
Commentationes Mathematicae Universitatis Carolinae

Saleh Abdullah
On tempered convolution operators

Commentationes Mathematicae Universitatis Carolinae, Vol. 35 (1994), No. 1, 1--7

Persistent URL: http://dml.cz/dmlcz/118635

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118635
http://project.dml.cz


Comment.Math.Univ.Carolin. 35,1 (1994)1–7 1

On tempered convolution operators

Saleh Abdullah

Abstract. In this paper we show that if S is a convolution operator in S
′, and S ∗S

′ =
S

′, then the zeros of the Fourier transform of S are of bounded order. Then we discuss
relations between the topologies of the spaceO ′

c of convolution operators on S
′. Finally,

we give sufficient conditions for convergence in the space of convolution operators in S
′

and in its dual.

Keywords: tempered distribution, convolution operator, Fourier transform, convergence
of sequences

Classification: 46F05

Introduction

Convolution equations in the space S ′ of tempered distributions were investi-
gated by Sznajder and Zielezny [6]. They were interested in characterizing con-
volution operators S which satisfy the equation S ∗ S ′ = S ′. They have shown
that if S ∗ S ′ = S ′, then S, the Fourier transform of S, satisfy the following
equivalent conditions:

(I) For every integer k there exist an integer m ≥ 0 and constants c,M ≥ 0
such that

sup
|α|≤m, s∈R

n

|s−ξ|≤(1+ξ)−k

|DαŜ(s)| ≥ |ξ|−c ,

where ξ ∈ Rn, and |ξ| ≥M .
(II) If u is a convolution operator in S ′ and S ∗ u ∈ S, then u is in S.

The problem of characterizing the convolution operator S for which S ∗ S ′ =
S ′ is an interesting one and still open. Sznajder and Zielezny [3] conjectured
that, if the order of the zeros of S is bounded, then conditions (I) and (II) are
equivalent to the equality S∗S ′ = S ′. In this paper we show that if S∗S ′ = S ′

then the zeros of Ŝ are of bounded order. This together with the above result of
Sznajder and Zielezny prove the necessity part of their conjecture. We also give
an example of a convolution operator S so that S ∗ S ′ 6= S ′.
Next, we consider convergence questions in O ′

c and Oc. It is known that if (Sj)
is a sequence which converges to 0 in O ′

c, then (Sj ∗ φ) converges to 0 in S, for

every φ in S. This implies that (Sj ∗ φ) converges to 0 in O ′
c. Here we prove

the converse, if (Sj) is a sequence in O ′
c and (Sj ∗ φ) converges to 0 in O ′

c for

every φ in S, then (Sj) converges to 0 in O ′
c. Similar questions of convergence
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were discussed by Keller [5]. Among other things, he has shown that if (Tj) is

a sequence in S ′ such that (Tj ∗φ) converges to 0 in S ′ for all φ in S, then (Tj)
converges to 0 in S ′. We use Keller’s result to prove ours. Moreover, it will be
shown that if (ψj) is a sequence in Oc such that (ψj ∗ φ) converges to 0 in Oc for
every φ in S, then (ψj) converges to 0 in Oc. Most of the topological properties

of O ′
c are proved when it is provided with the strong dual topology sdt. In the

proof of the result on convergence in O ′
c, we work with O ′

c with the topology τb
which is induced by Lb(S,S).
By S we denote the space of all C∞-functions in Rn such that

sup
|α|≤k
x∈R

n

(1 + |x|)k|Dαφ(x)| <∞, k = 0, 1, 2, 3, . . .

We denote by S ′ the space of tempered distributions which is the strong dual
of S. Since the Fourier transform is an isomorphism from S onto itself, the same
is true for S ′. The space of all convolution operators in S ′ will be denoted by
O ′

c(S
′,S ′). An S ∈ S ′ is in O ′

c(S
′,S ′) if and only if the map φ→ S ∗ φ from

S into itself is continuous, where (S ∗ φ)(x) = 〈Sy , φ(x − y)〉. And for u in S ′,
S ∗ u is given by

〈S ∗ u, φ〉 = 〈u, S̆ ∗ φ〉 , φ in S.

We denote by OM (S
′,S ′) the space of all C∞-functions f such that, for every

multi-index α there exists k = 0, 1, 2, . . . , such that

Dαf(x) = O(1 + |x|)k as |x| −→ ∞.

