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Dirac operators on hypersurfaces

Jaroĺım Bureš

Abstract. In this paper some relation among the Dirac operator on a Riemannian spin-
manifold N , its projection on some embedded hypersurface M and the Dirac operator
on M with respect to the induced (called standard) spin structure are given.
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1. Introduction

The Dirac operator D belongs to intensively studied operators on manifolds. It
usually can be defined on a Riemannian spin-manifold and depends on its spin
structure. For flat space, it is intensively studied in Clifford analysis and solutions
of the equation Dφ = 0, called the Dirac equation (for spinor-valued or Clifford
algebra-valued functions φ) are described in several ways. In the present paper, some
relations among the Dirac operator defined on a given Riemannian spin-manifoldN ,
its projection on some embedded hypersurfaceM and the Dirac operator onM with
respect to the induced spin structure are given. Notations and basic facts from [5]
and [9] (or [6]) are used.

2. General theory

2.1 Clifford algebras and spinors.

Let us introduce only some notations and conventions; more details can be found
e.g. in [9], [2], [6]. A spinor space Sn is an irreducible representation of the Clifford
algebra R0,n, the corresponding Spin representation is simply the restriction of
action ofR0,n to the group Spin (,R)(n) ⊂ R0,n. Action ofR

n ⊂ R0,n on Sn gives
us a bilinear map µ̃ : Rn × S −→ S which induces a linear map µ : Rn ⊗ S −→ S.

2.2 The Dirac operator on Riemannian spin-manifolds.

Let (M, g) be an n-dimensional Riemannian oriented spin-manifold, let P →M be

the principal fibre bundle of orthonormal oriented frames and let P̃ → P be a spin
structure on M . Let ω be an so (,R)(n)-valued 1-form on P which corresponds
to the Levi-Civita connection. Then there exists a unique spin(n)-valued 1-form ω̃

on P̃ which is a lifting of ω and gives a canonical connection on P̃ . We have the
following diagram of maps.

T (P̃ ) -
ω̃ spin (n)

? ?
λ∗

T (P ) -
ω so (,R)(n) .
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The connection ω̃ induces a covariant derivative ∇s on the associated spinor
bundle S over M . The Clifford multiplication µ : Rn ⊗ S −→ S induces a vector
bundle homomorphism µ : TM ⊗ S −→ S. If h is an identification of TM ↔ TM∗

defined by the Riemannian metric then D := µ ◦ (h ⊗ id) ◦ ∇s is called the Dirac
operator on M .
Let us introduce a more convenient notation, namely denote µ(v, ξ) := v • ξ for

v ∈ Rn and ξ ∈ Sn and µ(X, ξ) := X • ξ for a vector field X and a spinor field ξ
on M .
Locally the Dirac operator can be described in the following way:

Theorem 1. Let (e1, e2, ..., en) be a local orthonormal frame on an open subset
U ⊂M . Then we have

D =
n∑

i=1

ei • ∇
s
ei

on U .

2.3 Local computations.

Recall that a basis for spin (n) is {eiej, i < j}. Let s̃ : U → P̃ be a local section
(spin frame) on U . Then we have the following trivializations of bundles on U :

T (U) = U ×Rn, C(U) = U ×R0,n and S(U) = U × S .

For a basis (ξ1, ξ2, ..., ξN) of the spinor space S, let us denote by ξ1 =
[(s̃, ξ1)], ..., ξN = [(s̃, ξN)] the corresponding sections of spinor bundle S on U .
It is possible to write the connection form ω̃ on U in the form

ω̃ =
∑

i<j

ω̃ijeiej ,

where ω̃ij are 1-forms on U . It is convenient to define ω̃ji := −ω̃ij for j > i.

The covariant derivative ∇S corresponding to ω̃ is defined by

∇Sξr =
∑

i<j

ω̃ij [s̃, eiej • ξr] =
∑

i<j

ω̃ijeiej • ξr .

