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Commutative neutrix convolution products of functions

Brian Fisher, Adem Kiliçman

Abstract. The commutative neutrix convolution product of the functions xreλx
−

and

xse
µx
+
is evaluated for r, s = 0, 1, 2, . . . and all λ, µ. Further commutative neutrix con-

volution products are then deduced.

Keywords: neutrix, neutrix limit, neutrix convolution product

Classification: 46F10

In the following we let D be the space of infinitely differentiable functions with
compact support and let D′ be the space of distributions defined on D. The
convolution product f∗g of two distributions f and g in D′ is then usually defined
by the equation

〈(f∗g)(x), φ〉 = 〈f(y), 〈g(x), φ(x + y)〉〉

for arbitrary φ in D, provided f and g satisfy either of the conditions

(a) either f or g has bounded support,
(b) the supports of f and g are bounded on the same side,

see Gel’fand and Shilov [7].
Note that if f and g are locally summable functions satisfying either of the

above conditions then

(1) (f∗g)(x) =

∫ ∞

−∞

f(t)g(x − t) dt =

∫ ∞

−∞

f(x − t)g(t) dt.

It follows that if the convolution product f∗g exists by this definition then

f∗g = g∗f,(2)

(f∗g)′ = f∗g′ = f ′∗g.(3)

This definition of the convolution product is rather restrictive and so the non-
commutative neutrix convolution product was introduced in [2]. A commutative
neutrix convolution product was given more recently in [4]. In order to define the
neutrix convolution product we first of all let τ be a function in D satisfying the
following properties:

(i) τ(x) = τ(−x),
(ii) 0 ≤ τ(x) ≤ 1,

(iii) τ(x) = 1 for |x| ≤ 1
2 ,

(iv) τ(x) = 0 for |x| ≥ 1.
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The function τn is now defined by

τn(x) =











1, |x| ≤ n,

τ(nnx − nn+1), x > n,

τ(nnx+ nn+1), x < −n,

for n = 1, 2, . . . .

Definition 1. Let f and g be distributions in D′ and let fn = fτn and gn = gτn

for n = 1, 2, . . . . Then the commutative neutrix convolution product f �∗ g is
defined as the neutrix limit of the sequence {fn∗gn}, provided that the limit h
exists in the sense that

N−lim
n→∞

〈fn∗gn, φ〉 = 〈h, φ〉,

for all φ in D, where N is the neutrix, see van der Corput [1], having domain
N ′ = {1, 2, . . . , n, . . . } and range N ′′ the real numbers, with negligible functions

finite linear sums of the functions

nλ lnr−1 n, lnr n (λ > 0, r = 1, 2, . . . )

and all functions which converge to zero in the usual sense as n tends to infinity.

Note that in this definition the convolution product fn∗gn is defined in Gel’fand
and Shilov’s sense, the distributions fn and gn both having bounded support.
Note also that the non-commutative neutrix convolution, denoted by f ©∗ g, was
defined as the limit of the sequence {fn∗g}.
The following theorem was proved in [4], showing that the neutrix convolution

product is a generalization of the convolution product.

Theorem 1. Let f and g be distributions in D′ satisfying either condition (a)
or condition (b) of Gel’fand and Shilov’s definition. Then the neutrix convolution
product f �∗ g exists and

f �∗ g = f∗g.

A number of neutrix convolution products have been evaluated. For example,

xλ
− �∗ x

µ
+ see [4], x

λ
− �∗ xr−λ

+ see [5] and lnx− �∗ xr
+ see [6].

In order to define further neutrix convolution products, we increase our set of
negligible functions given in Definition 1 to also include finite linear sums of the
functions

nλeµn (µ > 0).

We now define the locally summable functions eλx
+ and eλx

− by

eλx
+ =

{

eλx, x > 0,

0, x < 0,
eλx
− =

{

0, x > 0,

eλx, x < 0.

It follows that

eλx
− + eλx

+ = eλx, xreλx
+ = xr

+eλx
+ , xreλx

− = (−1)
rxr

−eλx
− ,

for r = 0, 1, 2, . . . .
We now prove
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Theorem 2. The neutrix convolution product (xreλx
− )�∗ (x

seµx
+ ) exists and

eλx
− �∗ eµx

+ =
e
µx
+ + eλx

−

λ − µ
,(4)

(xreλx
− )�∗ (x

seµx
+ ) = Dr

λDs
µ

e
µx
+ + eλx

−

λ − µ

=
s

∑

i=0

(

s

i

)

(r + s − i)!xie
µx
+

(λ − µ)r+s−i+1
+(5)

+

r
∑

i=0

(

r

i

)

(−1)r−i(r + s − i)!xieλx
−

(λ − µ)r+s−i+1
,

where Dλ = ∂/∂λ and Dµ = ∂/∂µ, for λ 6= µ and r, s = 0, 1, 2, . . . ; these neutrix
convolution products existing as convolution products if λ > µ and

(6) (xreλx
− )�∗ (x

seλx
+ ) = −B(r + 1, s+ 1) sgnx.xr+s+1eλx,

where B denotes the Beta function, for all λ and r, s = 0, 1, 2, . . . .

