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The monotone iterative technique

for periodic boundary value problems

of second order impulsive differential equations

E. Liz*, Juan J. Nieto*

Abstract. In this paper, we develop monotone iterative technique to obtain the extremal
solutions of a second order periodic boundary value problem (PBVP) with impulsive effects.
We present a maximum principle for “impulsive functions” and then we use it to develop
the monotone iterative method. Finally, we consider the monotone iterates as orbits of
a (discrete) dynamical system.

Keywords: impulsive differential equations, periodic boundary value problem, monotone
iterative technique

Classification: 34A37, 34C25

1. Introduction.

Impulsive differential equations are experiencing an important development be-
cause they are a framework richer than ordinary differential equations in order to
model several real world processes.
In this paper, we develop monotone iterative technique to obtain the minimal and

maximal solutions of a periodic boundary value problem (PBVP) with impulsive
effects, namely

−u′′(t) = f(t, u(t)), t ∈ I, t 6= tk, 0, 2π(1.1)

u(t+
k
) = Ik(u(tk))(1.2)

u′(t+
k
) = Nk(u

′(tk))(1.3)

u(0) = u(2π), u′(0) = u′(2π)(1.4)

We shall refer to system (1.1)–(1.4) as problem (P).
Existence of solutions for this problem has already been proved for continuous

functions [4] and for discontinuous (Carathéodory) functions [7]. Our result gene-
ralizes the analogous problem without impulses [1], [5].
In Section 2 we present a new maximum principle for discontinuous functions.

It is, to the best of our knowledge, the first maximum principle for “impulsive
functions” in the literature, and it is of fundamental importance to develop the
monotone method. Section 3 is devoted to demonstrate our main result and, finally,
in Section 4 we consider the monotone iterates as orbits of a dynamical system and
we obtain a global attractor, following the ideas of [1].

*Research partially supported by DGICYT, project PB91–0793.
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2. A maximum principle.

The following lemma is essential to develop the monotone iterative technique in
our problem:

Lemma 2.1. Let I = [0, 2π]; 0 = t0 < t1 < t2 < · · · < tp < tp+1 = 2π; A =

{0, 1, . . . , p + 1}. Let φ ∈ C2(tk−1, tk) ∩ C(tk−1, tk], for each k = 1, . . . , p + 1.
Suppose that the following five conditions are satisfied:

(i) There exist φ(t+
k
), φ′(t+

k
) for k = 0, 1, . . . , p, and φ′(t−

k
) for k = 1, . . . , p+1.

(ii) There exists a real constant M > 0 such that φ′′(t) ≥ Mφ(t), ∀ t ∈ I −{tk :
k ∈ A}.

(iii) φ(0) = φ(2π), φ′(0+) ≥ φ′(2π−).

(iv) φ(tk) ≥ 0⇒ φ(t+
k
) ≥ φ(tk); φ

′(t−
k
) ≥ 0⇒ φ′(t+

k
) ≥ 0, ∀ k ∈ A.

(v) If φ(tk) ≤ 0, then φ(t+
k
) ≤ 0, ∀ k ∈ A.

Then, φ(t) ≤ 0, ∀ t ∈ I.

Proof: Suppose that this result is false. Thus there exists a point τ ∈ I such that
φ(τ) = supt∈I φ(t) = C > 0.
We shall distinguish four cases:

Case 1. ∃ k ∈ A − {p+ 1} such that τ ∈ (tk, tk+1).

Then φ ∈ C2(tk, tk+1), φ′(τ) = 0 and φ′′(τ) ≤ 0. But φ′′(τ) ≥ Mφ(τ) =
MC > 0, which is a contradiction.

Case 2. τ = 0 or τ = 2π.
In this case:

(2.1) φ(0) = φ(2π) = C > 0; φ(t) ≤ C on I.

Then we have:
φ′(0+) ≤ 0; φ′(2π−) ≥ 0.

Thus φ′(0+) = φ′(2π−) = 0 since φ′(0+) ≥ φ′(2π−). Now, ∃ δ > 0 such that
φ′′(t) ≥ Mφ(t) > 0, for every t ∈ (o, δ). Hence φ′ is strictly increasing on (o, δ).
Taking into account that φ′(0+) = 0, we see that φ is strictly increasing on (o, δ),
which contradicts (2.1).

Case 3. τ = tk, for some k ∈ {1, 2, . . . , p}.
We have:

φ(tk) = C = sup
t∈I

φ(t) > 0.

As φ(t+
k
) ≥ φ(tk), it must be φ(t+

k
) = φ(tk) = C > 0. (Note that φ is continuous

at tk.)
Now

(2.2) φ′(t−
k
) ≥ 0⇒ φ′(t+

k
) ≥ 0.

