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On Cohen-Macaulay rings

Edgar E. Enochs, Overtoun M.G. Jenda

Abstract. In this paper, we use a characterization of R-modules N such that fdRN =
pdRN to characterize Cohen-Macaulay rings in terms of various dimensions. This is
done by setting N to be the dth local cohomology functor of R with respect to the
maximal ideal where d is the Krull dimension of R.

Keywords: injective, precovers, preenvelopes, canonical module, Cohen-Macaulay,
n-Gorenstein, resolvent, resolutions

Classification: 13C14, 13D45, 13H10, 18G10

1. Introduction

R will denote an associative ring with a unit element, R-module will mean left
R-module, and noetherian will mean left noetherian.
Let A and B be subcategories of R-modules. Then we recall that if A and B

are objects in A and B respectively, then the A-injective dimension of B (denoted
A − idB) or B-projective dimension of A (denoted B − pdA) is the smallest
nonnegative integer n such that ExtiR(A,B) = 0 for all i > n. Otherwise, we set
A− idB = B − pdA =∞.
We define A−idB to be the sup{A−idB : B ∈ B}. Note thatA−idB = B−pdA.

Similarly, A − idB = B − pdA can be defined. If A − idB = 0, we will say that
B is A-injective. We define the A-injective dimension of B (denoted by A− idB)
to be sup{A− idB : A ∈ A, B ∈ B}.
Likewise, if A is a subcategory of right R-modules and B is a subcategory of

left R-modules, then we can define A− fdB and A − fdB using TorRi (A,B). B
is A-flat if A− fdB = 0.
Now let M be an R-module and A be a full subcategory of R-modules. Then

a map ψ :M → A with A in A is said to be an A-preenvelope ofM if any diagram

M -
ψ A

? . .
. .
. .
. .
.

	

A′

with A′ in A can be completed.
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If A contains all injective R-modules, then the preenvelopes are monomor-
phisms. So that in the case A-preenvelopes exist for all R-modules, we can define
an A-resolution of M to be an exact sequence

0→M → A◦ → A1 → . . . where

M → A◦, Coker(M → A◦) → A1, Coker(An−1 → An) → An+1 for n ≥ 1
are A-preenvelopes. We will say that M has A-resolution dimension (denoted
A−rndimM) ≤ n if there is an A-resolution 0→M → A◦ → A1 → · · · → An →
0. The A-resolution global dimension of R (denoted by A − rngldimR) is to be
the sup{A− rndimM :M ∈ Mod} where Mod is the category of R-modules.
If the preenvelopes are not necessarily exact, we get a sequence, not necessarily

exact, called an A-resolvent of M , and so A-resolvent dimension (denoted A −
rtdim) and A− rtgldimR can be defined similarly.
We start in Section 2 by extending the results in Enochs-Jenda [3] to an arbi-

trary ring R. In particular, we get a characterization of R-modules N such that
fdRN = pdRN in terms of the various dimensions defined above (Theorem 2.1).
By choosing an appropriate N , this theorem specializes to n-Gorenstein rings
(Corollary 2.3) and Cohen-Macaulay local rings (Theorem 3.7).
If (R,m, k) is a commutative noetherian local ring of Krull dimension d andM

is a finitely generated R-module, then Hi
m(M) denotes the i

th local cohomology
functor with respect to the maximal ideal m. A finitely generated R-module K
is said to be a canonical module of R if the completion of KR with respect to the
m-adic topology

K̂R
∼= Hom(Hd

m(R), E(k))

where E(k) denotes the injective envelope of k (see Herzog-Kunz [7]).
A finitely generated R-module M is said to be maximal Cohen-Macaulay if

depth M = d. If R is a Cohen-Macaulay ring with a canonical module, then
every finitely generated R-module M has a maximal Cohen-Macaulay precover
(see Auslander-Buchweitz [1] or Yoshino [13]), that is, a surjective map ψ : C →M
with C maximal Cohen-Macaulay such that any diagram

C′

. .
. .
. .
. .
.

	 ?

C - M

with C′ maximal Cohen-Macaulay can be completed.
We can therefore form a Cohen-Macaulay resolution

· · · → C1 → C0 →M → 0 where

C0 →M,C1 → Ker(C0 →M), Cn+1 → Ker(Cn → Cn−1), n ≥ 1
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are maximal Cohen-Macaulay precovers. If there is a Cohen-Macaulay resolution
0 → Cn → Cn−1 → · · · → C1 → M → 0, we say that M has Cohen-Macaulay
dimension (denoted CM − dim) ≤ n. We define the Cohen-Macaulay global
dimension of R (denoted CM − gldimR) to be the sup{CM − dimM : M ∈
FGMod} where FGMod denotes the full subcategory of finitely generated R-
modules.
The aim of Section 3 is to give characterizations of Cohen-Macaulay rings in

terms of the local cohomology functor and the various dimensions that we have
defined above. One of the consequences of this section is that the length of
a Cohen-Macaulay resolution of a finitely generated R-module does not exceed
the Krull dimension of R when R has a canonical module.
In this paper, Exti(A,B), Tori(A,B) will denote Ext

i
R(A,B), Tor

R
i (A,B)

respectively, and for a local ring (R,m, k), the Matlis dual Hom(M,E(k)) will be
denoted by Mv where E(k) is the injective envelope of k.