It remains to express the forms ω̃ij using the forms ωij of the Levi-Civita con-
nection. Let U be a simply connected domain. The connection form ω on U has
the following form

ω =
∑

i<j

ωijEij ,

where Eij is a canonical basis for so (,R)(n). Put again ωij := −ωji for i > j. Then
from the diagram 1 we get

λ∗(
∑

i<j

ω̃ijeiej) = 2
∑

i<j

ω̃ijEij =
∑

i<j

ωijEij
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and ω̃ij =
1
2ωij .

For a local orthonormal frame s = (e1, ..., en) on M we have the following for-
mulas:

ωij = g(∇ei, ej) ,

i.e.
ωij(ek) = g(∇ek

ei, ej) := Γ
j
ki

and
∇eiej =

∑

k

Γk
ijek .

If [ep, eq] =
∑

k c
r
pqer then

Γk
ij =

1

2
(cikj − ckji + c

j
ki) .

Finally if we put for ξ ∈ Γ(U, S), ξ =
∑

r α
rξr

Xξ =
∑

r

X(αr)ξr , ej • ξ =
∑

r

αr(ej • ξr) ,

we get

a) a local expression for spinor connection

∇S
X = X(ξ) +

1

2

∑

p<q

ωlm(X)epeq • ξ

b) a local expression for the Dirac operator

Dξ =
∑

j

ej • (ej(ξ) +
1

2

∑

p<q

ωpq(ej)epeq • ξ)

or

Dξ =
∑

j

ej • (ej(ξ) +
1

2

∑

p<q

Γq
jpepeq • ξ) .

3. Differential operators on submanifolds

First of all recall how a differential operator (on functions) on a Riemannian mani-
fold defines an operator (on functions) on any submanifold of N (see [7]).
Let M be a submanifold of a Riemannian manifold N , let P be a differential

operator on N , i.e.
P : C∞c (N)→ C∞c (N) ,

where C∞c (N) denotes the space of all smooth functions on N with a compact
support.
Let us define an operator πMP called the projection of P on M as follows:
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For every point x ∈M , let us construct geodesics in N starting in x and orthogo-
nal toM . Taking small enough pieces of such a geodesics, we get a submanifold V ⊥

x
in N . Moreover for a point y ∈ M we can take a neighborhood U(y) ⊂ M in such

a way that (after a little change if necessary) the submanifolds V ⊥
x for x ∈ U(y) do

not intersect. Then we get a neighborhood Û(y) = ∪x∈U(y)V
⊥
x of y in N . Let us

call such a neighborhood geodesic-tubular neighborhood and write shortly g-tubular
neighborhood of y ∈M in N .
If we have a function F ∈ C∞c (M) and a point y ∈ M , we can extend F/U to

a function F̂
/Û
constantly on every V ⊥

x for x ∈ U(y) and put

πM (P )(F )(y) := P (F̂/Û
)(y) .

The operator P on N does not increase supports, hence the operator πMP is a well
defined operator on M .
Let us denote the Laplace-Beltrami operator on a Riemannian manifold X by

∆X .
Then we have:

Theorem 2 ([7]). Let M be a submanifold of a Riemannian manifold N , then

πM (∆N ) = ∆M .

Remark 3.1. As we shall see later, we can similarly define a projection of the
Dirac operator from Riemannian spin manifold N to an oriented hypersurface M
(which is a spin manifold with the induced “standard” spin structure), because we
are able to imbed canonically the spinor bundle on M to the spinor bundle on N .
We have a possibility to extend a spinor field from the hypersurface constantly to
the g-tubular neighborhood and to define the projection as explained above.