However, there exists a δ > 0 such that φ′′(t) ≥ Mφ(t) > 0, ∀ t ∈ (tk, tk + δ) and
then φ′ is strictly increasing on (tk, tk + δ).
By (2.2), φ′(t) > 0, ∀ t ∈ (tk, tk + δ) and φ is strictly increasing on (tk, tk + δ),

which is a contradiction with the fact that φ attains its maximum at t = tk.
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Case 4. φ(t) < C, ∀ t ∈ I, ∃ k ∈ {1, . . . , p} such that φ(t+
k
) = C.

φ(t+
k
) > 0 implies φ(tk) > 0, in view of condition (v). Then sup{φ(t) : tk−1 <

t ≤ tk} = Ck > 0. We have two possibilities:

4.1. φ(τ) = Ck, for some τ ∈ (tk−1, tk].
– If τ ∈ (tk−1, tk), then φ has a relative maximum in τ and it leads to a contradiction
as in the first one.
– If τ = tk, then φ′(t−k ) ≥ 0 and φ′(t+k ) ≥ 0. Repeating the arguments used in
Case 3, we can show that this is impossible.

4.2. Ck = φ(t+
k−1).

Employing the same procedures inductively, we either get a contradiction on the
way or we have:

(2.3) φ(t+1 ) = sup{φ(t) : t1 < t ≤ t2} = C2 > 0; φ(t1) > 0.

Then, sup{φ(t) : 0 < t ≤ t1} = C1 > 0.
– If φ(0) = C1, we have a contradiction as in Case 2.
– If φ(t) = C1 for some t ∈ (0, t1), this implies a contradiction as in Case 3.

– Finally, if φ(t1) = C1, then φ′(t+1 ) ≥ 0 and, using (2.3), it leads to a contradiction
as in Case 3.
Now, the proof is complete. �

3. Monotone iterative technique.

In this section, we develop monotone iterative technique, which provides a con-
structive method to approach the extremal solutions of the problem (P).
In order to define the concept of solution, lower solution and upper solution

for (P) we introduce the following space:

Ω = {u : I → R : u | (tk ,tk+1]
∈ Ek,

there exist u(t+k ), u′(t+k ) for every k = 0, 1, . . . , p},

where Ek = C2(tk, tk+1) ∩ C1(tk, tk+1].
By a solution of (P), we mean a function u ∈ Ω satisfying (1.1)–(1.4).
A function α ∈ Ω is said to be a lower solution for (P) if:

−α′′(t) ≤ f(t, α(t)), t ∈ I, t 6= tk, 0, 2π(3.1)

α(t+
k
) = Ik(α(tk))(3.2)

α′(t+
k
) ≥ Nk(α

′(tk))(3.3)

α(0) = α(2π), α′(0) ≥ α′(2π)(3.4)

An upper solution is defined analogously by reversing the inequalities.
Let α, β be lower and upper solutions of (P) respectively, with α ≤ β on I. Let

us list the following assumptions:

(A0) f : I × R → R is a continuous function for t ∈ I, t 6= tk, k ∈ A.
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(A1) Ik, Nk : R → R are continuous and nondecreasing functions,
k ∈ {1, 2, . . . , p}.

(A2) f(t, u)−f(t, v) ≥ −M(u−v),M > 0, whenever t ∈ I, α(t) ≤ v ≤ u ≤ β(t).
(A3) Ik(u)− Ik(v) ≤ u − v, whenever α(tk) ≤ u ≤ v ≤ β(tk), k ∈ {1, 2, . . . , p}.

Now, we shall prove our main result:

Theorem 3.1. Assume that (A0)–(A3) hold. Then there exist monotone sequences
{αn}, {βn} such that α0 = α ≤ αn ≤ βn ≤ β0 = β for every n ∈ N which converge
piecewise uniformly to the minimal and maximal solutions of (P) on I respectively.

Proof: Let [α, β] = {u ∈ PC(I) : α ≤ u ≤ β on I}, where

PC(I) = {u : I → R : u(t) continuous for t 6= tk, u(t
−
k
), u(t+

k
) exist and

u(t−
k
) = u(tk), k = 0, 1, . . . , p}.