2. Resolutions and resolvents

Let N be a fixed R-module. Then AN will denote the full subcategory of all
N -injective R-modules and BN will denote the full subcategory of all N -flat right
R-modules.
In [3], we showed the existence of copure injective preenvelopes over noether-

ian rings, and copure flat preenvelopes over commutative artinian rings. For an
arbitrary ring R, the same proofs show the existence of AN -preenvelopes, and
BN -preenvelopes in the case N is of finite type for then Tori(−, N) preserves di-
rect products by Lenzing [10]. So straight forward modifications to the proofs of
the results in Section 3 and Theorem 4.1 of [3] give the following result which
holds for any ring R.

Theorem 2.1. LetN be anR-module such that fdN = pdN . Then the following
are equivalent for an integer n.

(1) pdN ≤ n.
(2) AN − rngldimR ≤ n.

(3) Every nth cosyzygy of an R-module is in AN .

(4) N − fdModR ≤ n.
(5) N − fdFGModR ≤ n.

(6) Every nth syzygy of a right R-module is in BN .

Furthermore, if N is of finite type, then each of the above statements is equivalent
to (7) BN − rtgldimR ≤ n.

To see that Theorem 4.1 of [3] for n-Gorenstein rings (that is, R is left and
right noetherian and is of finite injective dimension at most n over itself on either
side) is a consequence of the above theorem, one observes the following:

Proposition 2.2. Let R be noetherian and {Xα} be a representative set of
indecomposable injective R-modules. Set X = ⊕Xα. Then the following are
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equivalent for an integer n.

(1) idRR = n.
(2) pdRX = n.
(3) fdRX = n.

Proof: 1⇔ 2. Suppose idRR = n. Then pdRX ≤ n by Jensen [9, Theorem 5.9].
If pdRX < n, then pdRE < n for all injective R-modules E since E = ⊕X ′β where

X ′β ∈ {Xα}, and so idRR < n by Jensen [9]. So pdRX = n, and conversely.

1 ⇔ 3. idRR = n implies that fdRX ≤ n by Enochs-Jenda [4, Theorem 4.4]
and so fdRX = n as above, and conversely. �

Now we simply note that AX -injective dimension is the copure injective dimen-
sion (cid), X-flat dimension is the copure flat dimension (cfd), and BX-resolvent
dimension is the copure flat resolvent dimension. Furthermore, R is n-Gorenstein
if and only if pdRX ≤ n and pdXR ≤ n. So if we set N = X in Theorem 2.1
above, we get the following result using Proposition 2.2 above.

Corollary 2.3 ([3, Theorem 4.1]). The following are equivalent for a left and
right noetherian ring R.

(1) R is n-Gorenstein.
(2) cidM ≤ n for all R-modules (left and right) M .
(3) Every nth cosyzygy of an R-modules (left and right) is in AX .

(4) cfdM ≤ n for all R-modules (left and right) M .
(5) cfdM ≤ n for all finitely generated R-modules (left and right) M .
(6) Every nth syzygy of an R-module (left and right) is in BX .

Furthermore, if R is commutative artinian, then each of the above statements is
equivalent to

(7) Copure flat resolvent dimension of each R-module is at most n.

Remark. We note that if R is a commutative artinian ring, then Rp is quasi-
Frobenius for each prime ideal P of R. Therefore R is quasi-Frobenius and so
n = 0 in this case.

3. Local rings

Throughout this section, R will denote a commutative noetherian local ring
with maximal ideal m and residue field k.
We start with the following.

Lemma 3.1. The following are equivalent for a ring R and integer d ≥ 1

(1) R is Cohen-Macaulay of dimension d.

(2) fdHd
m(R) = d.

(3) pdHd
m(R) = d.