Proof: We put (eλx
− )n = eλx

− τn(x) for n = 1, 2, . . . and suppose first of all that

λ 6= µ. Since (eλx
− )n and (e

µx
+ )n are summable functions with compact support,

the convolution product (eλx
− )n∗(e

µx
+ )n is defined by equation (1) and so

(eλx
− )n∗(e

µx
+ )n =

∫ ∞

−∞

(eλt
− )n(e

µ(x−t)
+ )n dt =

∫ 0

−n−n−n

eλtτn(t)e
µ(x−t)
+ τn(x − t) dt.

Thus if −n ≤ x ≤ 0,

(7)

(eλx
− )n∗(e

µx
+ )n =

∫ x

−n

eλteµ(x−t) dt+

∫ −n

−n−n−n

eλtτn(t)e
µ(x−t)τn(x − t) dt

=
eλx − eµx−(λ−µ)n

λ − µ
+O(n−ne−(λ−µ)n).

When n ≥ x ≥ 0,
(8)

(eλx
− )n∗(e

µx
+ )n =

∫ 0

x−n

eλteµ(x−t) dt+

∫ x−n

x−n−n−n

eλtτn(t)e
µ(x−t)τn(x − t) dt

=
eµx − eλx−(λ−µ)n

λ − µ
+O(n−ne−(λ−µ)n).

It now follows from equations (7) and (8) that for arbitrary φ in D

〈(eλx
− )n∗(e

µx
+ )n, φ(x)〉 = (λ − µ)−1〈eµx

+ + eλx
− , φ(x)〉+

− (λ − µ)−1e−(λ−µ)n〈eλx
+ + e

µx
− , φ(x)〉 + O(n−ne−(λ−µ)n)
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and so

N−lim
n→∞

〈(eλx
− )n∗(e

µx
+ )n, φ(x)〉 = (λ − µ)−1〈eµx

+ + eλx
− , φ(x)〉,

the usual limit existing if λ > µ. Equation (4) follows.

We now put (xreλx
− )n = xreλx

− τn(x) and (x
seµx
+ )n = xseµx

+ τn(x). Then as
above, we have

(xreλx
− )n∗(x

se
µx
+ )n =

∫ 0

−n−n−n

treλtτn(t)(x − t)se
µ(x−t)
+ τn(x − t) dt.

Thus if −n ≤ x ≤ 0,

(9)

(xreλx
− )n∗(x

se
µx
+ )n =

∫ x

−n
treλt(x − t)seµ(x−t) dt+

+

∫ −n

−n−n−n

treλtτn(t)(x − t)seµ(x−t)τn(x − t) dt

= Dr
λDs

µ eµx

∫ x

−n

e(λ−µ)t dt+O(n−n+r+se−(λ−µ)n)

= Dr
λDs

µ

eλx

λ − µ
+ eµxP (n) · e−(λ−µ)n+

+O(n−n+r+se−(λ−µ)n),

on using equation (7), where P denotes a polynomial.
When n ≥ x ≥ 0,

(10)

(xreλx
− )n∗(x

seµx
+ )n =

∫ 0

x−n

treλt(x − t)seµ(x−t) dt+

+

∫ x−n

x−n−n−n

treλtτn(t)(x − t)seµ(x−t)τn(x − t) dt

= Dr
λDs

µeµx

∫ 0

x−n

e(λ−µ)t dt+O(n−n+r+se−(λ−µ)n)

= Dr
λDs

µ

eµx

λ − µ
+ eλxP (n)e−(λ−µ)n+

+O(n−n+r+se−(λ−µ)n),

on using equation (8).
It now follows as above from equations (9) and (10) that for arbitrary φ in D

N−lim
n→∞

〈(xreλx
− )n∗(x

seµx
+ )n, φ(x)〉 = Dr

λDs
µ(λ − µ)−1〈eµx

+ + eλx
− , φ(x)〉,
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the usual limit existing if λ > µ. Thus

(xreλx
− )�∗ (x

se
µx
+ ) = Dr

λDs
µ

eµx
+ + eλx

−

λ − µ

and equation (5) follows.
Now suppose that λ = µ. Then as above, we have

(xreλx
− )n∗(x

seλx
+ )n =

∫ 0

−n−n−n

treλtτn(t)(x − t)se
λ(x−t)
+ τn(x − t) dt.