For η ∈ [α, β], we shall consider the following linear problem:

−u′′(t) +Mu(t) = f(t, η(t)) +Mη(t), t ∈ I, t 6= tk, 0, 2π(3.5)

u(t+k ) = Ik(u(tk))(3.6)

u′(t+
k
) = Nk(u

′(tk))(3.7)

u(0) = u(2π), u′(0) = u′(2π)(3.8)

where k ∈ {1, 2, . . . , p}.
We shall refer to problem (3.5)–(3.8) as (PL).
Using the variation of parameters formula (with impulsive effects), we can see

that (PL) possesses a unique solution:

x(t) = etAx(0) +

∫ t

0
e(t−s)Ag(s) ds+

∑

0<tk<t

e(t−tk)AIk(x(tk))

with

x(0) = (I2 − e2πA)−1
[

∫ 2π

0
e(2π−s)Ag(s) ds+

∑

0<tk<2π

e(2π−tk)AIk(x(tk))
]

where

A =

(

0 1
M 0

)

; I2 =

(

1 0
0 1

)

; x(t) =

(

u(t)
u′(t)

)

g(t) =

(

0
−σ(t)

)

; σ(t) = f(t, η(t)) +Mη(t)

Ik(x(tk)) =

(

Ik(u(tk))− u(tk)
Nk(u

′(tk))− u′(tk)

)
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Now, we define the mapping
A : [α, β] −→ Ω

by Aη = u = unique solution of (PL).
It is not difficult to see that A is a continuous operator and that u ∈ [α, β] is

a solution of (P) if and only if Au = u.
Now we shall prove that:

(a) α ≤ Aα; β ≥ Aβ(3.9)

(b) α ≤ η1 ≤ η2 ≤ β ⇒ Aη1 ≤ Aη2; η1, η2 ∈ [α, β](3.10)

with the help of Lemma 2.1.

Proof of (a): Set α1 = Aα; φ = α − α1. We have:

(i) φ′′(t) = α′′(t)−α′′
1(t) ≥ f(t, α)− f(t, α)+M [α(t)−α1(t)] =Mφ(t), t 6= tk.

(ii) φ(0) = α(0)− α1(0) = α(2π)− α1(2π) = φ(2π).
(iii) φ′(0) = α′(0)− α′

1(0) ≥ α′(2π)− α′
1(2π) = φ′(2π).

(iv) φ(tk) ≥ 0 ⇒ α(tk) ≥ α1(tk) ⇒ φ(t+k ) = α(t+k ) − α1(t
+
k ) = Ik(α(tk)) −

Ik(α1(tk)) ≥ α(tk)− α1(tk) = φ(tk).

(v) φ(tk) ≤ 0⇒ α(tk) ≤ α1(tk)⇒ α(t+
k
) ≤ α1(t

+
k
)⇒ φ(t+

k
) ≤ 0, in view of the

nondecreasing character of Ik.
(vi) φ′(tk) ≥ 0 ⇒ α′(tk) ≥ α′

1(tk) ⇒ α(t+k ) ≥ α1(t
+
k ) ⇒ φ′(t+k ) ≥ 0, in view of

the nondecreasing character of Nk.

By Lemma 2.1, φ(t) ≤ 0 on I and then α ≤ Aα. Similarly, we can show that
β ≥ Aβ.

Proof of (b): Set φ = Aη1 − Aη2 = v1 − v2.

(i) φ′′(t) = v′′1 (t)−v′′2 (t) = f(t, η2(t))−f(t, η1(t))+M [v1(t)−η1(t)]−M [v2(t)−
η2(t)] ≥ −M [η2(t)−η1(t)]+M [v1(t)−η1(t)]−M [v2(t)−η2(t)] =M [v1(t)−
v2(t)] =Mφ(t), t 6= tk.

(ii) φ(0) = v1(0)− v2(0) = v1(2π)− v2(2π) = φ(2π).
(iii) φ′(0) = v′1(0)− v′2(0) = v′1(2π)− v′2(2π) = φ′(2π).

(iv) φ(tk) ≥ 0 ⇒ v1(tk) ≥ v2(tk) ⇒ φ(t+
k
) = v1(t

+
k
) − v2(t

+
k
) = Ik(v1(tk)) −

Ik(v2(tk)) ≥ v1(tk)− v2(tk) = φ(tk).

(v) φ(tk) ≤ 0⇒ v1(tk) ≤ v2(tk)⇒ v1(t
+
k
) ≤ v2(t

+
k
)⇒ φ(t+

k
) ≤ 0.

(vi) φ′(tk) ≥ 0⇒ v′1(tk) ≥ v′2(tk)⇒ v′1(t
+
k ) ≥ v′2(t

+
k )⇒ φ′(t+k ) ≥ 0.

Thus Lemma 2.1 assures that φ(t) ≤ 0 on I and then Aη1 ≤ Aη2.
Now we can define the sequences {αn}, {βn} by αn+1 = Aαn, βn+1 = Aβn,

α0 = α, β0 = β. Then we have: α0 = α ≤ α1 ≤ · · · ≤ αn ≤ βn ≤ · · · ≤ β1 ≤ β0 =
β, for every n ∈ N. It follows, by using standard arguments, that:

(1) There exist limn→∞ αn = ̺, limn→∞ βn = γ, piecewise uniformly on I.
(2) ̺(t) and γ(t) are solutions of (P).

