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The index o Fj-transform of generalized functions

N. HAYEK, B.J. GONZALEZ

Abstract. In this paper the index transformation
o0 1. 1 o
F(r) = f(t)2F1(u+5+zr,u+§—zr;u-i—l;—t)t dt
Jo

2 F (u+ % 4T, p+ % —i7; p+1; —t) being the Gauss hypergeometric function, is defined on
certain space of generalized functions and its inversion formula established for distributions
of compact support on I = (0, c0).
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Classification: 44A15, 46F12

1. Introduction.

The index o Fj-transform (see [6]) of a real valued function f is defined by:

o0
(1.1) ) = [ Fanfod
0
where
1 1 o
(1.2) F(,uvavTvt):2F1(/L+§+ZT,H+§—’LT;,LL—Fl;—t)t

and oF (p + % + it p+ % —i7; pu+ 1; —t) is the Gauss hypergeometric function, «
and p are complex parameters and 7 real.
In this paper, according to Zemanian [14], we introduce the testing function space

Ua,y,o containing the kernel of the transform. As usual, U(’L o denotes the dual
space of Uy ;. The generalized index o Fy-transformation of f € Ué%a is defined
by:

QFI(f):F(T):<f(t)7F(:uao‘aTat)>v TER4.

An inversion formula on the space £'(I) is proved.

The notation and terminology used here is that of Zemanian [14]. In the following
I denotes the open interval (0, 00) and R4 the set of the positive real numbers. The
spaces D(I), D' (I), £(I) and & (I) have their usual meaning [11]. The parameter a
is always in [0, %)
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2. The testing function space and its dual.

Let Ug,pu,o be the linear space of C*°-functions on I according to:
Uapo = {0 € C : Y qpal@) <oo, for ke NU{0}}

where

(2.1) Tapmald) = sup |(26+ 1)+ 1)FATH(0)
Ay being the differential operator:

(2.2) LRt 4+ 1) TEDt T (¢ + )P D

Ua,p,o equipped with the topology arising from the family {7y q o} of seminorms
of which 70,q,41,a 18 @ norm, is a countably multinormed, locally convex, Hausdorff
space. By using a technique of Zemanian [14] it follows immediately that Ug ;o is
sequentially complete, i.e. a Fréchet space.

From the relation:

and by the asymptotic behavior of the hypergeometric function it follows that
F(p, o, 7,t) € Ugpa-

The dual space Ué’ o Of Ua,p,a is a space of generalized functions. Equipped with
the usual weak topology it is a separated multinormed space which is sequentially
complete.

The assertions of the following proposition can be proved by using standard

techniques (cf. [14]):

Proposition 2.1.

(i) D(X) is a subspace of Uy o and the topology of D(I) is stronger than that
induced on it by Uq,y.o. Consequently, the restriction of any f € Uy, ,, o to D(I) is
in D'(I). D(I) is not dense in Ug -

(it) Ua,p,a is a dense subspace of E(I). Hence £'(I) is a subspace of Uy, ,, o-

(ili) For f € U! , , there exists C > 0 and r € NU {0} such that

|<fu ¢>| < CO?I?;(T 7k,a,u,a(¢)

(23) AtF(,LL,O[,T, t) = - F(,UﬂaaTa t)

O

for all ¢ € Ug p,q-
(iv) The differential operator Ay is a continuous linear mapping from Uy, ;o into

Ua,p,o- Its adjoint operator A; maps U(/l%a continuously into U(/l%a.

v ocally integrable function f on I such that
A locally integrable fi ] I h th
(2t + 1) "5 (t+ 1) f(¢)

is absolutely integrable on 1, gives rise to a regular generalized function on U,’L o
with

(f, ) = /0 T e dt, ¢ € Uapa

(vi) If Re(2a— §) > =1 and a+ Re(p — a) < —%, Ua,p,a is contained in U},

a, 0
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Lemma 2.1. For each compact subset K contained in I and k € NU {0} let the
seminorm vy g be defined by

i (6) = sup [AF6(0)|, 6 € EM)
teK

where Ay is defined by (2.2). Then, { i} gives rise to a topology in £(I) which
coincides with its usual topology.

