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ANNOUNCEMENTS OF NEW RESULTS

(of authors having an address in Czech Republic)

CHARACTERIZING CONGRUENCE LATTICES OF LATTICES
M. Tischendorf, J. Tůma (Fachbereich Math., Schlossgartenstr. 7, TH Darmstadt,
Germany; Math. Inst. Acad. Sci., Žitná 25, 115 67 Prague 1, Czech Republic;
received January 21, 1994)
It has been known since the fourties that the congruence lattice of a lattice L

is algebraic and satisfies the distributive law. In this paper we announce a proof
of the converse:

Theorem. Every distributive algebraic lattice is isomorphic to the congruence

lattice of some lattice.

Let S be the semilattice of compact elements of a distributive algebraic lat-
tice L. We take an upward directed system S = {SA : A ∈ I} of finite distributive
subsemilattices of S such that S =

⋃
A∈I SA. Thus S is isomorphic to the colimit

of the system S together with the inclusion embeddings φA,B : SA → SB, where
A ≤ B in I. Then we construct a system L = {LA : A ∈ I} of finite lattices,
a corresponding system {χA,B : LA → LB : A ≤ B, A, B ∈ I} of lattice embed-
dings, and for every A ∈ I an isomorphism ιA from SA to the semilattice ConLA

of compact congruences of LA satisfying the commuting identity

(1) con(χA,B) ◦ ιA = ιB ◦ φA,B .
Here con(χA,B) is the mapping from ConLA to ConLB assigning to every com-
pact congruence θ of LA the congruence of LB generated by {(χA,B(a), χA,B(b)) :
(a, b) ∈ θ}. We refer to a system L satisfying these conditions as a simultaneous
representation of S. The following result is crucial for the method (originally
proposed by P. Pudlák).

Lemma 1. If L = {LA : A ∈ I} is a simultaneous representation of S =
{SA : A ∈ I} then the semilattice of compact congruences of the colimit of L is
isomorphic to the colimit of S, i.e. to S.

We start by defining the limit system S . As the index set I we choose the set of
all finite subsets of nonzero elements of S ordered by inclusion. We set S∅ = {0}
and S{z} = {0, z} for every z ∈ S. If B is a finite subset of S containing more

than one element and if SA has already been defined for every proper subset A

of B, then we choose SB as an arbitrary finite distributive subsemilattice of S
containing

⋃
A⊂B SA.

Next we construct a simultaneous representation of the limit system S. First
of all we define finite atomistic lattices LB, for B ∈ I. By J(SA) we denote the
set of join-irreducible elements of SA.
We choose L∅ = {0}. If B 6= ∅, then the atoms of LB are of the form

〈(A0, p0, i0), . . . , (An, pn, in)〉,
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where

(i) ∅ 6= A0 ≺ A1 ≺ . . . ≺ An = B,
(ii) pk ∈ {0, 1, 2},
(iii) ik ∈ J(SAk

) and ik+1 ≤ ik for k < n.

For a sequence b as above we define µB(b) = in. Note also that the initial part
of length k + 1 of any atom is an atom of the corresponding LAk

.
Next we specify the defining inequalities ΦB for the lattices LB. We shall

proceed by induction on B. If B = {z}, then we set L{z} to be isomorphic

to M3. Suppose now that |B| ≥ 2 and that for every proper subset A of B,
the lattice LA has already been defined by a set of minimal inequalities ΦA. If
a ≤

∑
w∈W bw is an inequality of ΦA and i ∈ J(SB) satisfying i ≤ µA(a), then

we add to ΦB the inequality

(2) 〈a, (B, p, i)〉 ≤
∑

w,q

〈bw, (B, q, i)〉.

Suppose nowA1, A2 are distinct proper maximal subsets ofB and a ∈ At(LA1∩A2
).