3.1 Spin structures on submanifolds.

3.1.1 Algebraic preliminaries.

For any n ∈ Z+ we can define natural imbeddings

Spin (2n,R) ⊂ Spin (2n+ 1,R) ⊂ Spin (2n+ 2,R)

induced by natural imbeddings of the corresponding Clifford algebras

R0,2n ⊂ R0,2n+1 ⊂ R0,2n+2

and we can also discuss the relations among the corresponding basic spinor spaces,
considered as Clifford modules.
We have the following situation:

a) For m even, m = 2n + 2, there is a unique spinor space S2n+2 which is
irreducible as a module over R0,2n+2

+ but decomposes as Spin (2n+ 2,R)-module
as follows:

(1) S2n+2 = S2n+2
+ ⊕ S2n+2

− ,
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where the decomposition is given by eigenspaces of the multiplication by an element
ω := e1...e2n+2 from the left.

b) Form oddm = 2n+1 there are two spinor spaces S2n+1 and Ŝ2n+1 which can
be identified with the corresponding spinor spaces for dimension 2n+ 2 as follows:

S2n+1 := S2n+2
+ , Ŝ2n+1 := S2n+2

− .

c) For m even, m = 2n there is again a unique spinor space S2n which is irre-
ducible as a module over R0,2n and decomposes as in a) as a Spin (2n,R) module
as follows

(2) S2n = S2n
+ ⊕ S2n

− ,

we can identify again

S2n := S2n+1 or S2n := Ŝ2n+1 .

We shall use the following description of the spinor spaces and also the calculus
which follows from it (see [5]). The element In+1 is an idempotent in R0,n.

S2n+2 := ΛWn+1 • In+1 = Λ
evWn+1 • In+1 ⊕ Λ

oddWn+1 • In+1 ,

further we put

S2n+1 := Λ
evWn+1 • In+1 , ˆS2n+1 := Λ

oddWn+1 • In+1 ,

and
S2n := Λ

evWn+1 • In+1 = S2n
+ ⊕ S2n

− ,

where

S2n
+ := {ξ • In+1 ∈ Λ

evWn+1 • In+1|f̄n+1ξ = 0}

S2n
− := {ξ • In+1 ∈ Λ

evWn+1 • In+1|fn+1ξ = 0} .

An intertwining map φ between isomorphic R0,2n+1 representations S2n+1 and

Ŝ2n+1 is defined by:

φ((s + lfn+1)In+1) := (−1)
ni(l + sfn+1)In+1; s ∈ Λ

evWn+1, l ∈ Λ
oddWn+1

and the vector e2n+2 acts on S2n+2 with respect to the decomposition (1) as

e2n+2[u+ v̂] = (−1)
ni[v + û) .

Finally the action of e2n+1 on the space S2n := S2n+1 with respect to the
decomposition (2) is the following

e2n+1[s+ lf2n+1]In+1 = (−1)
ni[s− lf2n+1]In+1; s ∈ Λ

evWn+1, l ∈ Λ
oddWn+1 .
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Remark 3.2. We shall use the isomorphism of ΛWn ≃ ΛevWn+1 given by

s+ l → s+ lfn+1 ,

where s is an even element and l is an odd element ofWn.

3.1.2 Spin-structures on submanifolds of codimension 1.

Let Mm be an oriented submanifold of codimension 1 in the Riemannian spin
manifold Nm+1. Then there exists a uniquely defined standard (with respect to
the embedding) spin-structure on Mm induced from the spin structure on Nm+1.
This spin-structure is defined in the following way: using the unit normal field on
Mm, an embedding of BSO(M) into BSO(N) on M

m is defined and then we take
the corresponding pull-back of BSO(M) in BSpin (N).

Remark 3.3. Let M be a submanifold of arbitrary codimension in a Riemannian
spin manifold N and let NM be the normal bundle of M in N . For each spin
structure on M a unique spin structure on the normal bundle NM can be defined
such that their direct sum is the restriction onM of given spin structure on N . Also
for any spin structure on the normal bundle NM there correspond spin structure on
M such that their direct sum is the restriction onM of given spin structure on N . If
M is an oriented hypersurface in N , the standard spin structure on M corresponds
to the trivial spin-structure on N (unconnected 2-1 covering). Generally spin-
structures on an oriented hypersurface M in N correspond to the double covering
of M .