PrROOF: From an inductive argument it can be proved that:

2k

AFo(t) = 3" 77 Fp; (1) D] (1)

j=0
with
porp(t) = (t+ 1% and pop_1 () = k(t + 1) — 20+ k + 2t — o + k)]

pj k(t) being polynomials of degree k, 0 < j < 2k. Therefore, if a sequence
{on(t)},,en € E(I) converges to zero in the usual topology on £(I), then ¢, con-
verges to zero in the topology generated from v, k-

Conversely, let {¢n(t)},cn be a sequence on £(I) converging to zero in the
topology generated from 7y, g. Obviously, ¢, (t) and Arép () tend to zero uniformly
on every compact K C I.

Moreover,

Apdn(t) = t(t + 1)D?dn(t) + [ — 20+ 1 4 2t(pn — o + 1)] Do (£)+

(24) + [a(a —2u—1)+ M} on(t).
Thus,
alo—p) _
25) A (t) — [a(a —2u—1)+ f] on(t) =

= t(t+1)D2bn(t) + [t — 200+ 1 4 2t (11 — o + 1)] Db (2)

tends uniformly to zero on K. Now, taking into account that (2.5) can be written
as:

(2.6) 1207 (¢ 4 1) "M Dy [gr 20 (4 1)”+1Dt¢n(t)}

by an integration it follows that Dy¢p () and also DZ ¢y (t) tends to zero uniformly
in K. By a similar argument it is proved for every non negative integer k, that
DF¢n(t) converges uniformly to zero in K.

Finally, since £(I) is a metrizable space, the conclusion follows. O
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3. The generalized transform.

For f € U}, u,a the generalized index g Fj-transform is defined by

(3.1) 2F1(f) = F(7) = (f(t), F(p, v, 7, 1)), TERT.

For regular generalized functions this formula coincides with (1.1).

Proposition 3.1. For all f € U}, o> and k € NU{0}, one has:

k
2
k 1
A = V| (e 5) #7220
A} being the adjoint operator of Ay.
PROOF: By making use of the relation (2.3) the conclusion follows. O

Now, the analyticity of the index o F}-transform will be established. For it, the
next two lemmas are required.

Lemma 3.1. For each non negative integer m and Rep > — 2 , one has:
(32) [DIF(ua,7,0)] <
< MR [log (2t+ 142/t +1) )] bt + 1)) ez pReror 41
2

P__fze“ being the well-known associated Legendre function.
2

PRrOOF: The integral representation ([1, p. 155]),

(3.3) F(u,a,7,t) =

D(p+ 1)t / ( _”_%_” . 2
ST (2t 4+ 14+ 20/t(t + 1) cos g) (sin €)2 d¢
T VA )
is valid for Rep > —%. Now, differentiating with respect to the parameter 7, (3.2)
holds. 0

Lemma 3.2. Let i be a complex parameter with Rep > —% and k, m non negative
integers. Then there exists C' > 0 such that:
4 1 i + 72
= T
HT g

ProoF: For k = 0, making use of the asymptotic behavior:

k
(3.4) "Yk,a,,u,a(D:'nF(/La a,7,t)) <C

1

pRemgp 4 1) ! ( 2 ) “log2t+1), t— oo
~ , —
-3 T(p+3) \ 72t +1)
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(cf. [9, p. 173 (12.20)]), it follows from Lemma 3.1:
Y0,a,u, a(D F(u,a,7,t)) <

<M sup }(2t+1) {log(2t+1+2\/ t+1)} p e 2t+1)’§M2
0<t<oo

with My, My > 0.
For k > 0, by using the commutativity of A¥ and DI, (2.3) and Lemma 3.1, one
has:

Vk,a,u,oz(DTF(Mu a, T, t)) <

<Z< ) <,u+;)2+7'2 <,u+%)2+7'2

Hj;, j=1,2,...m and C being suitable constants. ]

Theorem 3.1. For f € Uy, o, Rep > —%, the generalized transform F(7) defined
by (3.1) is an analytic function and

(35) DTF(T) = <f(t)aD77'nF(:u7av7—v t)>

k
<C

PROOF: By Lemmas 3.1 and 3.2 it follows that (3.5) has a sense. Moreover, set

F(r+Ar)—F(7)