If S is in O ′
c(S

′,S ′), its Fourier transform Ŝ is in OM (S
′,S ′), i.e. a multiplier

of S ′. For such S and u in S one has Ŝ ∗ u = Ŝû.
For k in N we denote by Sk the space of all infinitely differentiable functions

ψ such that, for each α in Nn and positive ε, there exists a positive ̺ such that

∣∣∣(1 + |x|2)−kDαψ(x)
∣∣∣ ≤ ε for all |x| greater than ̺.

The space Sk is provided with the topology generated by the semi-norms

qk,α(ψ) = sup
x∈Rn

∣∣∣(1 + |x|2)−kDαψ(x)
∣∣∣ , α ∈ Nn .

We denote by Oc(S
′,S ′) the union of the spacesSk provided with the inductive

limit topology. It follows that Oc is a Hausdorff locally convex space and O ′
c is

its strong dual. It follows that O ′
c =

⋂∞
k=0S ′

k , where S ′
k is the strong dual of

Sk. The strong dual topology sdt on O ′
c is the topology of uniform convergence

on bounded subsets of Oc.
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The results

Theorem 1. Let S ∈ O ′
c(S

′,S ′), if S ∗ S ′ = S ′, then the zeros of Ŝ are of
bounded order.

Proof: Suppose S ∗S ′ = S ′ and Ŝ has a zero x of unbounded order. Without

loss of generality we can assume that x = 0. Hence Ŝ(x) = σ(|x|m) for all m ≥ 0
and all x in the unit ball B(0, 1). By hypothesis there exists u ∈ S ′ such that

S ∗ u = 1, hence Ŝû = δ. From the structure theorem of tempered distributions
it follows that one can represent û as a finite sum

∑
|α|≤k D

αuα of derivatives of

continuous functions growing at infinity slower than some polynomial. Let φ ∈ D

(B(0, 1)) such that φ(0) = 1. Let φε(x) = φ(x/ε). Then one has

∣∣∣〈Ŝû, φε〉
∣∣∣ =

∣∣∣
∑

|α|≤k

〈Dαuα, Ŝφε〉
∣∣∣ =

∣∣∣
∑

|α|≤k

(−1)α〈uα, D
α(Ŝφε)〉

∣∣∣

=
∣∣∣

∑

|α|≤k

∑

β≤α

Cβ(−1)
α〈uα, D

βŜDα−βφε〉
∣∣∣

≤
∑

|α|≤k

∑

β≤α

|Cβ |

∫
|DβŜ(x)| |uα(x)| |D

α−βφε(x)| dx.

Since Ŝ has 0 as zero of unbounded order, it follows that the same is true for its

derivatives, hence DβŜ(x) = σ(|x|)m, for all β ≤ α. Hence one has

∣∣∣〈Ŝû, φε〉
∣∣∣ ≤

∑

|α|≤k

∑

β≤α

|Cβ |

∫
|x|m(1 + |x|)k(α)|Dα−βφ(x/ε)| dx

≤
∑

|α|≤k

Cαε
m+k(α)−k ≤ Cαε

m+k(α)−k ,

where Cα is a constant which depends on α but not the same in all estimates.
Since the above estimate holds for allm ≥ 0, by takingm large enough and letting

ε go to 0, it follows that 〈Ŝû, φε〉 → 0. On the other hand, 〈δ, φε〉 = φε(0) = 1
for all ε. The contradiction proves the theorem. �

Remark. In the above proof we could have used the local structure of u. In
a small neighborhood of 0 one can represent u as the derivative of a continuous
function of compact support ([1, Theorem 2.21]).

Example 1. We give an example of convolution operator on S ′ which is not
invertible because the zeros of its Fourier transform are not of bounded order.
Let

f(x) =

{
exp(−1/|x|2), x 6= 0,

0 x = 0.
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The function f is infinitely differentiable and has the origin as zero of unbounded
order. Moreover, f ∈ OM (S

′,S ′). Hence f is the Fourier transform of some S
in O ′

c. From the theorem it follows that S is not invertible in S ′. Also, one can
verify easily that f satisfies condition (I) of Sznajder and Zielezny.

Example 2. Consider the infinite product

f(z) =

∞∏

n=1

cos(z/n2), z = x+ iy ∈ C.

One can verify that the infinite product is convergent, hence f(z) is an entire
function. We show that f satisfies the Paley-Wiener estimate ([1, Theorem 4.12]).