Proof: 1⇒ 2. See Strooker [12, Proposition 9.1.4].
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2⇒ 1. Hd
m(R) is artinian and so is an R̂-module naturally. So fdH

d
m(R) = d

implies that fd
R̂
Hd

m(R) = d and thus id
R̂
Hd

m(R)
v = d. Therefore, Hd

m(R)
v is

a noetherian R̂-module of finite injective dimension. Thus R̂ is Cohen-Macaulay
(see Strooker [12, Theorem 13.1.7]) and so R is Cohen-Macaulay. Furthermore,

the dimension is d for otherwise Hd
m(R) = 0.

2 ⇒ 3. fdHd
m(R) = d implies that Krull dimR = d by the above. So

pdHd
m(R) ≤ d by Foxby [5, Corollary 3.4]. So d = fdHd

m(R) ≤ pdHd
m(R) ≤ d.

Thus pdd
m(R) = d.

3⇒ 2 is trivial since fd ≤ pd. �

For d = 0, we have the following which is surely known and we present it here
for completeness.

Lemma 3.2. The following are equivalent for a ring R.

(1) R is artinian.
(2) H0m(R) = R.
(3) H0m(R) 6= 0 and H

0
m(R) is flat.

(4) H0m(R) 6= 0 and H
0
m(R) is projective.

Proof: 1⇒ 2, 3, 4.
H0m(R)

v = Hom(lim
→
Hom(R/mt, R), E(k))

= lim
←
Hom(Hom(R/mt, R), E(k))

= lim
←
R/mt ⊗ E(k)

= E(k)

since R is complete. Thus H0m(R) is nonzero and flat. But then H
0
m(R) is free

and so H0m(R) = R.

2⇒ 1 H0m(R)
v = E(k) is noetherian and so R is artinian.

3⇒ 1 follows as in Lemma 3.1 and 4⇒ 3 is trivial. �

Corollary 3.3. R is Gorenstein if and only if

fdRp
E(k(P )) = pdRp

E(k(P )) = htP

for all P ∈ SpecR where k(P ) is the quotient ring of R/p.

Proof: We first recall that R-Gorenstein means that idRp < ∞ for all P ∈

SpecR (see Bass [2]). If Rp has finite injective dimension, then H
d
mRp
(RP ) =

E(k(P )) where d = Krull dimRp = htP . So the result follows from the Lemmas

above. Conversely, if fdRp
E(k(P )) = htP , then idR̂p = htP < ∞, and so

idRp <∞. �

Now let I be the full subcategory of finitely generated R-modules with finite
injective dimension. We state the following, noting that if R is Cohen-Macaulay,
then I 6= 0.
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Lemma 3.4. Let R be Cohen-Macaulay. Then the following are equivalent for
a finitely generated R-module M .

(1) M is a maximal Cohen-Macaulay R-module.
(2) Every R-module in I is M -injective.
(3) I has a nonzero M -injective R-module.

Furthermore, if R has a canonical module K, then each of the above statements
is equivalent to

(4) K is M -injective.

(5) K̂ is M -injective.

Proof: 1⇔ 2. We recall that idI = depthR for each I ∈ I, I 6= 0. Furthermore,
depthM +M − idI = idI (see Roberts [11]). So the result follows.
Similarly (3) implies (1), and (3) follows from (2) trivially.

1 ⇔ 4. We use the local duality Exti(M,K)⊗R R̂ ∼= HomR(H
d−i
m (M), E(k))

(see Yoshino [13, Proposition 1.12] or Grothendieck [6, Theorem 6.3]). M is

maximal Cohen-Macaulay if and only if Hd−i
m (M) = 0 for all i > 0 and so if and

only if Exti(M,K) = 0 for i > 0.

4⇔ 5. We simply note that Exti(M,K)⊗R R̂ ∼= Exti(M, K̂R) by Ishikawa [8,
Corollary 1.2], and so the result follows. �

Now let C be the full subcategory of FG Mod consisting of all maximal Cohen-
Macaulay R-modules, and I be the full subcategory of FG Mod consisting of
all C-injective R-modules. It follows from Lemma 3.4 above that if R is Cohen-
Macaulay, then I is a full subcategory of I.
If I ∈ I and 0 → I → E◦ → E′ → · · · is an injective resolution of I, then

0→ Hom(C, I)→ Hom(C,E◦)→ Hom(C,E′)→ · · · is exact for all C in C. Fur-
thermore, if · · · → C1 → C0 →M → 0 is a Cohen-Macaulay resolution of a finitely
generated R-module M , then 0→ Hom(M,E)→ Hom(C0, E)→ · · · is exact for
each injective E. So Hom(−,−) is right balanced by (C, Inj) on FGMod×I (see

Enochs-Jenda [4]). So we obtain right derived functors Ext
i
(M, I). We note that

Ext
i
(M, I) = Exti(M, I).
We are now in a position to prove the following.

Theorem 3.5. The following are equivalent for a ringR with a canonical module.