AT - <f(t)a DTF(:“? Q, T, t)> = <f(t)v TAT(t)>

1
TAT(t) = E[F(:uv o, T+ AT? t) - F(lua &, T, t)] - DTF(IUH &, T, t) =

1 T+AT T 5
= — dx/ D;F(pu, o, y,t) dy.
sl e

Thus, from (2.3), for any k non negative integer,

(2t 4+ 1)%2 %t + 1)%AfTAT(t)‘ <

k
A 1)?
< a7 @2t +1)%2 @t +1)2 [sup |D2| (p+ = | +92| Flu,a,y,t)
A being the interval 7 — |[AT| <y < 7 + |AT].
Now, by the boundedness on 0 < t < oo of
12 ‘
’(2t + 1)at%_°‘(t + 1)% sup D2 (u + 5) + 2| F(u,a,y,t)
yeEN

for |A7| < 1, it follows that Ya,(t) — 0 in Uy o as A7 — 0. With this the proof
is finished. O

661
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Theorem 3.2. Let F(7) be the generalized o F}-transform of f given by (3.1).
Then:

(3.7

{ (i) For 7 —0, onehas F)(r)=0(1), forall m e NU{0}.

(ii) There exists a p € NU{0} such that F(r) =0 (sz_R‘i“_%) , T — 0.

Proor: It follows immediately from (2.3), Proposition 2.1 (iii), and taking into
account that:

|F(M70‘7T7 t)| < Mt_%_Re(a—i_u)(t-i- 1)_%_RE%T_%_R6“, T — 00

(cf. [10, (24), p. 231]).

4. Generalized inversion formula.

In this paragraph we state the main result of this work. For it we recall the
definition of the M ,IY(L) spaces introduced in [13].

Let ¢ and v be real numbers such that 2 sgn ¢+ sgn v > 0. The space of
functions f(z) which can be represented in the form of:

f(z) = ! /Jp(s)x_sds, x € (0, 00), a:{sE(C:Res:%}

T 2mi

p(s) = S_Ve_mumﬂF(s) with / |F(s)]ds < oo,
g

is denoted by M ,1Y(L) Before giving the inversion theorem we need to prove the
following lemmas:

Lemma 4.1. If2 sgn (¢4 1) +sgn (v — Rep) > 0, there exists the integral
1 I(p+1)
F(r)=— 1 R
Tt 3+ it 3 — i)
/ F(,u—l—%—oz—l—iT—s)F(,u—l—%—a—iT—S)F(a—I—S)
- 'l+p—a-—s)

(1 —s)ds
f* being the Mellin transform of f € M;}/(L), a,peC reRyy,c={seC:

Res = %}
Moreover, if Reow > —% and Re(pn — o) > 0, then:

(4.2) F(r) = /0 ) Bl t) di.

PROOF: From the asymptotic behavior of the Gamma function (see [1, p. 47]) and
since f € Mg, ,IY(L) it follows the existence of the first integral.



The index 2 F-transform of generalized functions 663

On the other hand, if Reaw > —% and Re(u — a) > 0,

o
/ F(u,a,, t)ts_1 dt
0

converges absolutely Vs € o.
Moreover, f* € L(o) and consequently:

/oo FOF(p, o, 7, t)dt = F(u, a,7,t) dt/ 41— s)ts_l ds.
0

% 0 o
Now the absolute convergence of this integral allows us to interchange the order
of integration to obtain:

oo

1 1
— *(1—s)d F T dt
57 [ 7a=s)ds [T Fuar
and the conclusion follows. O

Lemma 4.2. Let o, p and s be complex parameters with Reaw > 0, Repn > 0,
Res = %, % < Re(p— ) < %, Re(p — 2a) < —1. Then one has the following
integral representation:

(4.3)
1 1
— sharT (4= —atit— T (4 = —a— it — IO HG £ =
ZF(M—I—l)S T (,u—|—2 a+it — s) (u—|—2 a—iT — ) (uy 0, 7, 1)
o0 o0 1 o
:/ HTATIC,(t2) dz/ e20(p—atz=s) d9/ Co(ze? W) sin 2rudu
0 —00 |6

where ¥ = 2 ch u — 2 ch 0 and

1 1
G(p,a,7,t) = 2H "% F; (5 + 1T, 5 T+ 1 —t).

Remark 4.1. C}, denotes the Bessel-Clifford function of the first kind and order p.

