 → (T ⊗ Si+1(M))+ →
(T ⊗ Ci)+ → (T ⊗ Si(M))+ → 0 is exact. But the latter is equivalent to 0 →
Hom(Si+1(M), T+)→ Hom(Ci, T+)→ Hom(Si(M), T+)→ 0 being exact. So the
result follows since T+ is strongly copure injective by Lemma 3.4. �

Lemma 3.6. Let R be a commutative artinian ring. Then

cidM = cfdM+

Proof: We note that if E is injective, then

Tori(E,M
+) ∼= Tori(E(R/m),M

+), over m ∈ mSpecR

∼= Exti(E(R/m),M)+ since E(R/m)

is finitely generated.
On the other hand, Exti(E,M) ∼=

∏
Exti(E(R/m),M). So Tori(E,M

+) = 0 if
and only if Exti(E,M) = 0. �

Proposition 3.7. Let R be a commutative artinian ring and 0 → M → T ◦ →
T 1 → · · · be a copure flat resolvent of M . Then 0 → M ⊗ C → T ◦ ⊗ C →
T 1 ⊗ C → · · · is exact for all strongly copure injective R-modules C.

Proof: The result follows as in Proposition 3.5 above since C+ is strongly copure
flat by Lemma 3.6. �

4. Gorenstein rings.

We are now in a position to prove the following

Theorem 4.1. The following are equivalent for a left and right noetherian ring R.

1) R is n-Gorenstein.
2) cidM ≤ n for all R-modules (left and right) M .

3) Every nth cosyzygy of an R-module (left and right) is strongly copure in-
jective.

4) cfdM ≤ n for all R-modules (left and right) M .
5) cfdM ≤ n for all finitely generated R-modules (left and right) M .

6) Every nth syzygy of an R-module (left and right) is strongly copure flat.

7) Projective resolutions of the nth syzygies of finitely generated R-modules
(left and right) are projective resolvents.

Furthermore, if R is commutative artinian, then the above statements are equiv-
alent to

8) Copure flat resolvent dimension of each R-module is at most n.
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Proof: 1 ⇔ 2 ⇔ 3. R n-Gorenstein means pdE ≤ n for all injective R-modules
(left and right) by Jensen [10, Theorem 5.9]. So the equivalences follow from
Lemma 3.1.

1 ⇔ 4 ⇔ 6. This easily follows from Lemma 3.3 as above and Enochs-Jenda [4,
Theorem 4.4].

4⇔ 5 is trivial since Tor commutes with direct limits.

5 ⇔ 7. If M is finitely generated, then Exti(M,−) commutes with direct sums
(see Lenzing [11, Theorem 2]). So Exti(M,R) = 0 if and only if Exti(M,P ) = 0
for all projectives P . Therefore by the remark after Lemma 3.3, Tori(E,M) = 0
for all injectives E if and only if Exti(M,P ) = 0 for all projectives P , So the result
follows as in Lemma 2.1 of Enochs-Jenda [5].

2 ⇔ 8. Propositions 3.5 and 3.7 show that if R is a commutative artinian ring
andM,N are R-modules, then M ⊗N is right balanced by copure inj × copure flat
in the language of Enochs-Jenda [4] and so right derived functors Tori(M,N) can
be computed using either copure injective resolutions ofM or copure flat resolvents
of N . So cidM ≤ n if and only if copure flat resolvent dimension of N is at most n.

�

Corollary 4.2. Let R be left and right noetheiran. Then the following are equiv-
alent.

1) R is 1-Gorenstein.
2) Every copure injective R-module (left and right) is strongly copure injective.
3) Every copure flat R-module (left and right) is strongly copure flat.
4) Every homomorphic image of a copure injective R-module (left and right)
is copure injective.

5) Every submodule of a copure flat R-module (left and right) is copure flat.

In this case, the full subcategories of copure injective modules (left and right)
and copure flat modules (left and right) have cokernels and kernels respectively.

Proof: 1⇒ 2, 3 follow from the theorem above.

2⇒ 1. LetM be an R-module. Consider the short injective resolution 0→ M →
E◦ → D → 0. Let E◦ → D be an injective precover and K = Ker(E◦ → D). Then
E◦ → D is surjective and so Exti+1(E,K) ∼= Exti(E,D) for i ≥ 1. But K is copure
injective (see Enochs-Jenda [6, Lemma 2.1]). So D is strongly copure injective.
Thus every first cosyzygy is strongly copure injective. So the result follows from
the theorem.

3⇒ 1. Now we consider the short projective resolution 0→ K → P◦ →M → 0.
LetK → F ◦ be a flat preenvelope. ThenK → F ◦ is 1−1 and so Tori+1(E,F

◦/K) ∼=
Tori(E,K) for i ≥ 1. But F

◦/K is copure flat by Enochs-Jenda [4, Proposition 3.3].
So K is strongly copure flat. Thus the result follows from the theorem.

1 ⇔ 4. The same proof as the commutative version in Enochs-Jenda [6, Corol-
lary 3.4] noting that R is 1-Gorenstein if and only if pdE ≤ 1 for all injective
modules (left and right) E.
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1⇒ 5. Let S be a submodule of a copure flat R-moduleM and E be an injective
right R-mdoule. We have an exact sequence

· · · → Tor2(E,M)→ Tor2(E,M/S)→ Tor1(E,S)→ Tor1(E,M) = 0.

But Tor2(E,M/S) = 0 since pdER ≤ 1. So S is copure flat. Similarly for right
R-modules.

5 ⇒ 1. Consider a short projective resolution 0 → K → P◦ → M → 0 of M .
Then Tor2(E,M) ∼= Tor1(E,K). So if every submodule of copure flat is copure flat,
then Tor2(E,M) = 0 for all R-modules M and for all injective right R-modules E.
Therefore pdER ≤ 1 for all such E and so idRR ≤ 1. Similarly idRR ≤ 1.

The remaining statements of the corollary easily follow from the parts (4) and (5).
�

The following is analogous to a result of Bernecker [2].

Corollary 4.3. Let R be left and right noetherian. If the full subcategory of
strongly copure injective (respectively flat) R-modules has cokernels (respectively
kernels), then R is 2-Gorenstein.

Proof: Let C → D be a cokernel of C′ → C with C′, C strongly copure injec-
tive and E be an injective generator. Then 0 → Hom(D,E) → Hom(C,E) →
Hom(C′, E) is exact implies that C → D is onto. So cokernels are surjective.

Therefore, every 2nd cosyzygy is strongly copure injective by assumption. Thus R
is 2-Gorenstein by the theorem above. Similarly for strongly copure flat modules.

�

Remark. It is easy to check that if the full subcategory of strongly copure injective
(respectively flat) R-modules (left and right) has kernels (respectively cokernels),
then it has cokernels (respectively kernels) and thus R is 2-Gorenstein.
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