(1) R is Cohen-Macaulay of dimension d.
(2) Every finitely generated R-module has a maximal Cohen-Macaulay pre-
cover and CM − gldimR = d.

(3) I 6= 0 and sup
I∈I

{idI} = d.

Proof: 1 ⇒ 2. The first part was mentioned in Section 1. Now let K be the
canonical module. Then idK̂R = d by Lemmas 3.1 and 3.2 since K̂R

∼= Hd
m(R)

v.

But then idKR = d since R̂ is faithfully flat. Now consider a Cohen-Macaulay
resolution · · · → C1 → C0 → M → 0 of a finitely generated R-module M . Let
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0 → Ti+1 → Ci → Ti → 0 where i ≥ n be the short exact sequence. Then we

have Ext1(Ti,K) ∼= Ext
2(Ti−1,K) ∼= · · · ∼= Exti+1(M,K) since Exti(C,K) = 0

for i > 0 for all maximal Cohen-Macaulay R-modules C by Lemma 3.4. But
Exti+1(M,K) = 0 for all i ≥ d since idK = d. So Ext1(Ti,K) = 0 for all i ≥ d.
But we also have that Extj(Td,K) ∼= Ext

j−1(Td+1,K) ∼= · · · ∼= Ext1(Td+j−1,K)

for j ≥ 1. So Extj(Td,K) = 0 for all j ≥ 1. Therefore, Td is maximal Cohen-
Macaulay, again by Lemma 3.4. Thus CM − gldimR ≤ d.

Suppose CM − gldimR = n < d. Then Exti(M, I) = 0 for all i > n and for all

M ∈ FGMod, I ∈ I. But K ∈ I. So Exti(M,K) = Ext
i
(M,K) = 0 for all i > n

and for all M ∈ FGMod. Thus idK ≤ n < d, a contradiction.

2 ⇒ 3. Let C → R → 0 be a maximal Cohen-Macaulay precover. Then R is
a direct summand of C. So depth C ≤ depth R. But depth C = dimR. So R is
Cohen-Macaulay. Thus I 6= 0.

CM − gldimR = d implies that Ext
i
(M, I) = 0 for all i > d for all FGModM ,

I ∈ I. So if I ∈ I, then idI ≤ d. Thus sup
I∈I

{idI} ≤ d. If it were less than d,
then it is easy to see that CM − gldimR < d.

3 ⇒ 1 I 6= 0 means R is Cohen-Macaulay. So let Krull dimR = n. Then
sup

I∈I
{idI} = n since 1⇒ 3. So Krull dimR = d. �

Remark. It follows from part (3) of the theorem above that if R is a Cohen-
Macaulay ring with a canonical module, then I = I.

Corollary 3.6 (Auslander-Buchweitz [1]). Let R be a Cohen-Macaulay ring with
a canonical module. Then in FGMod, the full subcategories C and I are orthog-
onal. In particular, C =⊥ (C)⊥ and I = (⊥I)⊥.

Proof: C − idI = 0 by Lemma 3.4. Furthermore, if C is a finitely generated
R-module such that C − idI = 0, then C ∈ C, by the same lemma. So C consists
precisely of all R-modules C in FGMod such that C − idI = 0. So C =⊥ I. But
by the preceding remark, I consists of precisely of R-modules I in FGMod such
that C − idI = 0. So I = C⊥. Thus C and I are orthogonal. So C =⊥ I =⊥ (C⊥)

and I = (⊥I)⊥. �

We now finally have the following version of Theorem 2.1 for Cohen-Macaulay
rings.

Theorem 3.7. The following are equivalent for a ring R and for an integer d ≥ 1.

(1) R is Cohen-Macaulay of dimension d.

(2) Hd
m(R)− idMod = d.

(3) AHd
m(R)

− rngldimR = d.

(4) Hd
m(R)− fdMod = d.

(5) Hd
m(R)− fdFGMod = d.
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Furthermore, if R has a canonical module, then each of the above statements is
equivalent to

(6) Every finitely generated R-module has a maximal Cohen-Macaulay pre-
cover and CM − gldimR = d.

Proof: The equivalence of 1 to 5 follows from Theorem 2.1 and Lemma 3.1
above.
1⇔ 6 is part of Theorem 3.5. �

For d = 0, we have the following which easily follows from Lemma 3.2 and
Theorem 3.5.

Proposition 3.8. The following are equivalent for a ring R.

(1) R is artinian.
(2) H0m(R) 6= 0 and every R-module is H

0
m(R)-flat.

(3) H0m(R) 6= 0 and every R-module is H
0
m(R)-injective.

(4) Every finitely generated R-module is maximal Cohen-Macaulay.
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