Since | cos(z/n2)| ≤ e(y/n2), it follows that

|f(z)| ≤ e(Ay) ≤ e(A| Im z|)

where A =
∑∞

n=1(1/n
2). Hence

|f(z)| ≤ C(1 + |z|)N e(A| Im z|)

where C = 1 and N = 1. Thus f is a Fourier transform of some distribution
S of compact support. Hence S ∈ O ′

c(S
′,S ′). From the remark which follows

Lemma 2 of [3] it follows that S ∗ S ′ = S ′. The zeros of Ŝ are isolated, and

since Ŝ is an entire function which is not identically zero, its zeros are of bounded
order.

Now, we examine the topologies which O ′
c will be equipped with to get the

convergence results. Since O ′
c is a subset of Lb(S,S), the space of all continuous

linear maps from S into itself provided with the topology of uniform convergence
on bounded subsets of S, we can provide O ′

c with this topology and will denote
it by τb. Similarly, we will provide O ′

c with the topology τ
′
b which is induced by

Lb(S
′,S ′), τ ′b is the topology of uniform convergence on bounded subsets ofS

′.

The topologies τb and τ
′
b are equal. Indeed, let

W (B,U) =
{
S ∈ O

′
c : S ∗ φ ∈ U for all φ in B

}

be a member of 0-neighborhood base in τb, where U is a neighborhood of 0 in S

and B is a bounded subset of S. We can assume that U = (B′)◦, the polar of B′

a bounded subset of S ′. One gets

W (B,U) = {S ∈ O
′
c : |〈S ∗ φ, T 〉| < 1 for all φ ∈ B and T ∈ B′}

= {S ∈ O
′
c : |〈S̆ ∗ T, φ〉| < 1 for all φ ∈ B and T ∈ B′}

= V (B̆′, (B̆)◦).

V (B̆′, (B̆)◦) is a member of 0-neighborhood base in τb. Since all the above equal-
ities are reversible, the proof is complete.

�
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Theorem 2. The topology τb of O
′
c is less fine than the strong dual topology.

Proof: Let

W (B,U) =
{
S ∈ O

′
c : S ∗ φ ∈ U for all φ in B

}

be a member of 0-neighborhood base in τb, where U is a neighborhood of 0 in
S, U = (B′)◦ the polar of a bounded subset of S ′. Since the bilinear map
(φ, S) → φ ∗ S from S × S ′ into Oc is separately continuous, it follows from

the Banach-Steinhaus theorem that B̆ ∗ B′ is bounded in Oc. We claim that
W (B,U) = (B̆ ∗B′)◦. For

W (B,U) = {S ∈ O
′
c : |〈S ∗ φ, T 〉| < 1 for all φ ∈ B, T ∈ B′}

= {S ∈ O
′
c : |〈S, φ̆ ∗ T 〉| < 1 for all φ ∈ B, T ∈ B′}

= (B̆ ∗B′)◦.

This completes the proof of the theorem. �

In the proof of the next result we will use O ′
c with the topology τb, and in the

one after it will be provided with the strong dual topology.

Theorem 3. Let (Sj) be a sequence in O ′
c such that (Sj ∗ φ) converges to 0 in

O ′
c for every φ in S, then (Sj) converges to 0 in O ′

c.

Proof: Let B be a bounded subset ofS, we show that Sj ∗φ→ 0 in S uniformly

in φ ∈ B. Since S is reflexive and S ′ is Montel, all what we need to show is that,
for every T in S ′, the sequence (〈Sj ∗ φ, T 〉) converges to 0 uniformly in φ ∈ B.
For this, let Ψ ∈ S. From the hypothesis one has (Sj ∗ T ) ∗Ψ = (Sj ∗Ψ) ∗ T → 0
inS ′. From Theorem 1 of [5] it follows that Sj∗T → 0 inS ′. Hence 〈Sj ∗φ, T 〉 =

〈S̆j ∗ T, φ〉 → 0 uniformly in φ ∈ B. This completes the proof. �

Theorem 4. Let (Ψj) be a sequence in Oc such that the sequence (Ψj ∗ φ)
converges to 0 in Oc for every φ in S, then (Ψj) converges to 0 in Oc.