For every j ≤ µA1∩A2
(a) we add to ΦB the inequalities

(3)
∑

{〈a, (A1, p1, i1), (B, p, j)〉} =
∑

{〈a, (A2, p2, i2), (B, q, j)〉}
To assure that ConLB is isomorphic to SB we add new inequalities

(4) 〈(B, p, i)〉 ≤ 〈(B, q, i)〉 + 〈(B, r, j)〉,
where i, j ∈ J(SB), i ≤ j and p 6= q 6= r 6= p, and

(5)
〈a, (B, p, i)〉 ≤ 〈a, (B, q, i)〉+ 〈(B, r, i)〉,

〈(B, p, i)〉 ≤ 〈a, (B, q, i)〉+ 〈a, (B, r, i)〉.
Now we define LB as the atomistic lattice defined on At(LB) by inequalities

(2)–(5). It is straightforward to prove that the mapping ιB : SB → ConLB

assigning to every order ideal J of J(SB) the least congruence of LB identifying
with 0 every atom b ∈ LB such that µB(b) ∈ J is an isomorphism. It is consid-
erably more difficult to prove that the formula χA,B(a) =

∑
{b ∈ At(LB) : b =

〈a, (B, p, i)〉} determines a lattice embedding χA,B : LA → LB for every maximal
proper subset A of B.
If A ⊂ B is not maximal, then we compose an embedding χA,B : LA → LB

from the embeddings of the previous paragraph. The inequalities (3) imply that
this definition is correct. A straightforward verification of the commuting identity
leads to the following lemma. Combined with Lemma 1 it proves the theorem.

Lemma 2. The family L = {LA : A ∈ I} with the embeddings {χA,B : A, B ∈
I, A ⊆ B} and isomorphisms {ιA : A ∈ I} is a simultaneous representation of S.

Complete proofs are given in

M. Tischendorf, J. Tůma, The Characterization of Congruence Lattices of Lat-
tices, Preprint 1559, TH Darmstadt, 1993.
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A PERTURBATION THEOREM FOR LINEAR EQUATIONS
J. Rohn (Faculty of Mathematics and Physics, Charles University, Malostranské
nám. 25, 118 00 Prague 1, Czech Republic; received January 24, 1994)

We describe here explicit formulae for componentwise bounds on solution of a sys-
tem of linear equations

Ax = b

(A square) under perturbation of all data. To make the result numerically
tractable, we avoid the use of exact inverses, using instead some matrices R and
M required only to satisfy certain inequalities. Hansen’s optimality result [1], [2]
is a special case of our theorem. Notations used: I is the unit matrix, ̺ denotes
the spectral radius, for A = (aij) we denote |A| = (|aij |) and inequalities are
understood componentwise.

Theorem. Let A,∆ ∈ Rn×n, b, δ ∈ Rn, ∆ ≥ 0, δ ≥ 0 and let R and M be

arbitrary matrices satisfying

(1)
MG+ I ≤ M,

M ≥ 0,
where

G = |I − RA|+ |R|∆.

Then for each A′ and b′ such that

|A′ − A| ≤ ∆,

|b′ − b| ≤ δ,
A′ is nonsingular and the solution of the system

A′x′ = b′

for each i ∈ {1, . . . , n} satisfies

(2) min
{x

˜ i

αi
,
x
˜ i

βi

}
≤ x′i ≤ max

{ x̃i

αi
,
x̃i

βi

}
,

where

x
˜ i = −(M(|Rb|+ |R|δ))i +mi(Rb+ |Rb|)i

x̃i = (M(|Rb|+ |R|δ))i +mi(Rb − |Rb|)i

αi = 1 + (|ri| − ri)mi + hi

βi = 2mi − 1− (|ri|+ ri)mi − hi

mi =Mii

ri = (I − RA)ii

hi = (M − MG − I)ii
and

βi ≥ αi ≥ 1.
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Moreover, if A = I and ̺(∆) < 1, and if we take R := I and M := (I − ∆)−1,

then the bounds (2) are exact (i.e. achieved).

The proof employs the ideas of the proofs of Theorems 1 and 3 in [2]; details are
omitted here.

Comments. The quantities ri and hi correct the influence of the approximate
inverses R andM ; they vanish if R = A−1 andM = (I −G)−1 ≥ 0 are used. The
last statement of the theorem is Hansen’s optimality result [1] as reformulated
in [2]. It can be shown that matrices R andM ≥ 0 satisfying (1) exist if and only
if

̺
(
|A−1|∆

)
< 1

holds. In this case, if R is chosen sufficiently close to A−1 to achieve ̺(G) < 1,
then M can be computed by the following finite algorithm:

F := a (small) positive matrix; M ′ := 0;
repeat M :=M ′; M ′ :=MG+ I + F until |M ′ − M | < F ;
{then the last M is positive and satisfies (1)}.
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