This function is related with the Bessel function J,, through C(z) = z_%Ju(Q\/E)
(see [4]).

PROOF: Let us consider the integral representation (cf. [7]):
2
(4.4) ;K2Ti(2\/z)K2'ri(2\/§) sh 2nT =

o0
= / Co(2v/zychu — z —y) sin 27u du
|

3 log ¥
and also that (cf. [12, p. 248] and [2, 10.2 (2)] resp.)
T'(3 +ir)T (5 — i)
2T (p+ 1)

o
| Kantzvm)eHCue2) d - 1R G (0,7, 1)
0

0 1 1 1
/ y”_a_%_sKgﬂ(Q\/gj)dy = EF(;L + 3@ +ir —s)I(p + g~ iT—8).
0
Now, by means of the change %log% = 6, one has (4.3). The existence of the
integral (4.3) follows from the asymptotic behavior of the Bessel-Clifford functions
Cy(x) (cf. [4]) and the hypotheses. O
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Lemma 4.3. Let F(1) = 2F1(f), ¢ € D(I) be and set

(4.5) o(7) = 5(u,7) /0 B0 o, ) dt

then
N

N
(4.6) /0 o(7) <f<x>,F<u,amw>>dT=<f<x>, /0 w<T>F<u,a,T,x>dT>

where

2 1 1
S, 7) = ——=7shar I'(p+ = +i0)l'(p+ = —i7).
(1, 7) T 12 (u+5 Tk + 5 )

PrOOF: By the asymptotic behavior of the hypergeometric function, one has that

N
(@.7) On(z) = /O o(7) B, 7, 2) dr

belongs to Ug ji,a-
Moreover, if we put

N & N N
Q(Ian): EZ@<%>F </L,O&,p?,ilf>

p=1

it follows
@8 (@), Qm) = %;w (25 (s (e 2

and it can be easily proved that (4.8) tends to

N
/()w(ﬂ(f(:c),F(u,oz,T,x)}dT for n — oco.

Now, by (2.3) and the asymptotic behavior of F(u, a, 7, x) it follows the existence
of an X > 0 and ng € N such that

2o+ 1)@ + 15 Ab[On () - Qo n)]| < ¢
for x > X and n > ng.
Furthermore, by the uniform continuity of F(u, o, 7, z) (Rea > 0) on the domain
E={(zx,7): 0<z<X, 0<7 <N}, there exists ny € N such that
2o+ 1)@ + 15 AbOn(2) - Qo m)]| < ¢

for 0 < # < X and n > ny. This fact implies that Q(x,n) — On(x) in Ugp,a as
n — oo and therefore (4.6) holds.
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Lemma 4.4. Assume that ¢ € D(I) and let © 5 () be given as in Lemma 4.5. If
«a and p are complex parameters such that Reaw > 0, Rep > 0, % < Re(p—a) < %
and Re(§ — ) < —%, then © n(z) converges in E(I) to ¢(x) as N — oo.

PROOF: Let ¢ be in D(I). If the support of ¢ is contained in the closed interval
[e,d], 0 < ¢ < d < oo, one has:

N d
On(z) = / S, T)F (1, vy 7, ) dT/ o(t)G(u, o, 7, t) dt.
0 c
By virtue of the smoothness of the functions and the finiteness of the limits of
integration we may repeatedly differentiate under the integral sign. By using the

identity (2.3) we get:

Aoy (z) =

1 2
(}L—FE) —|—7’2

d
[ oGt =

k

N
= /0 S(;L,T)(—l)k F(u,a,7,2)dr -

N d 2
1
= / S(p, 7) Fy, o, 7, ) dr / o(t) (1) (u + 5) + 72| G(u,a,7,t)dt.
0 c
Integrating by parts and using the identity
1 2
(49) AQG(,LL,O[,T, t) = - <‘LL—|— §> +T2 G(,LL,O[,T, t)

A} being the adjoint operator of A¢. It follows by applying some properties of the
hypergeometric function that (see [1, p. 105]):

(4.10) Ake N (z) =
N d
= / S(p,7)x%(z + 1) "*G(u, a, 7, ) dT/ 20 (¢ 4 l)HAfgb(t)F(,u, a, T, t) dt.
0 c