For the corresponding spinor bundles we get the following possibilities which
differ in the even and odd cases:

1) For m even, m = 2n, there is an isomorphism of bundles

SM2n ≡ SN2n+1/M
2n

and we get a picture:

S+M ⊕ S−

M

?

SM -
ι̃ SN

?
π

?
π̂

M2n -
ι N2n+1 .

If ξ is a unit normal field onM2n in N2n+1, then for any spinor field φ on N2n+1

(resp. on a neighborhood of M2n in N2n+1) we have the following formulas:

a) For the action of the normal field ξ on the spinor space

ξ • (φ+ + φ−) = i(−1)n(φ+ − φ−) .

b) For the covariant derivatives ∇SM and ∇SN on the corresponding spinor
bundles

∇SM

X (φ/M) = (∇SN

X φ)/M +
1

2
(∇N

Xξ) • ξ • φ
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for X ∈ TxM , x ∈M .

c) For the corresponding Dirac operators DN on N
2n+1 and DM on M

2n:

DM (φ/M) = (DNφ)/M +
1

2

2n∑

j=1

ej • (∇
N
ej
ξ) • ξ • φ− ξ • ∇SN

ξ φ .

d) Let ej be principal directions on M and let λj be the corresponding principal
curvatures, i.e.

∇N
ej
ξ = −λjej .

Then we can write

DM (φ/M) = (DNφ)/M −
1

2

2n∑

j=1

λiξ • φ− ξ • ∇SN

ξ φ

and

DM (φ/M) = (DNφ)/M − nHξ • φ− ξ • ∇SN

ξ φ ,

where H = 1
2n

∑2n
j=1 λj is the mean curvature of M in N .

2) For m odd, m = 2n + 1, there is an isomorphism of bundles SM ⊕ S̃M and
restriction of SN on M . We have the following picture:

SM ⊕ S̃M

? H
H

H

j
≡

SM -
ι̃ SN

?
π

?
π̂

M2n+1 -
ι N2n+2 .

If ξ is a unit normal field onM2n+1 inN2n+2 then for any spinor field φ onN2n+2

(resp. on a neighborhood of M2n+1 in N2n+2) we have the following formulas:

a) For the action of the normal field ξ on the spinor space

ξ • (φ1 + φ̂2) = i(−1)
n(φ2 + φ̂1) .

b) For the covariant derivatives ∇SM and ∇SN on the corresponding spinor
bundles

(∇SN

X φ)/M = ∇SM

X (φ1/M) +∇ŜM

X (φ̂2/M)−
1

2
∇N

Xξ • ξ • φ ,

where X ∈ TxM , x ∈ M and where φ = φ1 + φ̂2 is a decomposition of φ with
respect to the identification described above.
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c) For the corresponding Dirac operatorsDN onN
2n+2 andDM , D̂M onM

2n+1:

(DNφ)/M = DM (φ1/M) + D̂M (φ̂2/M)−
1

2

2n+1∑

j=1

ej • (∇
N
ej
ξ) • ξ • φ+ ξ • ∇SN

ξ φ .

d) Let ej be principal directions on M and let λj be the corresponding principal
curvatures, i.e.

∇N
ej
ξ = −λjej .

Then we can write

(DNφ)/M = DM (φ1/M) + D̂M (φ̂2/M) +
1

2

2n+1∑

j=1

λjξ • φ+ ξ • ∇
SN

ξ φ

and if e.g. φ̂2 ≡ 0 we get

DM (φ1/M) = (DNφ1)/M −
2n+ 1

2
Hξ • φ− ξ • ∇SN

ξ φ ,

where H = 1
2n

∑2n
j=1 λj is the mean curvature of M in N .

Moreover for both cases (odd or even dimensional), we have the following formula

for the projection of the Dirac operator from Nk+1 to Mk:

πM (DN )ψ = DMψ +
k

2
H · ξ · ψ ,

where ψ is a spinor field on M .