We next prove that ̺ and γ are the minimal and maximal solutions of (P) on
[α, β] respectively. For it, let u(t) be a solution of (P) with α(t) ≤ u(t) ≤ β(t),
t ∈ I. We shall show below that:

(3.11) αn(t) ≤ u(t) ≤ βn ⇒ αn+1(t) ≤ u(t) ≤ βn+1(t), for every n ∈ N.
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Thus, since α1(t) ≤ u(t) ≤ β1(t), by induction and passing to the limit when
n → ∞, we obtain that ̺(t) ≤ u(t) ≤ γ(t) on I.
To prove (3.11), let us consider φ(t) = αn+1(t)− u(t). Then we have:

(i) φ′′(t) = α′′
n+1(t)− u′′(t) = f(t, u(t))− f(t, αn(t))− Mαn(t) +Mαn+1(t) ≥

−M [u(t)− αn(t)]− Mαn(t) +Mαn+1(t) =M [αn+1(t)− u(t)] =Mφ(t).
(ii) φ(0) = αn+1(0)− u(0) = αn+1(2π)− u(2π) = φ(2π).
(iii) φ′(0) = α′

n+1(0)− u′(0) = α′
n+1(2π)− u′(2π) = φ′(2π).

(iv) φ(tk) ≥ 0⇒ αn+1(tk) ≥ u(tk)⇒ φ(t+
k
) = αn+1(t

+
k
)− u(t+

k
) =

Ik(αn+1(tk))− Ik(u(tk)) ≥ αn+1(tk)− u(tk) = φ(tk).

(v) φ(tk) ≤ 0⇒ αn+1(tk) ≤ u(tk)⇒ αn+1(t
+
k
) ≤ u(t+

k
)⇒ φ(t+

k
) ≤ 0.

(vi) φ′(tk) ≥ 0⇒ α′
n+1(tk) ≥ u′(tk)⇒ α′

n+1(t
+
k
) ≥ u′(t+

k
)⇒ φ′(t+

k
) ≥ 0.

In view of Lemma 2.1, φ(t) ≤ 0 on I and thus αn+1(t) ≤ u(t), ∀ t ∈ I. Similarly,
we get u(t) ≤ βn+1(t) on I, and the proof is now complete. �

4. Monotone iterates as orbits of a dynamical system.

Let H be the metric space ([α, β], d), where [α, β] is the sector considered in
Theorem 3.1 and d is the piecewise uniform distance. By using (3.9) and (3.10), we
see that the operator A maps continuously H into itself.
The purpose of this section is to study the discrete dynamical system (H, A).
For u ∈ H , let un = Anu, n = 0, 1, 2, . . . .
We shall consider here the definitions about attractors given in [2]. For u ∈ H ,

the orbit starting at u is Gu = {un = Anu, n ∈ N}. We say that a subset Γ of H
is an invariant set if AnΓ = Γ for every n ∈ N. An invariant set Γ is an attractor if
it possesses an open neighborhood U such that

d(un,Γ) = inf{d(un, v) : v ∈ Γ} → 0 as n → ∞ for every u ∈ U.

We say that Γ is a global attractor if it is a compact set and d(un,Γ)→ 0 as n →

∞ for every u ∈ H . For Γ, the ω-limit of Γ is defined by ω(Γ) =
⋂

j>0

⋃

n≥j AnΓ.

We shall prove the following result:

Theorem 4.1. Under the assumptions of Theorem 3.1, let ̺ and γ be the extremal
solutions of (P) on [α, β] and let Γ = [̺, γ]∩Ω. Then ω(Γ) is a global attractor for
the dynamical system (H, A). Moreover, ω(Γ) is uniformly asymptotically stable.

Proof: ω(Γ) is a compact subset of H . Since limn→∞ αn = ̺, limn→∞ βn = γ

and αn ≤ un ≤ βn for u ∈ [α, β], we have that Γ attracts [α, β].
Now, Theorem 3.1 of [2] assures that ω(Γ) is a nonempty compact invariant set,

a global attractor for (H, A) and it is uniformly asymptotically stable. �

Note that if u is a solution of (P) in [α, β], then u ∈ ω(Γ) since u ∈ Γ and
Gu = {u}. If (P) has a unique solution ̺ in [α, β], then ω(Γ) = Γ = {̺} and thus
we have the following corollary:

Corollary 4.1. Under the assumptions of Theorem 3.1, if (P) has a unique solution
̺ ∈ [α, β], then the set {̺} is a global attractor for (H, A).
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