Thus if −n ≤ x ≤ 0,

(11)

(xreλx
− )n∗(x

seλx
+ )n =

= eλx

∫ x

−n

tr(x − t)s dt+ eλx

∫ −n

−n−n−n

trτn(t)(x − t)sτn(x − t) dt

= eλx
s

∑

i=0

(

s

i

)

(−1)i
∫ x

−n
xs−itr+i dt+O(n−n+r+s)

= eλx
s

∑

i=0

(

s

i

)

(−1)i
xr+s+1 − (−n)r+i+1xs−i

r + i+ 1
+O(n−n+r+s)

= eλx
s

∑

i=0

(

s

i

)

xr+s+1(−1)i
∫ 1

0
tr+i dt+ eλx

s
∑

i=0

(

s

i

)

(−1)rxs−inr+i+1

r + i+ 1
+

+O(n−n+r+s)

= B(r + 1, s+ 1)xr+s+1eλx + eλx
s

∑

i=0

(

s

i

)

(−1)rxs−inr+i+1

r + i+ 1
+

+O(n−n+r+s),

where B denotes the Beta function.
When x ≥ 0,

(xreλx
− )n∗(x

seλx
+ )n =

= eλx

∫ 0

x−n

tr(x − t)s dt+ eλx

∫ x−n

x−n−n−n

tr(x − t)sτn(t) dt

= eλx
s

∑

i=0

(

s

i

)

(−1)i+1xs−i(x − n)r+i+1

r + i+ 1
+O(n−n+r+s)

and it follows that

(12)
N−lim
n→∞

(xreλx
− )n∗(x

seλx
+ )n = xr+s+1eλx

s
∑

i=0

(

s

i

)

(−1)i+1

r + i+ 1

= −B(r + 1, s+ 1)xr+s+1eλx,
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when x ≥ 0.
It now follows as above from equations (11) and (12) that for arbitrary φ in D

N−lim
n→∞

〈(xreλx
− )n∗(x

seλx
+ ), φ(x)〉 = B(r + 1, s+ 1)〈xr+s+1eλx

− − xr+s+1eλx
+ , φ(x)〉

and equation (6) follows.

Corollary. The neutrix convolution products (xreλx) �∗ (xse
µx
± ) and (x

reλx) �∗
(xseµx) exist and

(xreλx)�∗ (xse
µx
± ) = ±Dr

λDs
µ

eλx

λ − µ
,(13)

(xreλx)�∗ (xseµx) = 0,(14)

for λ 6= µ and r, s = 0, 1, 2, . . . and

(xreλx)�∗ (xseλx
± ) = ±B(r + 1, s+ 1)xr+s+1eλx

∓ ,(15)

(xreλx)�∗ (xseλx) = −B(r + 1, s+ 1) sgnx.xr+s+1eλx,(16)

for all λ and r, s = 0, 1, 2, . . . .

Proof: We will suppose first of all that λ 6= µ. It was proved in [3] that

(xreλx
+ )∗(x

se
µx
+ ) = Dr

λDs
µ

eλx
+ − eµx

+

λ − µ
,(17)

(xreλx
− )∗(x

seµx
− ) = Dr

λDs
µ

eλx
− − eµx

−

µ − λ
.(18)

It follows that

(xreλx)�∗ (xseµx
+ ) = (x

reλx
+ + xreλx

− )�∗ (x
seµx
+ ) = Dr

λDs
µ

eλx

λ − µ
,

on using equations (5) and (17) and noting that the neutrix convolution product
is distributive with respect to addition.
Similarly,

(xreλx)�∗ (xseµx
− ) = (x

reλx
+ + xreλx

− )�∗ (x
seµx

− ) = −Dr
λDs

µ

eλx

λ − µ
,

on using equations (5) and (18). Equations (13) are proved.
We now have

(xreλx)�∗ (xseµx) = (xreλx)�∗ (xse
µx
+ + xse

µx
− ) = 0,
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on using equations (13), proving equation (14).
Now suppose that λ = µ. It was proved in [3] that in this case

(xreλx
+ )∗(x

seλx
+ ) = B(r + 1, s+ 1)xr+s+1eλx

+ ,(19)

(xreλx
− )∗(x

seλx
− ) = −B(r + 1, s+ 1)xr+s+1eλx

− .(20)

It follows that

(21) (xreλx)�∗ (xseλx
+ ) = (x

reλx
+ +xreλx

− )�∗ (x
seλx
+ ) = B(r+1, s+1)xr+s+1eλx

−

on using equations (5) and (19).
Similarly,

(22) (xreλx)�∗ (xseλx
− ) = (x

reλx
+ +xreλx

− )∗(x
seλx

− ) = −B(r+1, s+1)xr+s+1eλx
+ ,

on using equations (5) and (20) and then

(xreλx)�∗ (xseλx) = (xreλx)�∗ (xseλx
+ +xseλx

− ) = −B(r+1, s+1) sgnx.xr+s+1eλx,

on using equations (21) and (22). Equations (15) and (16) are now proved.

The non-commutative neutrix convolution product (xreλx
− )©∗ (x

seµx
+ ) was eval-

uated in [3]. Note that

(xreλx
− )�∗ (x

se
µx
+ ) = (x

reλx
− )©∗ (x

se
µx
+ ),

for λ 6= µ, but
(xreλx

− )�∗ (x
seλx
+ ) 6= (x

reλx
− )©∗ (x

seλx
+ ).
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