By virtue of our assumptions, D(I) C Mai(L) (Vn € N) and by Lemma 4.1,
(4.10) can be rewritten as follows:

N
1 r 1
20+ ) [ S Glann gD
0 21T (u+ & + i) (p + 5 —i7)
(4.11) /F(}L—F%—a+iT—S)F(}L+%—a—iT—S)F(a+S)
\ N CEaTE———

(772t + 1) afo(t)| "(1- s)ds
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with 0 = {s € C: Res = %}, and where
(=2t + ) afo(n)] (1 - s)

is the Mellin transform of the function within the square brackets calculated at the
point 1 — s.
Taking into account that

N .
/ 7 sin 2Tudr = —QLH 2Nu
0 ou u

by reversing the order of integration and using Lemma 4.2 we obtain:

D [ e[ aeabo)] (1 s ds

271 1+pu—a—s)
o0 o0
1 / HTOTEC (w2) dz/ e2(n—at3=5) 4.
™ Jo —0o0
0o .
Co(ze D) (—QM) du.
16| Ju u

The absolute convergence allows the interchanging of the order of integration
and it follows

« —u 00 : U
Ahoy(r) = et / < 9 sin 2Nu 2N“) du/ 2(n—a+3-5) 4p.
0

T ou U —u
(4.12) /O e (2)Co (ze%) dz-
5 [ (e atom) 1 —s) () as
Observe that
(1.13) 3 | (P akon) @ () as

represents the G%g—transform of
20t + 1) AR p(t)

evaluated at the point ze2? (see [13]). This transform exists since it can be proved
that D(I) C Mg (L), Vn € N. We denote (4.13) by G(¢y,)(ze??).

Now, by making the change of variable ze20 = Yy, (4.12) can be written as

@ —p oo : u
x%(x +1) / (_gsm 2Nu> du/ =0 4.
s 0 ou u u

(4.14) .
/0 Glon) (y)y"~*Cy (Iye_ze) Co (ye_ze\lf) dy.
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A partial integration leads to:

ALOn(z) =
; o —u ru
_sin 2Nu z (:v—l—l) / e
u

4.15 o0
(119 / G(ér)(y)y"“Cl (wye_ze) Co (ye 29\1’) dy
0 0
—p 00
3: + 1 / cI) sm 2Nu sin 2Nu
0
where
o0
O(z,u) =e " G(éw)(y)y" Oy (Iyezu) dy+
0
o0
(4.16) et / G(r) W)y C (wye™") dy+
0

+ /_uu e ? d@agu /OOO G(or)(y)yH—*C, (xye_29) Co (yeG\Il) dy.

It can be shown that the first term of (4.15) tends uniformly to zero for u — 0
and u — oo if % < Re(pp—a) < % when z belongs to any compact K C I.

Next, by the absolute convergence, one can differentiate under the integral sign
in the last term of (4.16). By using the identity

%Co (ye_ell') =2 2 — 1)y (ye_G\IJ) - %Co ( _O\IJ)
we obtain

(4.17) O(z,u) =
= 2¢" / G(éR) W)y~ (wye™") dy + Fi(2,u) — Pa(w,u) - Fy(a,u)
0

where

Fy(w,u) = 2¢7" /u e do /oo G(r) W)y~ T Cpulwye ") C1(ye W) dy,

—u 0
Faea) =2 [ e an [T Gl Culove )0 (w00 dy
—u 0
Fy(z,u) = / e 0dp-

—u

o0
| 60wy [ Cutaye™) + 20y G, 1 (aye™)] dy.
0

667
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Now, observe that (see [13])

o) (y) = /3 2 1R AR(t) 14 (ty) dt

According to the inversion formula of the Hankel-Clifford transform (see [5]
and [8]) we get:

= 22 H (e + 1)“6_2“(“_0‘_%)14];(;5(:662“) + Fi(z,u) — Fy(z,u) — F3(x,u).