Example. The sphere Σm in Rm+1.
There is a unique spin structure on the sphere Σm defined by the following

diagram:
Spin (,R)(m+ 1,R)

? H
H

HH

j

π̃

SO(m+ 1,R) -
π Σm .

The sphere Σm is a homogeneous space SO(m+ 1,R)/SO(m,R) and can be
represented as an orbit of the point P := [0, . . . , 0, r] in Rm+1.
It can be also represented as a homogeneous space Spin (m+ 1,R)/Spin (m,R),

so the maps in the picture above are well defined, and we have a quite natural
identification

BSO(Σ
m) ≡ SO(m+ 1,R) , BSpin (Σ

m) ≡ Spin (m+ 1,R) .

Moreover using the natural isomorphisms of spinor spaces in (3.1), we have the
following diagram for the sphere:

Spin (m+ 1,R) -
ι̃ BSpin (R

m+1) = Rm+1 × Spin (m+ 1,R)

?
π

?
π̂

Σm
-

ι Rm+1 .
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The group Spin (m+ 1,R) is embedded as Spin (m,R)-principal fibre subbundle
into BSpin (R

m+1) by

s ∈ Spin (m+ 1,R) 7−→ [π̃(s), s] .

The corresponding associated spinor bundles are also related, but there is a dif-
ference between odd and even dimensional cases: a) For m even, m = 2n,

SΣ2n -
υ̃ SR2n+1 = R

2n+1 × S2n+1

?
π

?
π1

Σ2n -
ι R2n+1

and after the restriction on Σ2n, we have a trivialization of SΣ2n :

SΣ2n ↔ Σ2n × S2n+1 .

b) for m odd, m = 2n+ 1,

SΣ2n+1 ⊕ S̃Σ2n+1

? H
H

HH

j

SΣ2n+1 -
υ̃ SR2n+2 = R

2n+2 × S2n+2

?
π

?
π1

Σ2n+1 -
ι

R2n+2

and after the restriction to the sphere Σ2n+1, we have a trivialization

SΣ2n+1 ⊕ S̃Σ2n+1 ↔ Σ
2n+1 × S2n+2 .

Let us compute the relation between the Dirac operator on Rm+1 and on the
sphere Σm under the identifications defined above.
Let (e1, . . . , em, ξ) be an orthonormal frame field on an open subset of sphere,

let ξ be a unit normal field to Σm in Rm+1.
If (x1, . . . , xm+1) are cartesian coordinates in R

m+1 and

Σm := {(x1, . . . , xm+1) ∈ R
m+1 |

m+1∑

i=1

x2i = r
2} ,

then ξ = 1r
∑m+1

i=1 xi∂ix.

If X ∈ T xΣ
m then the relation between covariant derivative ∇̃ on Rm+1 and

induced covariant derivative ∇ on Σm is the following one:

∇̃XY = ∇XY + h(X,Y )ξ , ∇̃Xξ = −A(X) ,
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where A : T xΣ
m → T xΣ

m is a linear map, h(X,Y ) = g(A(X), Y ).
For the sphere Σm and for the frame field defined above we have

A(ej) = −
1

r
ej , ∇̃ejξ = −

1

r
ej

∇̃eiej = ∇eiej −
1

r
δijξ

and furthermore for a spinor field φ on U

D̃φ = D(φ/Σm)−
1

2

m∑

i=1

ei(−
1

r
ei) • ξ • φ+ ξ • ∇̃ξφ ,

hence
D̃φ = D(φ/Σm) + ξ • (ξ(φ) +

m

2r
φ) .

Remark 3.4. There is a connection between the operator Γ on the sphere, defined
in [8] and Dirac operators D̃ and D, namely if we change the values of operator
from the spinor-valued to the Clifford algebra-valued functions and use the standard
procedure, we get

Γφ = ξ •D(φ/Σm) +
m

2r
φ

and we may obtain relations as in [8].
From the relations among the operatorsDN , DM , φM (DN ) and Γ we can deduce

relations among the elements of the corresponding kernels and further results which
will be presented in the next paper.
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