Proof: Since O ′
c is Montel, it suffices to show that for any S ∈ O ′

c the sequence
(〈Ψj , S〉) converges to 0. Let (φk) be a sequence in D converging to δ in E ′.
Since the bilinear map (Ψ, S) → Ψ ∗ S is separately continuous, it follows from
the hypothesis that, for fixed k,

(∗∗) lim
j→∞

〈Ψj , φ̆k ∗ S〉 = lim
j→∞

〈Ψj ∗ φk, S〉 = lim
j→∞

((Ψj ∗ φk) ∗ S)(0) = 0.

The hypothesis implies that Ψj → 0 weakly in the dual of S considered as a sub-
space of O ′

c. Since S is dense in O ′
c, one can show that S with the relative

topology of O ′
c is Montel. Thus (∗∗) implies that (Ψj) → 0 strongly in the dual

of S with the relative topology of O ′
c. Since the set {S ∗ φk : k = 1, 2, . . . } is
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bounded in S with the relative topology of O ′
c, it follows that the convergence in

(∗∗) is uniform in k. Hence

lim
j→∞

〈Ψj , S〉 = lim
j→∞

lim
k→∞

〈Ψj , φk ∗ S〉 = lim
k→∞

lim
j→∞

〈Ψj ∗ φk, S〉.

The proof is complete. �

The following problem ([4, Problem 8, p. 425]) is useful to show equality of the
topologies of O ′

c.

Problem (Horvath). The strong dual topology is the least fine topology on O ′
c

such that for any nonnegative integer k, the map S → (1 + |x|2)kS, from O ′
c into

S ′
0
is continuous.

Remark. If we assume the truth of the above problem, we can show that on
O ′

c the strong dual topology is less fine than τ
′
b. Indeed, since the strong dual

topology is the least fine topology such that the maps S → (1 + |x|2)kS from O ′
c

into S ′
0
are continuous, it suffices to show that these maps are continuous when

we provide O ′
c with τ

′
b. Since τ

′
b is equal to τb and (O

′
c, τb) is bornologic (see [2,

Chapter 2, Theorem 16]), we show that the maps are sequentially continuous.
Fix k ∈ N, let (Sj) be a sequence in O ′

c converging to 0 in τ
′
b. Let B be any

bounded subset of S0. The set (1 + |x|2)kB is bounded in Sk →֒ Oc, hence

bounded in Oc. Thus (1 + |x|2)kB is bounded in E. Let Ψ ∈ S0, we claim that
the map ΛΨ from (O

′
c, τ

′
b) into E which maps S to Ψ ∗ S is bounded. Indeed,

let B′ be a bounded subset of (O ′
c, τ

′
b), let (B

′
e)

◦, B′
e is a bounded subset of E

′,

be a member of 0-neighborhood base in E. We find λ > 0 such that λ(Ψ ∗ B′)
is contained in (B′

e)
◦. Since τ ′b is less fine than the sdt and E ′ is continuously

embedded in (O ′
c, sdt), it follows that B

′
e is bounded in τ

′
b. Since F(E ′), the

Fourier transform of E ′, is continuously embedded in OM , it follows that B
′
e and

B′ are bounded in OM . Hence B
′
e · B

′ is bounded in OM (see [6, p. 248]). This
implies that B′

e ∗B
′ is bounded in O ′

c with the sdt. Thus there exists a constant
c > 0 such that |〈Ψ, S ∗ T 〉| < c for all S ∈ B′ and T ∈ B′. Thus (1/c)(Ψ ∗B′) is
contained in (B′

e)
◦. This proves the claim. Since Sk is of second category (being

a complete metric space), it follows from the Banach-Steinhaus theorem that the

set {Sj ∗ (1 + |x|2)kf : f ∈ B, j = 1, 2, . . . } is bounded in Sk ⊂ E. Let (φi) be
a sequence in D which converges to δ in E ′. One has

lim
j→∞

〈Sj , (1 + |x|2)kf〉 = lim
j→∞

〈Sj ∗ (1 + |x|2)kf, δ〉 =

= lim
j→∞

lim
i→∞

〈Sj ∗ (1 + |x|2)kf, φi〉.

Since the inner limit converges uniformly in j, one can interchange the limits and
get

lim
j→∞

〈Sj , (1 + |x|2)kf〉 = lim
i→∞

lim
j→∞

〈Sj ∗ (1 + |x|2)kf, φi〉 = 0,

where the convergence is uniform in f ∈ B. This completes the proof of the
assertion. �
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