1 e’} 2u 1 12 in 2N
AEQ N () = © / 26—2u<u—a—;>(&> Ak g2y S0 2N
T Jo z+1 U

o (a4 1) /OOO (Fy (2, u) — Fa(w,u) — Fy(a, u)) S22V g

u

Let us consider now
AL Oy () - ¢(x) =
2 (] su(ua-1 ze? 41 u sin 2Nu
(4.19) _/0 [ 2u(p— )(7) Ak p(ze? )—Aigf)(x)] ——du+

™ rz+1 u

o0 .
1 / (Fy(z,u) — Fa(a,u) — Fs(z,u)) sin 2Nw
0

™ u

For z in a compact K C I,

o0 in 2N
(F1(z,u) — Fa(z,u) — F3(z,u)) S 2t du

6
(4.20) AF@©N(2 = < + )v x,u) sin 2Nu du+
1
™ 0 u

where

1 €2u_|_1

v(z,u) = 2 e~ 2ulp—a—g) (T€ T2 uAk(b(a:eM) — Ak p(2)
U x+1 v v

with § > 0.

From the boundedness of v(z,u) on E = {(z,u) : € K, 0 <u < 1}, for a given
e > 0, there exists a §; > 0 such that for each § in the interval (0,4;], z € K and
N > 0, we have

§
/ v(z,u)sin 2Nu du| <
0

N ™




The index 2 F-transform of generalized functions 669

In order to study [5°, set

1 ou(u—aly [ ze2% + 1\
)\(ZC,U)ZEG 2u(p—o 2)(74_1) Ak p(ze®).

Since ¢ € D(I) there exists a constant m > 0 such that the support of \(x,u)
with respect to u is upperly bounded by m whatever x € K may be. An integration
by parts yields

o0
/ sin 2Nu Az, u) du =
é

1 h 0
=N [(cos 2N§ )A(z, d)] +/§ (cos 2Nu )%A(x,u) du.

But A(z,u) is a bounded function of = and 38—“)\(:6, u) is a bounded function of
(z,u) for all z € K and u € [§, m|. Moreover,

0o s

sin u

/ du—0, as N — .
2N§ U

These facts imply that there exists an Nj such that, for every N > Ny, and every
rekK

o €
/ v(z,u) sin 2Nudu| < 3"
é

Finally, by the boundedness of the functions xiC’o(a:) and :1:%01 (x) [4], the im-
posed conditions and the estimation

_1
G)(w)] < Cuw™2
C being a suitable constant, it follows after some manipulations that

s (1 4 gy File)

€L(0,0), i=1,2,3.
u

Furthermore, from the Riemann lemma, we can conclude that

> in 2N
xo‘(x—l—l)_”/ Fi(x,u)smiuduao
0 u

uniformly in K, as N — oo, i = 1,2,3. Therefore, by Lemma 2.1, O (x) — ¢(z)
in £(I), and the lemma is proved. O

Now, we establish an inversion formula on the subspace £’(I) of the distributions

of compact support which is a subspace of Ué%a.
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Theorem 4.1. Let f € £'(I) be and set

F(r) = {f(t), F (1, e, 7, 1)).

Then, for every ¢ € D(I)
N
(421) <f7 ¢> = ]Vlinoo <~/O S(Mv T)G(:u'v Q,T, t)F(T) dr, ¢(t)>

with Reaw > 0, Rept > 0, % < Re(p—a) < % and Re(% —a) < —
PRrROOF: Let ¢ € D(I) be. We shall show that

D=

N
(4.22) < /0 S(u, )G (1, , 7, ) F(7) dr, ¢(t)>

tends to (f,¢) as N — oo. From the analyticity of F'(7) and the fact that the
support of ¢(t) is a compact subset of I, it follows that (4.22) is really a repeated
integral in (¢,7) having a continuous integrand on a closed bounded domain of
integration. Thus, we may change the order of integration to obtain from (4.22):

N e
/ (f(z),F(p, o, 7, 2)) dr / o(t)S(p, 7)G (1, v, 7, t) dt.
0 0

By Lemma 4.3, this is equal to

N 00
(4.23) <f(:1c),/0 F(u,a,1,) dT/O o(t)S(p, 7)G (1, v, 7, 1) dt> .

Then, f € £'(I), and according to Lemma 4.4, the testing function inside (4.23)
converges in £(I) to ¢(z) as N — oo, and this completes the proof. O

An immediate consequence of the above inversion theorem is the following unique-
ness theorem:

Theorem 4.2. Let F(r) = oF1(f) and G(r) = 2F1(9) with f,g € E'(I) and
assume that F(1) = G(r) for all T > 0. Then f = g.
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